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Abstract: In this work, a new methodology for the dynamic analysis of non-linear systems is devel-
oped by applying the Mamdani fuzzy model. With this model, parameters such as settling time,
peak time and overshoot will be obtained. The dynamic analysis of non-linear fuzzy systems with
triangular membership functions is performed, and linguistic variables describing overly complex
or ill-defined phenomena are used to fit the model. Scaling factors will simplify the modification
of the variables, making them easier to find the system model. The specifications of second-order
characteristics in the time domain, such as overshoot and peak time, will be represented graphically.
As a case study, the proposed methods are implemented to analyse the dynamics of a tank and a
simple pendulum for first-order and second-order systems, respectively, where it is observed that the
proposed methodology offers highly positive results.

Keywords: fuzzy systems; dynamic analysis; modelling; settling time; peak time; overshoot; scaling
factors; non-linear systems

1. Introduction

The most common models in fuzzy control, the Mamdani model [1] and Takagi–
Sugeno (T-S) model [2], are traditionally used to model non-linear systems. The main
difference lies in the consequent part of the fuzzy rules. Mamdani fuzzy systems use fuzzy
sets as the consequents of the rules, while T-S fuzzy systems use affine functions of the input
variables as the consequents of the rules. From a linguistic perspective, Mamdani-type
fuzzy systems are understandable since fuzzy linguistic variables are used in both premises
and consequents [3]. On the other hand, in the T-S model, the number of free parameters is
restricted by a suitable structure of the consequent functions, and the antecedent of each
rule defines a validity region for the corresponding affine consequent model. It can be
considered an optimization problem [4,5]. This work deals with the dynamic analysis of
non-linear systems rather than control design. Therefore, the Mamdani model would be
the appropriate choice.

The structure of the fuzzy model using the product-sum-gravity method was used [6,7]
to obtain a flat surface in the inference map and then modify the membership functions
with linguistic operators. The min-max-gravity method [8] does not obtain a flat surface in
the inference map due to the non-linearity of these operators.

Knowledge of a system is essential for applying fuzzy logic. Combining it with
linguistic information (by experts) and numerical data improves the ability to represent
complex non-linear functions with simple local linear models [9]. Although these linguistic
descriptions are not precise, they provide essential information about the system. A human
operator can determine a set of successful control rules based solely on the linguistic
descriptions of the process. This is based on Mamdani Fuzzy Inference Systems in linguistic
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synthesis [10]. In recent work, in [11], the authors develop the “Linguistic Compositional
Variable” to represent mole fractions of components of each phase as a fuzzy variable. As
a result, the number of rules is significantly reduced. In [12], the authors use the cloud
model to represent the linguistic variables. Instead, [13] uses a Mamdani Fuzzy Inference
Network (MFIN) with an advanced optimization technique. The study of evaluative
linguistic expressions has crossed the field of theoretical linguistics and has attracted
interest in very different research areas, such as artificial intelligence, psychology, or
cognitive linguistics [14].

Applying a simple arithmetic operation on the fuzzy sets will modify them. It tends to
consider the adverb “very” interpretation as the result of squaring a membership function,
which causes the membership function to take smaller values, concentrating on the larger
ones. Zadeh [15] called this concentration. The opposite effect is dilation, which would
correspond to the interpretation of the adverb “more or less”, which would be implemented
as the square root of the membership function. These are linguistic variables used to
describe overly complex or ill-defined phenomena typical of non-linear systems. These
modifiers have been used for interpretable context adaptation [16,17]. In [18], an extended
fuzzy hedge set is used to create a more detailed classification of client sentiments, achieving
better performance than without them. In some approaches, they are used to create more
compact rules, such as [19].

The basic first-order system is described with a single real root, while the underdamped
second-order system has a single pair of complex roots. Many devices and processes are
practically well-modelled by either of these two classes, and complex systems can be
considered a combination of several first-order and/or second-order forms [20].

In previous work, the authors have studied the transient response of feedback sys-
tems [21], using the Takagi–Sugeno fuzzy model for system identification [22–24] or ap-
plying fuzzy logic to improve Kalman filtering [25,26]. In this work, the analysis of the
transient response of fuzzy systems is proposed using the Mamdani model, a new approach
that has not been previously performed.

The literature on fuzzy model identification has not adequately addressed issues such
as efficient experiment design, model class, modelling error, target control specifications,
etc. Very few publications address the dynamic properties of fuzzy models [27]. Today, the
dynamic analysis of fuzzy systems tends to demonstrate system stability, which is an impor-
tant problem for controller designs [28–31]. To guarantee stability, a mathematical model of
the plant is needed. There are many works on fuzzy control analysis using phase plane
methods [32–34]. However, these works focus on control and not on dynamic analysis.

