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Abstract: As radio frequency (RF) hardware continues to improve, many technologies that were
traditionally impractical have suddenly become viable alternatives to legacy systems. Two-way
ranging (TWR) is often considered a poor positioning solution for airborne and other vehicular
navigation systems due to its low precision, poor angular resolution, and precise timing requirements.
With the advent of modern RF hardware and advanced processing techniques, however, modern
studies have experimentally demonstrated TWR systems with an unprecedented, sub-centimeter
ranging precision with low size, weight, power, and cost (SWaP-C) consumer-grade hardware. This
technique enables a new class of positioning, navigation, and timing (PNT) capabilities for urban
and commercial aircraft but also instigates new system design challenges such as antenna placement,
installation of new electronics, and design of supporting infrastructure. To inform these aircraft design
decisions, we derive 2D and 3D Cramér–Rao lower bounds (CRLBs) on position and orientation
estimation in a multi-antenna TWR system. We specifically formulate these bounds as a function of
the number of antennas, platform geometry, and geometric dilution of precision (GDoP) to inform
aircraft design decisions under different mission requirements. We simulate the performance of
several classic position and orientation estimators in this context to validate these bounds and to
graphically depict the expected performance with respect to these design considerations. To improve
the accessibility of these highly theoretical results, we also present a simplified discussion of how
these bounds may be applied to common airborne applications and suggest best practices for using
them to inform aircraft design decisions.

Keywords: uncertainty quantification; reliability analysis; localization; geometric dilution of
precision (GDoP); Crameŕ–Rao lower bound (CRLB); two-way ranging (TWR); distributed coherence;
unmanned aerial vehicles (UAVs); urban air mobility (UAM)

1. Introduction

As we continue to develop high-performance radio technologies, aerospace vehi-
cles have become increasingly capable and versatile; unfortunately, the design of these
platforms is a complex, multidisciplinary task rife with numerous design challenges [1].
As a result, many technologies that have demonstrated widespread success in terrestrial
applications are not always suitable for airborne applications without careful consideration
and redesign [2]. To successfully integrate a novel technology into modern aircraft, we
must thoroughly understand both its own behavior and its interactions with the rest of the
platform [3].

Positioning, navigation, and timing (PNT) are some of the most critical services
for modern aircraft and numerous technologies provide these services through different
mechanisms [4]. Two-way ranging (TWR) is traditionally considered a poor positioning
solution for aerospace systems, but emerging technologies [5] have demonstrated sub-
centimeter ranging performance with minimal size, weight, power, and cost (SWaP-C).
These modern solutions not only enable a new class of distributed applications for urban
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and commercial aircraft but also introduce significant system design challenges such as
antenna placement [6], installation of new electronics [7], and the design of supporting
infrastructure [8].

To inform these aircraft design decisions, we derive novel 2D and 3D Cramér–Rao
lower bounds (CRLBs) on position and orientation estimation in a multi-antenna TWR
system. These bounds are both a closed-form and tractable and are specifically formulated
as a function of the number of antennas, platform geometry, and geometric dilution of
precision (GDoP) to inform design decisions under different mission requirements. These
bounds directly relate the position and orientation estimation precision to the geometric
distribution of antennas on the platform. This can be used to infer the expected performance
of existing installations or to inform the required distribution for new installations to
achieve an arbitrary precision target. Since these geometries are often summarized by a
single GDoP value, we also trace the performance manifold between ranging precision,
positioning precision, and GDoP to graphically summarize the bounds, which can be
explored visually without performing any calculations. To improve the accessibility of
these highly theoretical results, we also present simplified commentary on how to navigate
the trade space between performance and practical design considerations. These results
are summarized into simple “best practices” to provide intuitive, geometric interpretations
of the bounds. An example multi-antenna TWR configuration to which these bounds apply
is depicted in Figure 1.

Figure 1. Example multi-antenna two-way ranging (TWR) system with a 4-antenna ground user A
and 4-antenna aerial user B. By measuring the distance between each antenna pair (4 of which are
depicted above using different colors to denote unique links), we can estimate the relative position
and orientation of each user, enabling a wide variety of distributed airborne applications. We derive
bounds on the performance of these estimators as a function of the number of antennas, platform
geometry, and geometric dilution of precision (GDoP).

1.1. Background

The proposed Cramér–Rao lower bounds (CRLBs) on position and orientation es-
timation apply to estimators that use distance estimates as the primary measurement
mechanism. This work was originally motivated by emerging TWR technologies for urban
air mobility (UAM) applications, but the results apply to any technique that generates
multiple range estimates for a given target. These results apply to several different types of
TWR systems and are primarily enabled by previous work in the field of time-of-arrival
(ToA) estimation.
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1.1.1. Two-Way Ranging

One-way ranging systems such as radars [9] typically measure unresponsive or
otherwise-uncooperative targets. Numerous extensions have been developed to refine
the performance of this class of systems [10], but the uncooperative nature of the target
imposes fundamental limits on the achievable precision [11]. Unlike these systems, two-
way ranging (TWR) refers to a class of systems in which both the observer and the target
communicate and cooperate to produce ranging estimates [12]. When these technologies
were first emerging, radio-frequency (RF) hardware was large, heavy, and expensive, so
static, robust, and reliable infrastructure such as a radar installation was a popular solution
to the ranging problem [13]. As this hardware becomes more powerful and continues
to shrink, however, installing modern TWR electronics on aircraft is significantly more
viable [14].

