
Citation: Han, D.; Cai, Y.; Chen, W.;

Cui, Z.; Li, A. Timed-SAS: Modeling

and Analyzing the Time Behaviors of

Self-Adaptive Software under

Uncertainty. Appl. Sci. 2023, 13, 2018.

https://doi.org/10.3390/

app13032018

Academic Editors: Sanjay Misra,

Robertas Damaševičius and

Bharti Suri

Received: 21 November 2022

Revised: 29 January 2023

Accepted: 30 January 2023

Published: 3 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Timed-SAS: Modeling and Analyzing the Time Behaviors of
Self-Adaptive Software under Uncertainty
Deshuai Han 1,* , Yanping Cai 1, WenJie Chen 2 , Zhigao Cui 1 and Aihua Li 1

1 College of Defense Engineering, Rocket Force University of Engineering, Xi’an 710025, China
2 College of Defense Engineering, Army Engineering University of PLA, Nanjing 210007, China
* Correspondence: handeshuai@126.com

Featured Application: The Timed-SAS approach can be used to design and quantitatively analyze
the complex self-adaptive software systems, such as cloud computing systems.

Abstract: Self-adaptive software (SAS) is gaining in popularity as it can handle dynamic changes
in the operational context or in itself. Time behaviors are of vital importance for SAS systems, as
the self-adaptation loops bring in additional overhead time. However, early modeling and quanti-
tative analysis of time behaviors for the SAS systems is challenging, especially under uncertainty
environments. To tackle this problem, this paper proposed an approach called Timed-SAS to define,
describe, analyze, and optimize the time behaviors within the SAS systems. Concretely, Timed-SAS:
(1) provides a systematic definition on the deterministic time constraints, the uncertainty delay
time constraints, and the time-based evaluation metrics for the SAS systems; (2) creates a set of
formal modeling templates for the self-adaptation processes, the time behaviors and the uncertainty
environment to consolidate design knowledge for reuse; and (3) provides a set of statistical model
checking-based quantitative analysis templates to analyze and verify the self-adaptation properties
and the time properties under uncertainty. To validate its effectiveness, we presented an example
application and a subject-based experiment. The results demonstrated that the Timed-SAS approach
can effectively reduce modeling and verification difficulties of the time behaviors, and can help to
optimize the self-adaptation logic.

Keywords: self-adaptive software; time behavior; formal modeling; quantitative analysis; formal
templates

1. Introduction

Nowadays, complex software systems such as the cloud computing systems [1] and
the cyber-physical systems [2] are facing new challenges due to increasing size, incremental
complexity, and unpredictable environment changes. While addressing these challenges,
it becomes necessary to develop self-adaptive software (SAS) [3]. In fact, software self-
adaptation has become a research hot topic [4,5] in the software engineering community.
Self-adaptation endows a software system with the capability to satisfy certain objectives
by automatically modifying its parameters, structures, or behaviors, with the commonly
used MAPE-K (Monitor-Analyze-Plan-Execute, Knowledge) self-adaptation loops [6].

SAS systems run in dynamic and uncertainty environments, and it is necessary to
provide rigorous evidence to guarantee that the self-adaptation processes, time behaviors,
and properties are correct and satisfied through particular formal models, such as the
automaton model [7] and Petri-nets model [8], as discussed in “Assurances for Self-Adaptive
Systems” [9]. The network of timed automata (NTA) seems to be a promising formal model
to specify system behaviors for the SAS systems, and many research studies, such as the
ActivFORMS method [10], the MAPE-K formal templates [11], and the eARF reasoning
framework [12], attempted to formally specify the SAS systems with the NTA model.