This work proposes an analysis of the dynamical behaviour of first and second-order
fuzzy systems and to be able to predict or approximate parameter values, such as their
settling time and overshoot. To predict the dynamical behaviour of a first or second-order
system, we will propose the following steps: (1) use triangular membership functions
to identify the system, and then fit the model by applying the concentration or dilation
linguistic operator or using known membership functions to fit the model; (2) calculate
the corresponding time characteristics with the obtained results; (3) estimate how much
the real dynamic characteristics deviate from the previous ones through the plots we
propose experimentally.

The main aim of this work is to provide a dynamic analysis of fuzzy systems. The
paper is organized as follows: Section provides a review of fuzzy systems for dynamic
modelling. The Fuzzy Mamdani-type model is explained in Section 2. The settling time for
first-order fuzzy systems is calculated in Section 3. The performance of fuzzy second-order
dynamical systems is presented in Section 4. In Section 5, the proposed methods are applied
to tank and simple pendulum systems.
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2. Mamdani Model

In a general case, the dynamics of the non-linear system are described by the following
equation:

xn+1 = f (x) (1)

being x = [x1...xn]T and f a continuous or discrete non-linear function [35]. The main aim
is to build non-linear models capable of reflecting the dynamics of f . System modelling
helps to visualise the behaviour and basic structure of processes. Let us suppose that Xil

l
are the fuzzy sets for input xl , ∀ il = {1, ..., rl}, ∀ l = {1, ..., n}. rl is the number of fuzzy
sets for xl , and µ

X
(il )
l

(xl) are the corresponding membership functions; see Figure 1.

Figure 1. Input membership function xl .

Consider the fuzzy sets X(i1...in)
n+1 of the output xn+1, ∀ il = {1, ..., rl}, ∀ l = {1, ..., n},

with the corresponding membership functions µ
X
(i1...in)
n+1

(xn+1), (see Figure 2). Where X(i1...in)
n+1

are their centres of gravity, and all their areas A(i1...in)
n+1 are the same. Then, each rule R(i1...in)

of the Mamdani model can be defined using the centres of gravity instead of the fuzzy sets
for each consequent [36,37]:

Figure 2. Output membership function xn+1.

IF x1 is X(i1)
1 AND ... AND xn is X(in)

n THEN xn+1 = X(i1...1n)
n+1 , (2)

Therefore, as more sets are used in the measurable variable, the output looks as follows:

xn+1 =

r1

∑
i1=1

...
rn

∑
in=1

w(i1...in)(x)x(i1...in)
n+1

r1

∑
i1=1

...
rn

∑
in=1

w(i1...in)(x)
(3)

where

w(i1...in)(x) =
n

∏
l=1

µ
X
(il )
l

(xl) (4)
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3. Dynamic Analysis of Non-Linear Fuzzy Systems: First-Order Model

The first-order model, according to [35], is expressed as:

x2 = f (x1, u) (5)

In the continuos case, x1 = x(t), x2 = dx
dt . It is assumed that X(i1)

1 is a fuzzy set
for input x1, ∀ i1 = {1, ..., r1}. r1 is the number of fuzzy sets for x1, and µ

X
(i1)
1

(x1) are

the corresponding membership functions (see Figure 1), which are overlapped by pairs.
This means,

r1

∑
i1=1

µ
X
(i1)
1

(x1) = 1, ∀ x1 (6)

For the continuous case and for a first-order model,

ẋ = f (x, u) (7)

a1
dx(t)

dt
+ a0x(t) = b0u(t), (8)

With zero initial conditions. Rewriting the differential equation as follows:

a1

a0

dx
dt

+ x =
b0

a0
u(t) (9)

Which can be written as follows:

τẋ + x = Ku (10)

X(s)

U(s)
=

K
τs + 1

(11)

3.1. First-Order Model

A fuzzy dynamic model equivalent to the linear first-order dynamic model can be
obtained by using the following logical operators in the fuzzy inference process; the product
for conjunction, the product for implication, the sum for aggregation and the centroid for
defuzzification [6,37].

Using the Mamdani model:

R(11) : IF u is N AND x is N THEN ẋ = 0

R(12) : IF u is N AND x is P THEN ẋ = − 2
τ

R(21) : IF u is P AND x is N THEN ẋ =
2
τ

R(22) : IF u is P AND x is P THEN ẋ = 0

Since the membership functions for u and x are:

µN(u) =
1− Ku

2
, ∀ u ∈

[
− 1

K
,

1
K

]
µP(u) =

Ku + 1
2

, ∀ u ∈
[
− 1

K
,

1
K

]
µN(x) =

1− x
2

, ∀ x ∈ [−1, 1]

µP(x) =
x + 1

2
, ∀ x ∈ [−1, 1]
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The output of the system can also be computed by applying (3)

2

∑
i1=1

2

∑
i2=1

w(i1i2)(u, x)ẋ(i1i2) = µN(u)µN(x)ẋ(11) + µN(u)µP(x)ẋ(12)

+ µP(u)µN(x)ẋ(21) + µP(u)µP(x)ẋ(22)