As low-cost RF hardware became more accessible in the early 2000s, double-sided,
two-way ranging became a somewhat more popular research topic [15]. Early theoreti-
cal work [16] demonstrated several tractable approaches assuming sufficiently behaved
oscillators, closely followed by initial experimental demonstrations [17]. Several algo-
rithmic extensions have since been explored [18] as well as more robust experimental
demonstrations [19].

A fair amount of this early work was focused on traditional RF frequency bands,
but the falling cost of higher-frequency equipment has motivated ultra-wideband (UWB)
and even optical extensions. Since the precision of these techniques is proportional to the
inverse of the signal bandwidth [20], high-frequency extensions can enable significantly
better performance. Some studies have developed direct UWB extensions of the previous
results [21], while others have explored the implications of integrating these high-frequency
techniques with existing passive infrastructure [22]. While these high-frequency extensions
enable intrinsically better performance, they also incur additional calibration challenges,
which were characterized in [23].

In parallel, optical two-way ranging techniques have also been explored as high-
precision ranging solutions [24]. These high-frequency systems have even better-ranging
resolution than RF and UWB systems, but they also tend to have a more limited range
and field of view, so they are suitable for different types of applications [25]. Recent
studies have explored sophisticated 2D [26] and 3D [27] array processing extensions to
further improve this performance. A comprehensive theoretical analysis for this class of
systems was presented in [28], and modern studies continue to improve the fidelity of these
techniques in real-world demonstrations [29].

1.1.2. Time-of-Arrival Estimation

For most TWR systems, time-of-arrival (ToA) estimation is the primary measurement
mechanism that drives the rest of the signal processing chain. Naturally, the precision
of these measurements will dictate the overall ranging precision of the system and is the
subject of numerous studies in different applications. In indoor environments, researchers
have characterized the performance of both wideband [30] and ultra-wideband [31] ToA
estimators in dense multipath channels. Similarly for outdoor environments, several
ToA estimation techniques were explored in [32,33], whose corresponding lower bounds
were investigated in [34]. Other researchers have also investigated the use of existing
communications infrastructure to enable these measurements, including LTE [35], 5G [36],
and Wi-Fi [37]. Neural networks have also been considered for large networks of ToA-based
localization sensors [38].

ToA estimation is well characterized by different types of bounds. Ziv–Zakai and
Weiss–Weinstein lower bounds on ToA estimation were derived and discussed in [39]
and [40], respectively, while a Cramér–Rao lower bound on hybrid time-of-arrival/received
signal strength (ToA/RSS) was derived in [41]. Notably, 2D Cramér–Rao lower bounds on
localization were presented in [42], and optimal sensor placement for time-difference-of-
arrival (TDoA) systems is discussed in [43]. The CRLBs proposed in this work extend this
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2D positioning bound to three dimensions, explicitly includes the number and placement
of antennas in the bound, and additionally considers orientation estimation.

1.2. Contributions

In this manuscript, we make the following contributions:

• Derive a novel, closed-form, tractable CRLB on position estimation in TWR systems;
• Derive a novel, closed-form, tractable CRLB on orientation estimation in TWR systems;
• Implement the proposed CRLBs in a simple MATLAB simulation platform;
• Benchmark several popular estimators against the proposed CRLBs;
• Discuss how these results can directly inform aircraft design decisions.

2. Two-Way Ranging (TWR) Overview

In this section, we briefly define a timing and propagation model and outline some
rudimentary time-of-arrival (ToA) and time-of-flight (ToF) estimation techniques.

2.1. Timing Model

Two-way ranging (as the name implies) involves a cooperative exchange between at
least two users. Consider two users labeled A and B separated in space and operating with
independent, imperfect clocks. At any given instant n, there is an offset between these clocks
labeled T(n) and a distance between them d(n). If these users are interacting using over-
the-air electromagnetic waveforms, then each transmission takes some time τ(n) = d(n)/c
to propagate between the platforms, where c is the speed of light. These interactions are
depicted in Figure 2. The clock offsets T and propagation delays τ are the fundamental
quantities of interest and can be estimated by measuring the time-of-arrival (ToA) of each
reception and applying an appropriate time-of-flight (ToF) estimation algorithm.

A

B

t0

t0

tA,Tx

tB,Rx tB,Tx

tA,Rx

τ(n) τ(n+1)

T(n)

Figure 2. Depiction of two interactions between radios A and B. Interactions are indexed by n. The
time offset is labeled T(·) and the propagation delay is labeled τ(·). Transmit events are labeled
with up arrows, and corresponding receive events are labeled with down arrows. The clocks are

misaligned, so the receive timestamps t(·)
(·),Rx follow Equations (1) and (2).