Appl. Sci. 2023, 13, 2018. https://doi.org/10.3390/app13032018 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13032018
https://doi.org/10.3390/app13032018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6562-3792
https://orcid.org/0000-0002-1751-6826
https://doi.org/10.3390/app13032018
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13032018?type=check_update&version=2

Appl. Sci. 2023, 13, 2018 2 of 20

However, there are still some deficiencies with the NTA-based approaches. Firstly, few
studies systematically considered the time behaviors, especially the uncertainty delay
time constraints within the self-adaptation loops. The MAPE-K self-adaptation loops
can effectively handle dynamic changes within the software systems, but they bring in
additional overhead time, such as the monitoring period of the monitor process, the
analyzing and judging time of the analyze process, the uncertainty message processing
time and network delay time of the self-adaptation loops, etc. The above time behaviors
need to be explicitly and quantitatively described and analyzed. Second, to the best of our
knowledge, there is a lack of time metrics to systematically evaluate the performance and
the time properties of the self-adaptation loops. For example, the time used to return to
normal and steady states, and the probabilities to return to normal states within a given
time limit. Third, the NTA model suffers from problems such as state–space explosion
during formal verification, when the system scale and complexity is large.

In order to solve the above problems, this paper proposed the Timed-SAS approach,
which was established based on the commonly used MAPE-K self-adaptive software
architecture [6]. After a series of case studies and literature research, the deterministic and
uncertainty time constraints, which are commonly used during the SAS system design
and development processes, were identified, and summarized. Based on this, the Timed-
SAS approach provides a set of definitions for the time constraints within each MAPE-K
process, and a set of time-based evaluation metrics to evaluate the performance of the
self-adaptation loops. To facilitate modeling and quantitative analysis of the above time
constraints and time-based evaluation metrics, the Timed-SAS approach established a set
of formal modeling templates based on the network of priced timed automata (NPTA) [13]
model, and a set of quantitative analysis templates based on the statistical model checking
(SMC) [14] formal verification technique. In general, the Timed-SAS approach can be used
to define, describe, analyze, and optimize the time behaviors of the SAS systems, and the
main contributions of the Timed-SAS approach are as follows:

(1) It proposes a set of systematic definitions on the time behaviors of the SAS sys-
tems, which can depict the deterministic time constraints, and the uncertainty time
constraints within the self-adaptation processes. In addition, it provides a set of
quantitative analysis metrics to evaluate the performance and the response-time of
the self-adaptation loops;

(2) It creates a set of NPTA based formal modeling templates to describe the self-adaptation
processes, and the time constraints within the self-adaptation processes. The set of
modeling templates can consolidate design knowledge for reuse and can alleviate
modeling difficulty and improve modeling efficiency of the SAS systems;

(3) It establishes a set of formal verification templates and an SMC-based quantitative
analysis approach, which provide an automatic formal verification and analysis
on the self-adaptation properties as well as the time properties of the SAS systems
under uncertainty.

The Timed-SAS approach was evaluated with an example application and a subject-
based experiment, and the results demonstrated that the approach is helpful in reducing
the modeling and formal verification difficulty of the SAS time behaviors. In addition, it
can help to evaluate and optimize the self-adaptation logic.

The remainder of this paper is organized as follows: Section 2 illustrates a motivating
adaptation scenario and briefly introduces the NPTA model and the UPPAAL-SMC tool.
Section 3 provides an overview of the Timed-SAS approach. In Section 4, we present
the technical details and concrete processes of the Timed-SAS approach. We evaluate the
approach in Section 5 with a subject-based experiment. Section 6 outlines the related work.
Section 7 concludes the article and provides an overview on future work.

Appl. Sci. 2023, 13, 2018 3 of 20

2. Background
2.1. Adaptation Scenario: SUIS

The ship supplying information system (SUIS) [15] is a web service-based system,
responsible for handling supplying requirements submitted by ship-users, and it can
automatically calculate and dispatch food, water, oil, and other supplying materials to
ships. However, this web service-based system suffers the problem of Slashdot effect [16]:
during the sailing task-intensive period, the supplying requirements increase rapidly, and
the servers respond slowly or even crash; while during the rest period, there are rarely
supplying requirements and most servers are freed. In order to improve the quality of
the services and to decrease operating costs, SUIS was reconstructed based on the cloud
computing architecture. By being redeployed with the MAPE-K [6,17] architecture, SUIS
was composed of two parts, i.e., the self-adaptation logic and the application logic, as shown
in Figure 1. The former is responsible for monitoring and optimizing service performance
by dynamically adjusting the servers in operation, while the latter is used to provide
continuous and reliable web services to ship-users.