=

(
1− Ku

2

)(
1− x

2

)
(0) +

(
1− Ku

2

)(
x + 1

2

)(
− 2

τ

)
+

(
Ku + 1

2

)(
1− x

2

)(
2
τ

)
+

(
Ku + 1

2

)(
x + 1

2

)
(0)

= − x
τ
+

Ku
τ

(12)

where:

2

∑
i1=1

2

∑
i2=1

w(i1i2)(u, x) = µN(u)µN(x) + µN(u)µP(x)

+ µP(u)µN(x) + µP(u)µP(x)

=

(
1− Ku

2

)(
1− x

2

)
+

(
1− Ku

2

)(
x + 1

2

)
+

(
Ku + 1

2

)(
1− x

2

)
+

(
Ku + 1

2

)(
x + 1

2

)
= 1

(13)

Which matches Equation (10).

ẋ = − x
τ
+

Ku
τ

(14)

Input and output scaling factors [38] will facilitate model fitting by modifying K, τ.
Thus, the universe of discourse will be normalised within the interval [−1, 1], as shown in
Figure 3.

Figure 3. Fuzzy sets; (a) input set u, (b) input set x, (c) output set ẋ centre of gravity and (d) output
surface between ẋ, x and u.
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The number of sets used in the input can be modified by applying scaling factors. For
example, from 2 to 3 fuzzy sets, as shown in the output inference map in Figure 4 below.

Figure 4. First-order inference map.

The scaling factors will be as follows for the input u = K, at the output ẋ = 2
τ (see

Figure 5).

K
2
τ

u

x
ẋ

Figure 5. Scaling factors for the first-order system.

After obtaining an equivalent first-order fuzzy model, it is possible to modify the
triangular function with linguistic hedges and thus adjust the obtained model. Usually,
the model is adjusted by replacing the triangular membership functions with existing
membership functions.

3.2. Linguistic Hedges in Model

A linguistic variable carries with it the concept of fuzzy set qualifiers, called hedges.
The linguistic variables describe phenomena that are too complex or poorly defined to be
described in quantitative terms.

Traditionally, modifiers of fuzzy sets have been used, which are called linguistic labels,
which in natural language, are equivalent to adverbs. Interpreting these statements in the
fuzzy model requires the composition of the membership function with a simple arithmetic
operation [15].

As a special case of µA(x) = µ
p
A(x) when p > 1, the operation of concentration (very)

can be described as follows:

µCON(A)(x) = µ2
A(x) ∀ x ∈ X

It is common to consider the interpretation of the adverb “very” as the square of the
original membership function, i.e., “The system is very fast” would be interpreted as:

µVery Fast(x) = µVF(x) = (µFast(x))2
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The opposite case of µA(x) = µ
p
A(x) when 0 < p < 1, is the dilation (more-or-less)

expressed by
µDIL(A)(x) = µ0.5

A (x) ∀ x ∈ X

The interpretation of the adverb “more-or-less” would be implemented as the square
root of the membership function. It would be interpreted as:

µMore−or−less Fast(x) = µMF(x) = (µFast(x))0.5

3.3. First-Order Fuzzy Model with Linguistic Hedges

A model with triangular membership functions is developed, which will now be mod-
ified with the linguistic hedges type mentioned above, such as dilation and concentration.
We will use a non-linear model that is represented in this way: ẋ = − x|x|

τ + K
τ u, in a fuzzy

system [39]. It will be a concentration operation µX
2(x), and it is shown in Figure 6. If

the model is ẋ = −
√
|x|

τ + K
τ u [37], this represents a dilation µX

0.5(x) (see Figure 7). The

linguistic hedges used for the concentration at input x will be X(1)
1 = VN, X(2)

1 = VZ,

X(3)
1 = VP. The dilation of x is expressed by linguistic hedges X(1)

1 = MN, X(2)
1 = MZ,

X(3)
1 = MP.

The resultant Mamdani model:

R(11) : IF u is N AND x is X(1)
1 THEN ẋ = 0

R(12) : IF u is Z AND x is X(1)
1 THEN ẋ = 0.5

R(13) : IF u is P AND x is X(1)
1 THEN ẋ = 1

R(21) : IF u is N AND x is X(2)
1 THEN ẋ = −0.5

R(22) : IF u is Z AND x is X(2)
1 THEN ẋ = 0

R(23) : IF u is P AND x is X(2)
1 THEN ẋ = 0.5

R(31) : IF u is N AND x is X(3)
1 THEN ẋ = −1

R(32) : IF u is Z AND x is X(3)
1 THEN ẋ = −0.5

R(33) : IF u is P AND x is X(3)
1 THEN ẋ = 0

The scaling factors for the concentration and dilation will be as follows for the input
u = K valid for 0 ≤ K ≤ 1, at the output ẋ = 2

τ (see Figure 5).

Figure 6. The concentration of the input membership functions x and the resulting inference map.