User A transmits a waveform at time instant n, labeled t(n)A,Tx. This waveform takes a
small amount of time to propagate to user B, labeled τ(n). User B receives the waveform
at time t(n)B,Rx. If the clocks were perfectly aligned, the receive timestamp would simply

be t(n)A,Tx + τ(n). Because the clocks are misaligned, user B measures the event earlier with
respect to clock B, thus the received timestamp, as perceived by user B, is

t(n)B,Rx = t(n)A,Tx + τ(n) − T(n). (1)
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At some later time instant n + 1, user B transmits a waveform to user A. The received
timestamp, as perceived by user A is

t(n+1)
A,Rx = t(n+1)

B,Tx + τ(n+1) + T(n+1). (2)

2.2. Propagation Model

A signal x is transmitted through a line-of-sight channel, during which it is distorted
before the signal z is received. The traditional propagation model [20] for this channel is

z = ax(t− τ)ej2π fcτ , (3)

where a is the complex channel attenuation, τ is the propagation delay, and fc is the carrier
frequency. We assume a basic line-of-sight channel attenuation [44]

a2 =

(
λ

4πd

)2
GTxGRx, (4)

where GTx and GRx are the transmitter and receiver antenna gains, λ is the signal wave-
length, and d is the distance between the two users.

Advanced ToA estimators require a much higher fidelity propagation model, which
was previously explored in significant detail in [45]. The simplified model presented
in Equation (3), however, is sufficient to motivate the following discussions and for the
remainder of this manuscript.

2.3. Time-of-Arrival Estimation

Equations (1) and (2) form a system of two equations with two unknowns: T and τ.
The transmit timestamps tTx are known quantities, and the receive timestamps tRx can be
estimated using any number of ToA estimation techniques. ToA estimation is itself a rich
field with both legacy and emerging solutions, so we briefly summarize the basic concept
here and direct the reader to some relevant publications [40,45,46] for further reading.

Consider the correlation between received signal z(t) and known transmitted signal
x(t):

g(τ′) =
∣∣∣∣∫ dt z(t)x(t− τ′)

∣∣∣∣2, (5)

where τ′ is a time delay relative to some time reference (analogous but not equivalent to
the τ described above). By inspection, this correlation is maximized when the signals are
aligned in time, so by defining an arbitrary but fixed reference time t0, the local maximum
likelihood (ML) ToA estimate is simply

t̂Rx = τ̂′ − t0 ; τ̂′ = arg max
τ′

g(τ′). (6)

This formulation may seem pedantic for the limited scope of this discussion, but it
is important for building the more advanced estimators outlined in [40,45,46]. There are
numerous extensions to this simple estimator, including computationally efficient hardware
implementations [5], leveraging phase information to adjust the estimate [45], and various
iterative refinement methods [40,46].

2.4. Time-of-Flight Estimation

Equations (1) and (2) form a system of 2 equations with 2 unknowns T and τ. If
the known transmit timestamps and estimated receive timestamps are shared between
users, we have enough information to trivially solve the system. In reality, however, the
clocks driving these devices can drift and the platforms may be in motion, so T and τ may
change between frames, thereby creating a system of two equations with four unknowns.
For reasonable frame rates (≥10 Hz) and modern RF hardware, both T and τ are well
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approximated by simple first- or second-order Markov models. By injecting these models
and collecting data over multiple frames, we can construct closed-form estimators [47]
or even Kalman tracking filters [5] to estimate T and τ. Various design implications may
inform your choice of algorithm, but fundamentally, they all estimate τ, from which we
can infer the distance between platforms d. For multi-antenna systems, we can estimate
the distance di,j between each transmit antenna i and receive antenna j, creating spatial
diversity that enables relative position and orientation estimation. This configuration is
depicted in Figure 3.

Figure 3. Example system configuration with a 4-antenna user G and a 4-antenna user H. The
distances between each antenna pair are extracted from time-of-flight (ToF) estimates produced by a
two-way ranging (TWR) system.

3. Bounds on Position Estimation

In this section, we define the ranging model, derive 2D and 3D CRLBs on position
estimation, and discuss geometric dilution of precision (GDoP).

3.1. Ranging Model

Consider N ground antenna labeled gi, which estimates the ToF τi between a target
antenna h, depicted in Figure 3. Assume that the ToF estimates τi are unbiased estimators
of the corresponding distance di, such that

τi ∼ N (di/c, σ2
τi
), (7)

where c is the speed of light, N denotes the normal distribution, σ2
τi

denotes the variance
of the ToF estimator, and di is the Euclidean distance between gi and h. The CRLBs
for time-of-flight (ToF) estimation are well studied [45] and primarily depend on the
integrated signal-to-noise ratio (ISNR) and the signal bandwidth. ISNR is a function of
numerous variables, but if the bulk distance between platforms G and H is large compared
with the local distance between antennas gi, it is reasonable to assume that each link has
comparable ISNR and, therefore, comparable variance, i.e., σ2

τi
≈ σ2

τ ∀ i {1, 2, · · · , N}. This
approximation is reasonable for most applications, but a notable counter-example is any
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near-field application where the antennas of one system surround the antennas of the other,
for example, the Airbus DeckFinder system [48].

The variance of an unbiased estimator α̂ = [α̂1 α̂2 · · · α̂q]T is bounded by σα̂i ≥
[I−1(α)]ii where I(α) is the Fisher information matrix (FIM) of size q× q and is defined [49] as

[I(α)]ij = −E

[
∂2

∂αi∂αj
ln p(z; α)

]
. (8)

We use this definition of the CRLB for the remainder of this manuscript.