Figure 1. Architectural view of SUIS.

SUIS operates under dynamic user requirements, and it is difficult to describe and
analyze the time behaviors for the self-adaptation logic. For example, the self-adaptation
logic periodically monitors CPU utilization of servers (i.e., virtual machines, VMs for short),
and dynamically increases or decreases server numbers in operation according to such a
self-adaptation strategy as “if Utilization > UpperLimit for N seconds, then add P more VMs”.
From the above example, it can be seen that the time constraints, such as the monitoring
period and the analyzing and judging time (i.e., for N seconds) need to be specified and
verified elaborately. Uncertainty time behaviors, such as the message processing time, the
network delay time, and the server dispatching time need to be depicted. In addition,
additional quantitative analysis metrics are needed to evaluate the performance and the
response-time of the above self-adaptation strategies.

In addition to the SUIS adaptation scenario, other classical adaptation systems, such as
the self-adaptive firefighting system [2,18,19] and the ZNN.com adaptation system [20,21],
demand high requirements for time behavior modeling and analysis.

2.2. NPTA Model and UPPAAL-SMC

Timed automata are popular in the domain of formal methods, for its simplicity and
ease-to-use features. Priced timed automata (PTA) [13] are variants of timed automata
whose clocks can evolve with various rates. Owing to the different clock rates, the PTA
model can be used to describe the dynamic software running environment. For example,
the changing rate of user loads in the SUIS scenario can be described with cosine function,
i.e., load’ = cos(2 × t). In addition, the PTA model supports description of stochastic
behaviors of systems, and this characteristic suit to depict the uncertainty delay time within

Appl. Sci. 2023, 13, 2018 4 of 20

the self-adaptation logic. The NPTA model consists of a set of correlated PTAs which
communicate with each other using shared variables or broadcast channels [22].

In order to analyze the NPTA-based probabilistic behaviors, the model-checking tool
of UPPAAL-SMC [22] was created. UPPAAL-SMC is an extension of UPPAAL [23], and
it is expressive enough to capture the continuous time behaviors as well as the stochastic
behaviors of complex systems. In addition, UPPAAL-SMC can avoid the state–space
explosion problem, as it works with the SMC technique [14].

3. Approach Overview

The time behaviors of the SAS systems are difficult to describe and analyze quanti-
tatively, as they run in the uncertainty environment. To this end, this paper created an
approach called Timed-SAS following three steps, defining the time constraints and time
evaluation metrics, constructing the NPTA based formal modeling templates, and creating
a set of SMC-based quantitative analysis templates, as shown in Figure 2.

Figure 2. An overview of the Timed-SAS approach.

Concretely, this approach is composed of three steps:

(1) Definitions on the time constraints and time evaluation metrics. In the Timed-SAS
approach, the time constraints are defined based on the MAPE-K automatic computing
architecture, and they are divided into two categories, i.e., the deterministic time
constraints and the uncertainty delay time constraints. The former consists of the
Monitoring-Period in the Monitor process and the Triggering-Delay Time in the Analyze
process; while the latter refers to the uncertainty delay time in the self-adaptation
loops caused by message processing, network congestion, algorithm running, resource
scheduling and etc. The time evaluation metrics include the Self-adaptive Steady Time
and the Self-adaptive Adjusting Time, which can be used to evaluate the performance
and the response-time of the self-adaptation strategies;

(2) Construction of the formal modeling templates. The formal modeling templates are
created to explicitly describe the self-adaptation processes, the time constraints, and