The response of a unit step using linguistic operators, concentration and dilation are
compared to a first-order linear system in Figure 8. This graph indicates that the settling
time (ts) is less than that of the first-order linear system in concentration, which implies
that it is faster than the first-order linear system. On the contrary, the ts in dilation is higher
than that of the first-order linear system. Therefore, the system is slower compared to the
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first-order system. This is valid only for the first 10 s. After that, it is observed that the
dilation is faster than the concentration.

Figure 7. The dilation of the input membership functions x and the resultant inference map.

Figure 8. Step response, with normalised time τt, for K = 1.

3.4. Dynamic Characteristics of a First-Order Fuzzy System

Once the model has been adjusted, a dynamic analysis is performed on this first-order
system for input u, and there are two fuzzy sets for u1, Ui0 , ∀ i0 = {1, 2}, as shown in
Figure 9.

Figure 9. Triangular membership functions for the reference input u.

The input of a step starts from a reference point u(1) to another u(2), remaining at a
final value of u(2). To reach the steady-state regime, it is theoretically required that t→ ∞.
However, it is important to determine a practical value of the time at which the system
reaches its final value.
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It is assumed that the system is initially in equilibrium, i.e., x1 = x(1)1 and x2 = x(1)2 .

Then, according to [35], the settling time of x2(t) when x1 becomes x1 = x(2)1 will have the
following dynamics:

x2 =
dx1

dt
, then dt =

dx1

x2
(15)

To calculate the settling time, we will use the criterion of 95% of the final value so
that the response reaches its final value as performed in (15). There are r1 fuzzy sets, as
shown in Figure 1. This can be calculated as the response to a step input where the system
response is part of a reference point xi

1 = Kui to another x f
1 = Ku f , remaining in a final

value x f
1 = Ku f . t = 0 is defined to be the beginning of the response to the step input and

ends at t = ts to obtain the settling time. The limits of the integral will be,

ts =
∫ ts

0
dt =

∫ xi
1+0.95(x f

1−xi
1)

xi
1

1
x2

dx1 (16)

When a system has a delay, the dynamics of the system will have the same behaviour
in the transient response. It will also be settled at the same steady-state value. The only
change is that the system will have a time delay (td) responding once the input signal is
applied to the system. In this case, a step input is defined as t = td when the response to
the step input begins and ends at t = ts to calculate the settling time. The limits of the
integral will be,

ts =
∫ ts

td

dt =
∫ xi

1+0.95(x f
1−xi

1)

xi
1

1
x2

dx1 (17)

4. Dynamic Analysis of Non-Linear Fuzzy Systems: Second-Order Model

This section aims to provide a fuzzy dynamic system analysis. This work will be
extended to the technique of fuzzy non-linear analysis. Theoretical analysis is often the
most efficient way to explore the characteristics of a system. A continuous system can be
represented by differential equations using the values of the input and output variables. For
the second-order case of three input variables and one output variable, such an equation
will be obtained as follows:

f (x1, x2, u) = x3 (18)

System variables are defined as follows:

x1 = x(t), x2 =
dx
dt

, x3 =
d2x
dt2 (19)

Often, the input u is zero because the system is stationary or time-invariant.
Reviewing the literature, one of the graphical methods used is phase-plane analysis.

This plane is two-dimensional and is helpful for second-order systems.
Although the simulation is important for non-linear control, it must be supported

by theoretical analysis. Blind simulation of non-linear systems is likely to yield few or
erroneous results. This is especially true because of the different behaviours that non-linear
systems can exhibit.

ẍ = f (x, ẋ, u) (20)

a2
d2x(t)

dt2 + a1
dx(t)

dt
+ a0x(t) = b0u(t), (21)

With zero initial conditions. As with first-order systems, a standard form has been
established. Rewriting the differential equation as follows:

a2

a0

d2x
dt2 +

a1

a0

dx
dt

+ x =
b0

a0
u(t) (22)



Appl. Sci. 2023, 13, 1934 10 of 24

Two parameters can be used to describe the characteristics of the second-order tran-
sient response in the same way that the time constant of the first-order system is determined.
The two quantities are known as the natural frequency and the relative damping factor.
The resultant transfer function becomes:

X(s)

U(s)
=

K
s2

ω2
n
+ 2ζs

ωn
+ 1

=
Kω2

n
s2 + 2ζωns + ω2

n
(23)

4.1. Second-Order Approach

A fuzzy dynamic model equivalent to the linear second-order dynamic model can be
obtained by using the following logical operators in the fuzzy inference process; the product
for conjunction, the product for implication, the sum for aggregation and the centroid for
defuzzification. These operators are used so that the output of the fuzzy system is linear.
In the second-order model, we obtain that ẍ(1) = 8Kω2

n, ẍ(2) = 0, ẍ(3) = 0, ẍ(4) = −8Kω2
n,

ẍ(5) = 4Kω2
n and ẍ(6) = −4Kω2

n can be approximated. Another important thing to consider
is the universe of discourse, which can be obtained from the phase plane.
Using the Mamdani model:

R(1) : IF x is N AND ẋ is N THEN ẍ = 8Kω2
n

R(2) : IF x is N AND ẋ is P THEN ẍ = 0

R(3) : IF x is P AND ẋ is N THEN ẍ = 0

R(4) : IF x is P AND ẋ is P THEN ẍ = −8Kω2
n

R(5) : IF u is P THEN ẍ = 4Kω2
n

R(6) : IF u is N THEN ẍ = −4Kω2
n

These rules proved that the fuzzy system is equivalent to a linear system.
Since the membership functions for x and ẋ are:

µN(x) =
2K− x

4K
, ∀ x ∈ [−2K, 2K]

µP(x) =
x + 2K

4K
, ∀ x ∈ [−2K, 2K]

µN(ẋ) =
Kωn − ζ ẋ

2Kωn
, ∀ ẋ ∈

[
−Kωn

ζ
,

Kωn

ζ

]
µP(ẋ) =

ζ ẋ + Kωn

2Kωn
, ∀ ẋ ∈

[
−Kωn

ζ
,

Kωn

ζ

]
µN(u) =

2− u
4

, ∀ u ∈ [−2, 2]

µP(u) =
u + 2

4
, ∀ u ∈ [−2, 2]

The output of the system can be computed as follows:

ẍ =

6

∑
i1=1

w(i1)(x)· ẍ(i1)

6

∑
i1=1

w(i1)(x)

(24)

by applying
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6

∑
i1=1

w(i1)(x)ẍ(i1) = µN(x)µN(ẋ)ẍ(1) + µN(x)µP(ẋ)ẍ(2)

+ µP(x)µN(ẋ)ẍ(3) + µP(x)µP(ẋ)ẍ(4)

+ µP(u)ẍ(5) + µN(u)ẍ(6)

=

(
2K− x

4K

)(
Kωn − ζ ẋ

2Kωn

)
(8Kω2

n) +

(
2K− x

4K

)(
ζ ẋ + Kωn

2Kωn

)
(0)

+

(
x + 2K

4K

)(
Kωn − ζ ẋ

2Kωn

)
(0) +

(
x + 2K

4K

)(
ζ ẋ + Kωn

2Kωn

)
(−8Kω2

n)

+

(
u + 2

4

)
(4Kω2

n) +

(
2− u

4

)
(−4Kω2

n)

= −4ζωn ẋ− 2ω2
nx + 2Kω2

nu

(25)

where:

6

∑
i1=1

w(i1)(x) = µN(x)µN(ẋ) + µN(x)µP(ẋ)

+ µP(x)µN(ẋ) + µP(x)µP(ẋ)

+ µP(u) + µN(u)

=

(
2K− x

4K

)(
Kωn − ζ ẋ

2Kωn

)
+

(
2K− x

4K

)(
ζ ẋ + Kωn

2Kωn

)
+

(
x + 2K

4K

)(
Kωn − ζ ẋ

2Kωn

)
+

(
x + 2K

4K

)(
ζ ẋ + Kωn

2Kωn

)
+

(
u + 2

4

)
+

(
2− u

4

)
= 2

(26)

Which matches the polynomial in Equation ((23))

ẍ = −2ζωn ẋ−ω2
nx + Kω2

nu (27)

To allow the adjustments of K, ωn and ζ, input and output scaling factors will be used.
For this purpose, the universe of discourse will be left normalised to the interval [−1, 1]
(see Figure 10). For the output, the centre of gravity will be {−1,−0.5, 0, 0.5, 1} and will be
multiplied by the maximum value of the output. In this case, it becomes 8Kω2

n. The input
variable x, which is within the interval [−2K, 2K], will be normalised to 1

2K , and then the
variable ẋ will be normalised to ζ

Kωn
. Next, u will be normalised to 1

2 .
The number of sets used in the input can be modified by applying scaling factors. For

example, from 2 to 3 fuzzy sets, as shown in the output inference map in Figure 11 below.
The scaling factors will be as follows for the inputs u = 1

2 , x = 1
2K and ẋ = ζ

Kωn
at the

output ẍ = 8Kω2
n (see Figure 12).

It is possible to modify the triangular function with linguistic hedges and thus ad-
just the obtained model. Most models are adjusted by replacing triangular membership
functions with existing membership functions.
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Figure 10. Fuzzy sets; (a) input set x, (b) input set ẋ, u, (c) output set ẍ centre of gravity and (d)
output surface between ẍ, ẋ and x.

Figure 11. Second-order inference map.

1
2K

ζ
Kωn

1
2

8Kω2
n

u

ẋ

x

ẍ

Figure 12. Scaling factors for a second-order system.