3.2. Two-Dimensional CRLB on Position

The probability density function of the ToF distribution summarized in Equation (7) is
written explicitly as

pτ(τ; h) =
1√

2πσ2
τ

exp

{
− 1

2σ2
τ

N

∑
i=1

(
τ − di

c

)2
}

, (9)

where di =
√
(x− xi)2 + (y− yi)2 is the Euclidean distance between antennae gi = [xi , yi]

and h = [x , y]. The elements of the FIM I(h) are computed using Equation (8) as

[I(h)]11 =
1

c2σ2
τ

N

∑
i=1

(x− xi)
2

d2
i

,

[I(h)]12 = [I(θ)]21 =
1

c2σ2
τ

N

∑
i=1

(x− xi)(y− yi)

d2
i

,

[I(h)]22 =
1

c2σ2
τ

N

∑
i=1

(y− yi)
2

d2
i

.

(10)

By definition, the CRLB on estimating the 2-D position of h is σ2
ĥ
≥ I−1(h) = adj{I(h)}/|I(h)|,

where the adjugate adj{.} and determinant |.| are written as

adj{I(h)} = 1
c2σ2

τ

 ∑N
i=1

(y−yi)
2

d2
i

−∑N
i=1

(x−xi)(y−yi)

d2
i

−∑N
i=1

(x−xi)(y−yi)

d2
i

∑N
i=1

(x−xi)
2

d2
i

, (11)

|I(h)| = 2
(c2σ2

τ)2

N

∑
i=1

N

∑
j=1

i 6=j

(
D2

2didj

)2

, (12)

where D2 is the determinant of the distance matrix

D2 =

∣∣∣∣x− xi y− yi
x− xj y− yj

∣∣∣∣. (13)

To make this result more accessible to a design engineer, we can loosely visualize the CRLB
as a scalar value by defining an overall “position variance” as σ2

p = σ2
x + σ2

y ≥ tr{I−1(h)},
which can be written as

σ2
p ≥

c2σ2
τ N

2

 N

∑
i=1

N

∑
j=1

i 6=j

(
D2

2 di dj

)2


−1

. (14)
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3.3. Three-Dimensional CRLB on Position

Reconsider Equation (9) with the 3D definitions di =
√
(x− xi)2 + (y− yi)2 + (z− zi)2,

gi = [xi , yi , zi], and h = [x , y , z]. The FIM now takes the form

I(h) =
1

c2σ2
τ


∑N

i=1
(x−xi)

2

d2
i

∑N
i=1

(x−xi)(y−yi)

d2
i

∑N
i=1

(x−xi)(z−zi)

d2
i

∑N
i=1

(x−xi)(y−yi)

d2
i

∑N
i=1

(y−yi)
2

d2
i

∑N
i=1

(y−yi)(z−zi)

d2
i

∑N
i=1

(x−xi)(z−zi)

d2
i

∑N
i=1

(y−yi)(z−zi)

d2
i

∑N
i=1

(z−zi)
2

d2
i

. (15)

The CRLB is again expressed as σ2
ĥ
≥ I−1(h) = adj{I(h)}/|I(h)|, where the adjugate now

takes the form adj{I(h)} = 2
(c2σ2

τ)2
A, where

A =


∑N

i=1 ∑N
j=1

Vi,j(y,z)2

(didj)2 ∑N
i=1 ∑N

j=1
Vi,j(x,z)Vi,j(z,y)

(didj)2 ∑N
i=1 ∑N

j=1
Vi,j(x,y)Vi,j(y,z)

(didj)2

∑N
i=1 ∑N

j=1
Vi,j(x,z)Vi,j(z,y)

(didj)2 ∑N
i=1 ∑N

j=1
Vi,j(x,z)2

(didj)2 ∑N
i=1 ∑N

j=1
Vi,j(y,x)Vi,j(x,z)

(didj)2

∑N
i=1 ∑N

j=1
Vi,j(x,y)Vi,j(y,z)

(didj)2 ∑N
i=1 ∑N

j=1
Vi,j(y,x)Vi,j(x,z)

(didj)2 ∑N
i=1 ∑N

j=1
Vi,j(x,y)2

(didj)2

, (16)

and the determinant takes the form

|I(h)| = 6
(c2σ2

τ)3

N

∑
i=1

N

∑
j=1

N

∑
k=1

(
Vi,j,k

di dj dk

)2

, (17)

where Vi,j,k is the volume of a tetrahedron formed by points h, gi, gj, and gk, as depicted in
Figure 4. When represented as the Cayley–Menger determinant, this takes the form

Vi,j,k =
1
6

∣∣∣∣∣∣
x− xi y− yi z− zi
x− xj y− yj z− zj
x− xk y− yk z− zk

∣∣∣∣∣∣, (18)

Thus, the closed-form CRLB is written as

I(h)−1 =
adj{I(h)}
|I(h)| =

c2σ2
τ

3
A

 N

∑
i=1

N

∑
j=1

N

∑
k=1

(
Vi,j,k

didjdk

)2
−1

(19)

As in Equation (14), we write the “position variance” σ2
p = σ2

x + σ2
y + σ2

z ≥ tr{I−1(h)} as

σ2
p ≥

c2σ2
τ

3

[
∑N

i=1 ∑N
j=1

Vi,j(x,y)2+Vi,j(y,z)2+Vi,j(x,z)2

(didj)2

]
[

∑N
i=1 ∑N

j=1 ∑N
k=1

( Vi,j,k
didjdk

)2
] (20)

where Vi,j(·, ·) is the area of the triangle in three-dimensional Cartesian space with vertices
h, gi, and gj when projected onto the (·, ·) plane, i.e.,