Appl. Sci. 2023, 13, 2018 5 of 20

the uncertainty environment. The templates for the self-adaptation processes are con-
structed based on the MAPE-K automatic computing architecture. The time constraint
templates include the deterministic time-modeling templates, i.e., Monitoring-Period
and Triggering-Delay Time, and the uncertainty delay time modeling templates, e.g.,
Uniform-Distribution Delay time and Normal-Distribution Delay time. In addition, the
uncertainty environment modeling template was created to describe the stochastic
system behaviors, and the dynamic system loads;

(3) Creation of the quantitative analysis templates. This set of templates provides a
quantitative description and analysis of the desired self-adaptation properties and
time properties, as well as a simulation on the time evaluation metrics. It can also be
used to analyze and optimize the time constraints and the self-adaptation strategies
of the SAS systems.

In conclusion, the Timed-SAS approach provides systematic definitions on the time
constraints for the self-adaptation processes, and on the performance evaluation metrics
for the self-adaptation loops. Furthermore, it presents a set of formal modeling templates
and quantitative analysis templates for the above time constraints and evaluation metrics.
The above templates can consolidate design knowledge for reuse, can alleviate modeling
difficulty, and improve modeling and analysis efficiency of the SAS systems.

4. Implementation of the Timed-SAS Approach

The Timed-SAS approach was created based on the MAPE-K automatic computing
architecture, considering its wide application in the SAS systems. Combined with the
adaptation scenario in Section 2.2, the following subsections illustrate the Timed-SAS
approach by providing definitions on time behaviors and creating formal modeling and
quantitative analysis templates (https://github.com/DeshuaiHan/Timed-SAS-templates-
and-examples) for time behaviors.

4.1. Definition on Time Behaviors

According to the Timed-SAS approach, the time behaviors are divided into three
categories, i.e., the deterministic time constraints, the uncertainty time constraints, and the
time evaluation metrics for the SAS systems.

4.1.1. Deterministic Time Constraints

The deterministic time constraints include the Monitoring-Period in the Monitor
process and the Triggering-Delay Time in the Analyze process.

(1) Definition on Monitoring Period MPeriod for Monitor

According to the MAPE-K architecture, the Monitor process is used to periodically
detect changes within the self-adaptive software application logic, and the monitoring
period is defined as follows.

Definition 1. (Monitoring Period MPeriod). The Monitoring Period refers to the time-interval
between two triggers of the Monitor module during the running processes of the SAS systems,
represented as MPeriod, as shown in Figure 3. MPeriod represents the triggering period of the software
module, which is preset by software engineers and is different from the inherent triggering period or
triggering frequency of the physical sensors.

Figure 3. Monitoring Period MPeriod for Monitor.

https://github.com/DeshuaiHan/Timed-SAS-templates-and-examples
https://github.com/DeshuaiHan/Timed-SAS-templates-and-examples

Appl. Sci. 2023, 13, 2018 6 of 20

In the SUIS example of Section 2.1, MPeriod represents the sampling period of the CPU
utilization, and it was initially set as 5-unit time. It influences the triggering frequency of
the whole MAPE-K feedback loops. The excessive triggering frequency would aggravate
the computing burden of the SAS systems, while the lower triggering frequency cannot
satisfy the user requirements and guarantee the system performance. Therefore, the time
constraint of MPeriod is of vital importance.

(2) Definition on Triggering-Delay Time ADelay for Analyze

The Analyze process of the MAPE-K architecture is used to analyze exceptions or
errors in the application logic and analyze the duration of the exceptions. The duration
time was defined as Triggering-Delay Time, as shown below.

Definition 2. (Triggering-Delay Time ADelay). The Triggering-Delay Time refers to the time-
interval of the Analyze process between when a monitoring variable is out of limits and when the
subsequent Plan process is finally triggered. It is represented as ADelay, as shown in Figure 4.

Figure 4. Triggering-Delay Time ADelay for Analyze.