4.2. Second-Order Fuzzy Model with Linguistic Hedges

A model with triangular membership functions was developed, which will now be
modified with the linguistic hedges type mentioned above, such as dilation and concentra-
tion. We will use a non-linear model that is represented in this way:
ẍ = −2ζωn ẋ−ω2

nx|x|+ Kω2
nu, in a fuzzy system. It will be a concentration operation

µX
2(x), and it is shown in Figure 13. If the model is ẍ = −2ζωn ẋ−ω2

n
√
|x|+ Kω2

nu, this
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represents a dilation µX
0.5(x) (see Figure 14). The linguistic hedges used for the concentra-

tion at input x will be X(1)
1 = VN, X(2)

1 = VZ, X(3)
1 = VP. The dilation of x is expressed by

linguistic hedges X(1)
1 = MN, X(2)

1 = MZ, X(3)
1 = MP.

Figure 13. The concentration of the input membership functions x and the resulting inference map.

Figure 14. The dilation of the input membership functions x and the resultant inference map.

The resultant Mamdani model:

R(1) : IF x is X(1)
1 AND ẋ is N THEN ẍ = 1

R(2) : IF x is X(1)
1 AND ẋ is Z THEN ẍ = 0.5

R(3) : IF x is X(1)
1 AND ẋ is P THEN ẍ = 0

R(4) : IF x is X(2)
1 AND ẋ is N THEN ẍ = 0.5

R(5) : IF x is X(2)
1 AND ẋ is Z THEN ẍ = 0

R(6) : IF x is X(2)
1 AND ẋ is P THEN ẍ = −0.5

R(7) : IF x is X(3)
1 AND ẋ is N THEN ẍ = 0

R(8) : IF x is X(3)
1 AND ẋ is Z THEN ẍ = −0.5

R(9) : IF x is X(3)
1 AND ẋ is P THEN ẍ = −1

R(10) : IF u is N THEN ẍ = −0.5

R(11) : IF u is Z THEN ẍ = 0

R(12) : IF u is P THEN ẍ = 0.5

The scaling factors for the concentration will be as follows for the inputs x = 1
(4K)0.5 ,

ẋ = ζ
2Kωn

and u = 1
4 , at the output ẍ = 16Kω2

n.

The scaling factors for the dilation will be as follows for the inputs x = 1
(2K)2 , ẋ = ζ

Kωn

and u = 1
2 , at the output ẍ = 8Kω2

n.
The response of a unit step using linguistic operators, concentration and dilation is

compared to a second-order linear system in Figure 15. This graph indicates that the peak
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time (tp) is less than that of the second-order linear system in concentration, which implies
that it is faster than the second-order linear system. On the contrary, the tp value is higher
in dilation than that of the second-order linear system. Therefore, the system is slower
compared to the second-order linear system. This is valid only for the first 20 s. After that,
it is observed that the dilation is faster than the concentration.

Figure 15. Step response, with normalised time ωnt, for K = 1 and ζ = 0.3.

4.3. Performance of Fuzzy Second-Order Dynamical Systems

Standard performance measures are usually defined in terms of the step response of
a system, as shown in Figure 15. The speed response depends on the peak time (tp). The
similarity between the transient response and the step input is measured by the per cent of
overshoot (Mp). The transient response of the system can be described by two factors: the
speed of the response and the peak time. The closeness of the response to the desired one
is represented by the overshoot and settling time [40].

In this case, explicit dynamic specification, as Mp and tp, cannot be obtained as in the
first-order case. A significant number of simulations to obtain the relationship between
Mp, tp and ζ are performed. This will be applied to concentration and dilation, as seen
previously. In Figures 16 and 17, the per cent overshoot is shown as a function of the
relative damping ratio, ζ. In addition, Figures 16 and 17 present the per cent overshoot
and peak time as a function of the relative damping ratio. The dotted line indicates the
performance of the second-order linear system, while the solid one corresponds to the
non-linear system. As shown in Figure 16, the segmented line shows the concentration of a
fuzzy system, while in Figure 17, the dilation of a fuzzy system is shown. This analysis is
valid for dynamical systems; undamped, underdamped and critically damped. In the case
of overdamped, it has no peak time and per cent overshoot.
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Figure 16. The result for concentration graphs shows the per cent overshoot and normalised peak
time as a function of damping ratio ζ; (a) step-up, (b) step-down.

Figure 17. The result for dilation graphs shows the per cent overshoot and normalised peak time as a
function of damping ratio ζ; (a) step-up, (b) step-down.

5. Application

To explain what we have studied above, we will apply the concepts to the first-order
system of a tank and calculate the settling time. The analysis of the second-order system
will be applied to a simple pendulum.

5.1. Model of the Tank

The GÜNT RT450.01 consists of a transparent plastic level tank as the main element
and uses water as the working medium. It provides the following features: section tank
A = 0.0147 m2 with a liquid of height h(t), volume v(t) and outlet flow qo(t) due to
an input flow qi(t). It presents a delay time of td = 10 s and a percentage of valve
opening α(t) = 0.5, with a maximum output section C = 2.83× 10−5 m2 and gravitational
acceleration g = 9.81 m/s2, as shown in Figure 18.