Vi,j(x, y) =
1
2

∣∣∣∣x− xi y− yi
x− xj y− yj

∣∣∣∣, Vi,j(y, z) =
1
2

∣∣∣∣y− yi z− zi
y− yj z− zj

∣∣∣∣, Vi,j(x, z) =
1
2

∣∣∣∣x− xi z− zi
x− xj z− zj

∣∣∣∣
To the best of our knowledge, this is the first closed-form, three-dimensional CRLB on

position estimation in a TWR system.
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3.4. Geometric Interpretation of D

The determinant D2 can be interpreted in several different ways:

1. The shortest (or perpendicular) distance between the target antenna h = [x, y] and
the line joining ground node antennae gi = [xi, yi] and gj = [xj, yj] is d⊥i,j = D2/di,j,
where di,j = d(gi, gj) (refer to Figure 3). The lower bound then reduces [50] to

σ2
p ≥

c2σ2
τ N

2

 N

∑
i=1

N

∑
j=1

i 6=j

(
d⊥i,j di,j

2 di dj

)2


−1

. (21)

2. As a higher-order generalization, interpret D2/2! as the volume of a 2-simplex, Vi,j,
formed by the antennae h, gi, and gj (refer to Figure 3). The bound then becomes

σ2
p ≥

c2σ2
τ N

2!

 N

∑
i=1

N

∑
j=1

i 6=j

(
Vi,j

di dj

)2


−1

. (22)

3. The quantity (d⊥i,j di,j/di dj) is called geometric conditioning Ai,j and is a measure of

the area of a parallelogram contained by vectors
−→
hgi and

−→
hgj, scaled by length of those

vectors. In this case, the lower bound becomes

σ2
p ≥

c2σ2
τ N

2

 N

∑
i=1

N

∑
j=1

i 6=j

(Ai,j

2

)2


−1

, (23)

where Ai,j/2 can be envisioned as the area of triangle ∆i,j enclosed by unit vectors
in the same direction. It is interesting to note that this geometric conditioning is
independent of the absolute distances between the ground and target antennae.

Figure 4. Geometric interpretation of the volume of the tetrahedron Vi,j,k(di, dj, dk), indicated in blue.
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3.5. Geometric Dilution of Precision

By inspection, the CRLB derived in Equation (20) only depends on the ToF estimator
performance (στ) and the geometry of the ground nodes gi. In related estimation problems,
the geometric portion of this equation is often referred to as “geometric dilution of preci-
sion”, and effectively represents the penalty incurred by using a noisy estimate to further
estimate other quantities, in this case using range to estimate position. We can rewrite
Equation (20) in the form σ2

p ≥ c2σ2
τ GDoP, where geometric dilution of precision (GDoP)

is a unit-less quantity defined by

GDoP =

√√√√√ N
2 ∑N

i=1 ∑N
j=1

i 6=j

∆2
i,j

=

√
2 N

∑M
k=1 sin2(γk)

, (24)

where ∆i,j =
1
2

sin(γi,j) is the area of a triangle with unit sides and angle ∠γi,j between

them and M =

(
N
2

)
is the number of unique triangles enclosed by

−→
hgi and

−→
hgj ∀ i, j ∈

{1, 2, · · · , N}. By inspection, observe that maximizingM =
M

∑
k=1

sin2(γk) minimizes the

CRLB for a given ranging precision στ . This is a convex problem within the range γk ∈ (0, π]
with unique unambiguous solutions {γ1, γ2, · · · , γM} that yield the best performance for
a given number of ground antennae N. This is important because it directly informs the
optimal antenna placement for a fixed number of antennas N.

In Figure 5, the positioning CRLB, from Equation (20) is plotted as a function of
the ranging precision στ and the geometric dilution of precision from Equation (24). By
reformulating the bound as a function of traditional metrics (ranging precision and GDoP)
rather than abstract volumes, this formulation provides a visual reference of the trade space
between the quantities that a design engineer actually cares about, namely, the ranging
precision, the positioning precision, and the GDoP induced by the platform geometry.

The ranging precision στ is primarily governed by the choice of ranging technology. If
the design constraints limit the available locations of the antennas on an aircraft, then this
curve can help inform decisions about which ranging technology is most appropriate to
achieve a target positioning precision. In contrast, if the ranging precision is fixed either by
design or operating conditions, this curve can instead inform decisions about the optimal
placement of antennas on an aircraft or ground installation. Additional insight in this
regard is also provided in [43]. Naturally, all of this information is contained in the original
formulation presented in Equation (20), this figure is simply included as a visual reference
that does not require any calculations.

In Table 1, the best achievable GDoP value is enumerated as a function of the number
of antennas N between three and eight. This particular positioning method requires at least
three antennas to converge on a solution and experiences diminishing returns beyond eight.
In Table 2, we include a qualitative description of GDoP values summarized from [51].
In many TWR and other positioning applications—particularly GPS—it is common to
summarize the GDoP of an installation without expressly stating the actual geometry, so
this information is included as a coarse reference.

Table 1. Best achievable GDoP vs. number of antennas.