In the SAS systems, when the monitoring variable v is detected out of limits (i.e.,
v > UpperLimit or v < LowerLimit in Figure 4), the Analyzer module will observe v con-
tinuously for a period of time, i.e., ADelay. If v still remains in the out-of-limit state (i.e.,
v > UpperLimit or v < LowerLimit), the subsequent Plan process would be triggered. Taking
the adaptation scenario in Section 2.1 for example, as shown in Figure 5, the CPU utilization
(i.e., the variable of Utilization) rises above its upper limit (i.e., 85%) at t1 and returns to its
normal range at t2. As the out-of-limit time is less than ADelay (i.e., ∆t1 = t2 − t1 < ADelay),
there is no need to trigger further self-adaptation actions. However, this variable rises
above its upper limit again at t3, and the out-of-limit time is longer than ADelay (i.e.,
∆t2 = t4 − t3 > ADelay). As a result, the subsequent processes would be triggered. The
time constraint of Triggering-Delay Time is defined to specify such kind of delay-triggering
self-adaptation strategies as, “if Utilization > UpperLimit for N seconds, then add P more
VMs”. According to repeated experiments, ADelay takes the value of 3-unit time in the
above example.

Figure 5. Analysis of Triggering-Delay Time ADelay.

The time constraint of Triggering-Delay Time ADelay can effectively avoid system mis-
judgment and unnecessary self-adaptation actions. The value of ADelay should be set

Appl. Sci. 2023, 13, 2018 7 of 20

according to the concrete scenario, as the too large value would reduce the sensitivity
and effectiveness of the self-adaptation logic, and the too-small value would result in
over-frequent self-adaptation actions and aggravate the computing burden of the system.

4.1.2. Uncertainty Delay Time Constraints

The uncertainty delay time constraints mainly exist in the Plan process (i.e., DelayPlan),
the Execute process (i.e., DelayExecute), and the application logic, and they come from a
variety of sources, including the message processing, the network congestion of distributed
systems, the algorithm running, the resource scheduling of large-scale systems, etc.

Despite the variety of causes, the uncertainty delay time can be represented as proba-
bility distribution functions. According to the Timed-SAS approach, the uncertainty delay
time constraints are mainly represented as the Uniform Distribution function and the
Normal Distribution function, as shown in Figure 6.

Figure 6. The uncertainty time behavior of Delay.

As for the SUIS example in Section 2.1, the uncertainty delay time constraints exist in
the following aspects. Firstly, the running time of the self-adaptation strategies in the Plan
process obeys the uniform distribution; secondly, the server scheduling time in the Execute
process complies with the normal distribution; and finally, the networking delay time in
the application logic obeys the uniform distribution. In the SUIS example, the uncertainty
delay time constraints are set as follows, DelayPlan~U (1, 3), DelayExecute~N (5, 0.1) and
DelayApp~U (1, 3).

4.1.3. Time Evaluation Metrics

The time evaluation metrics, i.e., Self-adaptive Adjusting Time and Self-adaptive Steady
Time, are defined to evaluate the performance and response-time of the self-adaptation logic.

Definition 3. (Self-adaptive Adjusting Time TAdjust). The time evaluation metric of Self-
adaptive Adjusting Time refers to the minimum time required for the SAS systems to recover from
beyond the limits to within the limits. It is represented as TAdjust, as shown in Figure 7.

Figure 7. Self-adaptive Adjusting Time and Self-adaptive Steady Time.

Definition 4. (Self-adaptive Steady Time TSteady). The time evaluation metric of Self-adaptive
Steady Time refers to the minimum time required for the SAS systems to recover to and maintain

Appl. Sci. 2023, 13, 2018 8 of 20

at the final value of ±5% after the limits being violated. It is represented as TSteady, as shown in
Figure 7.

The two metrics are different, as TAdjust represents the response time to recover to safe
states, while TSteady depicts the response time to recover to steady states.