An empirical model of this multivariate system is given by

v̇(t) = qi(t− td)− qo(t)

v(t) = Ah(t)

qo(t) = Cα(t)
√

2gh(t)

(28)

v̇(t) = qi(t− td)− qo(t) (29)
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Figure 18. GÜNT RT450.01 level tank module.

This equation represents a multivariate relationship between qi(t), α(t) and h(t):

Aḣ(t) = qi(t− td)− Cα(t)
√

2gh(t) (30)

Rewriting in the standard form,

A ḣ(t)
Cα(t)

√
2g

+
√

h(t) =
qi(t− td)

Cα(t)
√

2g
(31)

The static gain of this non-linear system is when the derivative is zero, it is as follows:√
h(t) =

qi(t− td)

Cα(t)
√

2g
(32)

Therefore, for t > Td the static gain K would be,

h = K =

(
qi

Cα(t)
√

2g

)2

(33)

and the model for this condition is,

A ḣ(t)
Cα
√

2g
+
√

h(t) =
qi(t)

Cα
√

2g
(34)

The initial conditions to fill the tank are q(0)i = 1.09× 10−5 m3/s. Replaced in (33)
gives h(0) = 0.03 m. To analyse the dynamic behaviour of this empirical model, initially,
the tank is in equilibrium at h(0) = 0.03 m; at a time of 35 s, the inflow increases to
qi = 3.1× 10−5 m3/s and then after 628 s, it drops to qi = 0 m3/s.

It can be seen that the system is in a steady state and has a final value of around
K = 0.244 m. Figure 19 shows the dynamic evolution of the system, with a sampling time
of 0.5 s.

The Mamdani model of the tank model in the standard form (Equation (34)) can be
approximated; the normalised fuzzy sets between [0, 1] are shown in Figure 20.
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Figure 19. Dynamical evolution of the tank.

Figure 20. Fuzzy sets tank; (a) input set qi, (b) input set h, (c) output set ḣ centre of gravity and
(d) output surface between ḣ, h and qi.

Using the input and output scaling factors, the delay time was added in Figure 21.

1
Cα

√
2g Cα

√
2g

A

z−20qi

h
ḣ

Figure 21. Input and output scaling factors.

The resultant Mamdani model becomes:
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R(11) : IF qi is Small AND h is MLow THEN ḣ = 0

R(12) : IF qi is Small AND h is MHigh THEN ḣ = −
Cα
√

2g
A

R(21) : IF qi is Large AND h is MLow THEN ḣ =
Cα
√

2g
A

R(22) : IF qi is Large AND h is MHigh THEN ḣ = 0

(35)

The membership functions for qi and h applying the dilation are:

µSmall(qi) = 1− qi

Cα
√

2g
, ∀ qi ∈ [0, Cα

√
2g]

µLarge(qi) =
qi

Cα
√

2g
, ∀ qi ∈ [0, Cα

√
2g]

µMLow(h) = 1−
√

h, ∀ h ∈ [0, 1]

µMHigh(h) =
√

h, ∀ h ∈ [0, 1]

Then the output is as follows:

ḣ =
2

∑
i1=1

2

∑
i2=1

w(i1i2)(h, qi)ḣ(i1i2) =

µSmall(qi)µMLow(h)ḣ(11) + µSmall(qi)µMHigh(h)ḣ(12)

µLarge(qi)µMLow(h)ḣ(21) + µLarge(qi)µMHigh(h)ḣ(22)

ḣ =

(
1− qi

Cα
√

2g

)
(1−

√
h)(0) +

(
1− qi

Cα
√

2g

)
(
√

h)

(
−

Cα
√

2g
A

)

+

(
qi

(Cα
√

2g

)
(1−

√
h)

(
Cα
√

2g
A

)
+

(
qi

Cα
√

2g

)
(
√

h)(0)

(36)

˙h(t) =
qi(t)

A
−

Cα
√

2g
A

√
h(t) (37)

This model coincides with the tank model in the standard form (Equation (34)). The
fuzzy model output is shown in Figure 22.

Figure 22. Dynamical evolution of the tank and fuzzy model.
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To calculate the settling time for the step from qi
i = 1.09× 10−5 to q f

i = 3.1× 10−5 m3/s,
we replace both of them in (33) to obtain a height of hi = 0.03 m, up to h f = 0.244 m,
respectively. Then (Equation (17)) is used to calculate the settling time.∫ ts

10
dt =

∫ 0.233

0.03

1

2.11 · 10−3 − 4.26 · 10−3
√

h
dh

The calculated settling time is ts = 618 s.
To calculate the settling time for the step-down where the level is initially set as

hi = 0.235 m, the inlet flow, qi = 0, is replaced in (33) to give us a height of h f = 0 m.
Equation (17) is then used to calculate the settling time.∫ ts

10
dt =

∫ 0.012

0.235

1

−4.26 · 10−3
√

h
dh

The calculated settling time is ts = 186 s.
The performance of different models is compared. Time delays in the identification of

processes can have a significant impact. For systems with time delays, there are several
models proposed. The non-linear ARX (NLARX) model is a flexible non-linearity estimator
with parameters that do not need to have physical significance, commonly used in time
series modelling. This structure employs a wavelet or sigmoid function to model complex
non-linear behaviour [41]. NLARX models can also be estimated using MATLAB System
Identification Toolbox. As shown in Figure 23, with the fuzzy model (in blue) has the best
performance, with 92.91%, followed by the NLARX models (in green), with a performance
of 90.16% and, finally, the first-order model (in grey) with a performance of 77.77%.