N 3 4 5 6 7 8

Best GDoP 1.155 1.0 0.894 0.816 0.756 0.707
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Table 2. Qualitative rating of realistic GDoP values.

GDoP 1 2–3 4–6 7–8 9–20 21–50

“Rating” “Ideal” Excellent Good Moderate Fair Poor

Figure 5. Performance manifold defined by Equation (20) as a function of ranging precision and
GDoP for N = 4.

4. Bounds on Orientation Estimation

In this section, we derive 2-dimensional (2D) and 3-dimensional (3D) CRLBs for an
orientation estimator based on the position estimation described process in the previ-
ous section.

4.1. Model

In the previous section, we derived bounds on the estimation of the position of anten-

nas hi with respect to reference antennas gi. For N target antennas, we form M =

(
N
2

)
vectors labeled hihj ∀ i, j ∈ {1, 2, · · · , N} and i 6= j. We now use these estimated positions
to estimate the relative orientation of platform H with respect to platform G by observing
the rotation of the vectors hihj relative to gigj. Consider the normalized vectors

bk = hihj/
∥∥∥hihj

∥∥∥1/2 , vk = gigj/
∥∥∥gigj

∥∥∥1/2
, k ∈ {1, 2, · · · , M} (25)

We assume [52] that the unit vectors bk follow a von Mises distribution with mean direction
µk and concentration κk, i.e.,

bk ∼M(µk, κk) ; µk = Rvk, (26)

where κ ≥ 0, ‖µ̄‖ = 1, and R is a proper rotation matrix. For κ � 1 the von Mises
distribution reduces to a uniform distribution in which bk are uniformly distributed on
a circle irrespective of the rotation matrix R. For all other scenarios, if the variance in
estimating position hi and hj is σhi

and σhj
, we consider the circular variance in bk as
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σ2
bk

= σ2
hi
+ σ2

hj
; hence, the mean resultant length ρk of the wrapped distribution and the

concentration factor κk are given by

ρk = e
−σ2

hihj
/2

; κk = A−1(ρk) (27)

where A(·) is a ratio of modified Bessel functions.

4.2. Two-Dimensional CRLB on Orientation

The probability density function [52] of 2D vectors b = [b1, b2, · · · , bM] with mean
µk = R(θ)vk, relative orientation θ, proper 2D rotation matrix R(θ), ground node vectors
v = [v1, v2, · · · , vM], and concentration κ = [κ1, κ2, · · · , κM] is

pb(b; v, θ, κ) =

(
M

∏
k=1

1
2π I0(κk)

)
exp

{
M

∑
k=1

κk b
T
k R(θ)vk

}
(28)

where the normalizing constant I0(·) is a modified Bessel function of the first kind at order
0. The FIM I(θ) is computed as

I(θ) = −E
[

∂2

∂θ2 ln f (ν; v, θ, κ)

]
=

M

∑
k=1

κk b
T
k R(θ)vk, (29)

since R′′(θ) = −R(θ). Thus, the CRLB on an unbiased orientation estimator θ̂ is

σ2
θ ≥ I−1(θ) =

1

∑M
k=1 κk b

T
k R(θ)vk

(30)

It is important to note that the lower bound is independent of the rotation angle θ and only
depends on the concentration factor κ and the number of observations M.

4.3. Three-Dimensional CRLB on Orientation

Assume the 3D observations bk follow a von Mises distribution [52] whose probability
density function is given by

pb(b; v, θ, κ) =

(
M

∏
k=1

C3(κk)

)
exp

{
M

∑
k=1

κk b
T
k R(θ)vk

}
(31)

where concentrations κk ≥ 0 , means ‖µ̄k‖ = 1, µ̄k = R(θ)v̄k, and C3(κ) is a normal-
ized constant

C3(κ) =
κ

4π sinh κ
=

κ

4π(eκ − e−κ)
(32)

The relative rotation between two 2D vectors can be sufficiently defined with a single angle,
whereas at least three are required to do the same in a 3D space. For convenience, we chose
Tait Bryan angles—roll (α), pitch (β) and yaw (γ)—to represent the relative attitude of the
target H with respect to the observing node G. Therefore, the rotation matrix R(θ) can
be written as the product of three independent rotations by α, β, γ about x, y, z axis, i.e.,
R(θ) = Rz(γ) Ry(β) Rx(α) where θ = [α, β, γ], which becomes

R(θ) =


cos(β) cos(γ) − cos(α) sin(γ)+

sin(α) sin(β) cos(γ)
sin(α) sin(γ)+

cos(α) sin(β) cos(γ)

cos(β) sin(γ) cos(α) cos(γ)+
sin(α) sin(β) sin(γ)

− sin(α) cos(γ)+
cos(α) sin(β) sin(γ)

− sin(β) sin(α) cos(β) cos(α) cos(β)

. (33)
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The FIM I(θ) = −E
[

∂2

∂θ2 ln pb(b; v, θ, κ)

]
reduces to

I(θ) =


−∑N

i=1 κi bi
T ∂2

∂α2 R(θ)v̄i −∑N
i=1 κi bi

T ∂2

∂α∂β R(θ)v̄i −∑N
i=1 κi bi

T ∂2

∂α∂γ R(θ)v̄i

−∑N
i=1 κi bi

T ∂2

∂α∂β R(θ)v̄i −∑N
i=1 κi bi

T ∂2

∂β2 R(θ)v̄i −∑N
i=1 κi bi

T ∂2

∂β∂γ R(θ)v̄i

−∑N
i=1 κi bi

T ∂2

∂α∂γ R(θ)v̄i −∑N
i=1 κi bi

T ∂2

∂β∂γ R(θ)v̄i −∑N
i=1 κi bi

T ∂2

∂γ2 R(θ)v̄i


The CRLB is then computed by inverting the FIM,

I(θ)−1 =
adj{I(h)}
|I(h)| . (34)

It is important to note that the structure of the rotation matrix provides simplifications
that can be leveraged to derive the CRLB in closed form. The partial derivatives in the
rotation matrix significantly complicate the computation of Equation (34), which can be
mitigated by the following simplifications. Let S[a, b, c] represent a skew-symmetric matrix
of the form

S[a, b, c] =

 0 −c b
c 0 −a
−b a 0

. (35)

Useful properties of S include S[1, 0, 0]2 = diag[0,−1,−1] , S[0, 1, 0]2 = diag[−1, 0,−1],
and S[0, 0, 1]2 = diag[−1,−1, 0]. The first-order partial derivatives in the rotation can be
simplified using

∂

∂α
Rx(α) = S[1, 0, 0] Rx(α), (36)

∂

∂β
Ry(β) = S[0, 1, 0] Ry(β), (37)

∂

∂γ
Rz(γ) = S[0, 0, 1] Rz(γ), (38)

Therefore,

∂

∂α
R(θ) = Rz(γ) Ry(β) S[1, 0, 0]Rx(α), (39)

∂

∂β
R(θ) = Rz(γ) S[0, 1, 0]Ry(β) Rx(α), (40)

∂

∂γ
R(θ) = S[0, 0, 1]Rz(γ) Ry(β) Rx(α), (41)

and the second-order derivatives of R(θ) can be simplified to

∂2

∂α2 R(θ) = Rz(γ) Ry(β) S[1, 0, 0]2Rx(α),

∂2

∂β2 R(θ) = Rz(γ) S[0, 1, 0]2Ry(β) Rx(α),

∂2

∂γ2 R(θ) = S[0, 0, 1]2Rz(γ) Ry(β) Rx(α),

∂2

∂α∂β
R(θ) = Rz(γ) S[0, 1, 0]Ry(β) S[1, 0, 0]Rx(α),

(42)

(43)

(44)

(45)
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∂2

∂β∂γ
R(θ) = S[0, 0, 1]Rz(γ) S[0, 1, 0]Ry(β) Rx(α),

∂2

∂α∂γ
R(θ) = S[0, 0, 1]Rz(γ) Ry(β) S[1, 0, 0]Rx(α).

(46)

(47)

To the best of our knowledge, this is also the first closed-form, three-dimensional CRLB on
orientation estimation in a TWR system.

5. Simulation Results

In this section, we benchmark several common position and orientation estimators
against the bounds derived in the previous sections on a MATLAB simulation platform.
We also include a very brief discussion of position and orientation estimation for reference.

5.1. Estimation Preliminaries

For the given model, the expected log-likelihood functionL(θ) = E[ln pτ(t; h)] reduces
to a least-square problem. We adopt the ordinary least squares (LS) formulation from [53]
and present it here for the sake of completeness. Define a matrix X and elements of a
column vector y for i ∈ {1, 2, · · · , N} as

X =


2(x1 − x̄) 2(y1 − ȳ)
2(x2 − x̄) 2(y2 − ȳ)

...
...

2(xN − x̄) 2(yN − ȳ)

 ; y[i] = d̄2
i − d2

i + Xḡ (48)

where gi = [xi, yi]
T is the location of N ground node antennae, ḡ = [x̄, ȳ]T is their mean

location, and d̄i = ‖gi − ḡ‖1/2 is the distance between gi and ḡ. The unbiased, linearized,
least-square estimate of position h is simply

ĥLS = (XTX)−1XTY (49)

For the given model, we propose a maximum-likelihood orientation estimator. The
expected log-likelihood function L(θ) = E

[
ln pb(b; v, θ, κ)

]
is

L(θ) =
M

∑
k=1

κk b
T
k R(θ) vk + constants. (50)

Since this is a convex function, there exists a unique, unambiguous angle θ ∈ [0, π] for
which L(θ) is maximized, which is computed as

d
dθ
L(θ) =

N

∑
k=1

κk b
T
k S(θ)vk = 0, (51)

where S(θ) = d
dθ R(θ). Therefore, the maximum-likelihood estimate of orientation is

obtained by solving Equation (51) as

θ̂ML = arctan

{
∑M

k=1 κk b
T
k R(π

2 ) vk

∑M
k=1 κk b

T
k vk

}
(52)

It is well established that κ = A−1(ρ) and, for a two-dimensional space, A(·) =
I1(·)/I0(·) is a ratio of modified Bessel functions of the first kind and order one and zero;
there are multiple approximations to A−1(·) [54], and we adopt the one provided in [55].
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We attain a comprehensive measure for concentration factor κ by assuming κk = κ for
k ∈ {1, 2, · · · , M} , σhi

= σp for i ∈ {1, 2, · · · , N}, and approximating κ as

κ̂ =
ρ̄ (2− ρ̄2)

1− ρ̄2 ; ρ̄ = e−σ2
p , (53)

where 0 ≤ ρ̄ ≤ 1 is the mean resultant length. When the standard deviation in position
estimation σp > 1 meter, the concentration factor κ � 1. In those scenarios, the von
Mises model assumption fails, and the vectors bk do not contain any information regarding
rotations θ.