Figure 23. Performance comparison of different models.

5.2. Simple Pendulum Model

In this example, the second-order fuzzy model described in Section 4.1 is used to model
a simple pendulum. A normalised sinusoidal function modifies the membership function
of the angle θ to demonstrate that, by an appropriate choice of membership function, the
model is identical to the one obtained mathematically.

A practical example of the dynamic model of a simple pendulum is provided. The
pendulum’s differential equation is:

Jθ̈(t) + Bθ̇(t) + mglsin(θ(t)) = τ(t) (38)

When J = ml2 is the inertia of the pendulum+ball set, B is the friction on the axis of
rotation, l is the length of the pendulum and τ(t) is the applied torque. See Figure 24.
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l

θ

m

τ

Figure 24. Simple pendulum.

If it is written in standard form as (22), the pendulum model remains;

l
g

θ̈(t) +
B

mgl
θ̇(t) + sin(θ(t)) =

1
mgl

τ(t) (39)

The normalised input sets, whose universe of discourse are [−1, 1], and the centre of
gravity of the output set in {−1,−0.5, 0, 0.5, 1} (see Figure 25) is as follows:

Figure 25. Fuzzy sets; (a) input set θ, (b) input sets θ̇ and τ, (c) output set θ̈ centre of gravity and (d)
output surface between θ̈, θ̇ and θ.

Figure 26 shows the input and output scaling factors.

1
(π/2)

B
mgl

1
mgl

4g
l

τ

θ̇

θ

θ̈

Figure 26. Simple pendulum input and output scaling factors.
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The resultant Mamdani model is as follows:

R(1) : IF θ is N AND θ̇ is N THEN θ̈ = 4
g
l

R(2) : IF θ is N AND θ̇ is Z THEN θ̈ = 2
g
l

R(3) : IF θ is N AND θ̇ is P THEN θ̈ = 0

R(4) : IF θ is Z AND θ̇ is N THEN θ̈ = 2
g
l

R(5) : IF θ is Z AND θ̇ is Z THEN θ̈ = 0

R(6) : IF θ is Z AND θ̇ is P THEN θ̈ = −2
g
l

R(7) : IF θ is P AND θ̇ is N THEN θ̈ = 0

R(8) : IF θ is P AND θ̇ is Z THEN θ̈ = −2
g
l

R(9) : IF θ is P AND θ̇ is P THEN θ̈ = −4
g
l

R(10) : IF τ is N THEN θ̈ = −2
g
l

R(11) : IF τ is Z THEN θ̈ = 0

R(12) : IF τ is P THEN θ̈ = 2
g
l

The result of the fuzzy model applied to the simple pendulum can be seen in Figure 27.
The graph was elaborated upon using different friction coefficients: B = [0, 0.2, 0.4, 0.6, 0.8, 1],
m = 0.25 kg, l = 0.8 m and g = 9.81 m/s2. It was also compared with the dynamic model.

Figure 27. Simple pendulum response.

6. Conclusions

In this article, a dynamic analysis of first-order and second-order systems was per-
formed. First, a non-linear first-order dynamic system is modelled, and the settling time
is determined using the Mamdani fuzzy model. It is deduced that the higher the slope,
as the derivative approaches zero, the shorter the settling time, and the lower the slope,
the longer the settling time is. Furthermore, it has been shown that the settling time is
accurately obtained by switching from a triangular membership function formulation to
linguistic variables for non-linear models.
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Secondly, the specifications of the time-domain features, such as overshoot percentage
and peak time, were graphed and compared with the second-order model features. The
percentage of Mp was determined to reach zero when the damping ratio ζ is equal to or
greater than one. The percentage of Mp reaches zero when the damping ratio ζ is similar to
or greater than one. In both cases, this occurs due to the linguistic hedge of concentration
in response to a step input and dilation in response to a step-down input. In these cases,
one is shorter than the peak time in second-order linear systems.

Furthermore, when the percentage of Mp reaches zero and the damping ratio ζ is less
than one, the linguistic hedge of concentration is in response to a step-down and dilation
in response to a step. In the applications section, examples of tank and pendulum models
were tested in which the settling time was determined. The performance of different models
was compared, and it was demonstrated that the fuzzy model is the best.
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