5.2. Position—3D CRLB

We implemented three position estimators in our MATLAB simulation platform:
ordinary least squares (OLS); iteratively reweighted least squares (IRLS); and non-linear
least squares (NLLS). We distributed N = 50 ground antennas randomly in a 10-meter
sphere centered at the origin and placed the target antenna h at (0, 0, 50) meters. We
swept the distance estimator standard deviation σd between 10−6 and 10 m, running
1000 Monte Carlo trials at each test point. These results are depicted in Figure 6. Each of
the three estimators closely approaches the CRLB in the region of interest, with the NLLS
estimator achieving slightly better performance than the IRLS and OLS estimators. This
result demonstrates that the proposed CRLB is tractable for a massive number of sensing
elements (50) and that it agrees with existing well-known estimators.

Figure 6. Performance comparison of the OLS, IRLS, and NLLS position estimators vs. the proposed
3D CRLB for N = 50 sensing elements. This demonstrates that the proposed CRLB is tractable for a
massive number of elements and closely aligns with well-known results.

We characterize the positioning performance as a function of GDoP by scaling the
ground constellation to meet different integer GDoP values and plotting the CRLB at each
value for the same sweep over σd. These results are depicted in Figure 7. While this plot is
not particularly interesting, it can directly inform system design decisions; if you have a
fixed-ranging precision, you can determine the necessary antenna placement requirements
(GDoP) to achieve a certain positioning performance. Likewise, if your antenna placements
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are fixed, then you can determine how precise your ranging estimates need to be to achieve
a certain positioning performance.

Figure 7. The 3D position CRLB vs. ranging precision for several GDoP values. These curves can
help inform system design decisions such as antenna placement or required ranging precision. In
general, a GDoP of 1 is considered “ideal”, between 2 and 10 is considered “good”, and anything
beyond 20 is considered “poor”.

5.3. Orientation—3D CRLB

We implemented four orientation estimators in our MATLAB simulation platform:
Tri-Axial Attitude Determination (TRIAD) [56]; Davenport’s Q-method [57,58]; QUaternion
ESTimator (QUEST) [59]; and the optimal linear attitude estimator (OLAE) [60]. We placed
two ground nodes g1 and g2 at (0,0,1) and (0,1,0) meters and defined the normalized vector
v0 between nodes G and H. We then generated normalized antenna position vectors b1 and
b2 by rotating vk using a direction cosine matrix (DCM) with angles α = β = γ = π

6 . We
evaluated κ using Equation (53).

In Figure 8, we plot the performance of these estimators versus the 3D orientation
CRLB as a function of the positioning precision σp. There is some slight variation between
the estimators in different regimes, but they are all consistent with the proposed bound. In
Figure 9, we substitute κ for σp following Equation (53) to instead plot the performance as
a function of the concentration.



Appl. Sci. 2023, 13, 2008 17 of 21

Figure 8. The 3D orientation CRLB vs. positioning precision for several attitude estimators.

Figure 9. The 3D orientation CRLB vs. concentration for several attitude estimators.
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6. Conclusions

In this manuscript, we derived novel, closed-form, and tractable 2D and 3D CRLBs for
position and orientation estimation in a multi-antenna, two-way ranging system. These
bounds are specifically formulated as a function of the number of antennas, platform
geometry, and geometric dilution of precision. They are also reformulated using different
geometric interpretations and plotted as functions of ranging precision and geometric
dilution of precision to make these theoretical results more accessible and intuitive to a
system design engineer. The performance manifold in Figure 5 also depicts the trade
space between ranging precision, positioning precision, and antenna placement, providing
a visual reference that does not require any calculations. The proposed CRLBs were
compared with several popular position and orientation estimators in a simple MATLAB
simulation platform to demonstrate that the bounds are tight, achievable, and consistent
with existing work.

This work offers a closed-form and tractable CRLB for position and orientation esti-
mation, but only for the subset of multi-antenna, two-way ranging systems described in
Figure 1. This is the natural conclusion to the original motivation, but possible future exten-
sions include a characterization of different antenna geometries similar to the comparisons
in [43] and an extension to an N-dimensional formulation that may enable space–time or
other high-dimensional processing techniques.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two-dimensional
3D Three-dimensional
CRLB Cramér–Rao lower bound
DCM Direction cosine matrix
FIM Fisher information matrix
GDoP Geometric dilution of precision
IRLS Iteratively reweighted least squares
ISNR Integrated signal-to-noise ratio
LS Least squares
ML Maximum likelihood
NLLS Non-linear least squares
OLAE Optimal linear attitude estimator
OLS Ordinary least squares
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PNT Positioning, navigation, and timing
QUEST QUaternion ESTimator
RF Radio frequency
SWaP-C Size, weight, power, and cost
TDoA Time difference of arrival
ToA Time of arrival
ToA/RSS Time of arrival/received signal strength
ToF Time of flight
TRIAD Tri-axial attitude determination
TWR Two-way ranging
UAM Urban air mobility
UWB Ultra-wideband
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