In the SUIS example of Section 2.1, the monitoring variable is the CPU utilization.
At time t1, the variable Util is detected exceeding the upper limit, and the subsequent
self-adaptation strategies are triggered. Subsequently, the variable Util falls back to normal
range at time t2, and returns to steady state at time t3. And the time of (t2–t1) is called
Self-adaptive Adjusting Time, while the time of (t3–t1) is called Self-adaptive Steady Time.
The two metrics can be used to evaluate the performance and response-time of the self-
adaptation strategies.

4.2. Formal Modeling Templates and Application

In order to consolidate design knowledge for reuse, we create a set of formal model-
ing templates (https://github.com/DeshuaiHan/Timed-SAS-templates-and-examples) to
describe the self-adaptation processes, the time behaviors and the uncertainty environment.

4.2.1. Templates for Self-Adaptation Processes and Time Behaviors

In the Timed-SAS approach, we use the NPTA model to depict the self-adaptation
processes of “Monitor-Analyze-Plan-Execute”, use “declaration” to model the “Knowledge”
module, and use “clock”, “guard” and “invariant” to specify the deterministic time constraints.
The uncertainty delay time constraints are implemented in the “declaration” module.

Concretely, the modeling template for Monitor process and Monitoring Period MPeriod
is shown in Figure 8a. It has decomposed the Monitor process into four sub-processes
of “Timing, Data-Collection, Comparing, Triggering”. In the Timing sub-process, it has
defined Monitoring Period by integrating invariant T < = Period with guard T == Period.
In the Data-Collection sub-process, it uses the function getData() to detect the software
running information. In the Comparing sub-process, it judges system states, low, high or
NoChange, by comparing the monitoring variable with the upper and lower limit with
the compare() function. Finally, it triggers different subsequent transitions by assigning
different values to flagA. Notably, the implementation details of the above two functions
are stored in the back-end configuration, which support customized definition according to
the application scenarios.

The modeling template for Analyze process and Triggering-Delay Time ADelay is
shown in Figure 8b. This process is triggered by flagA, and it is composed of three sub-
processes of “Delaying-Comparing-Triggering”. In the process of Delaying, two Triggering-
Delay Time D_T1 and D_T2 are defined. When the Triggering-Delay Time is finished
and the monitored variable is still over-limit, the system state would be determined as
“OverSatisfied” or “UnderSatisfied” with function analyze(). Meanwhile, the flag of flagP
would be assigned as −1 or 1, and the subsequent self-adaptation processes would be
triggered. Similarly, the implementation details of analyze() need to be further customized.

The modeling template for Plan process and the uncertainty delay time DelayPlan is
shown in Figure 8c. This process is triggered by flagP, and the concrete planning processes
are implemented with two functions of plan_LCL() and plan_UCL(), which need customiza-
tion according to concrete applications. The uncertainty delay time is implemented with
the function of delay(type, par1, par2), the parameters of which needs further instantiation.

Similarly, the template for Execute process and the uncertainty delay time DelayExecute
is shown in Figure 8d. This process is triggered by flagE, and the executing processes
are implemented with two functions of exe_LCL() and exe_UCL(), which need further
customization in the back-end configuration.

https://github.com/DeshuaiHan/Timed-SAS-templates-and-examples

Appl. Sci. 2023, 13, 2018 9 of 20

Figure 8. The NPTA based modeling templates for the self-adaptation processes and time behaviors:
(a) the template for Monitor process and Monitoring Period MPeriod; (b) The template for Analyze
process and Triggering-Delay Time ADelay; (c) the template for Plan process and the uncertainty delay
time; and (d) the template for Execute process and the uncertainty delay time.

The uncertainty delay time constraints are implemented in the “declaration” module of
NPTA, and Listing 1 provides the details. The function delay() defines types of probability
distribution (from line 15 to line 20) for the delay time. When type == 1, the uncertainty
delay time follows the normal distribution (from line 17 to line 18), while type == 2 follows
the uniform distribution (from line 19 to line 20). The uniform distribution function (from
line 9 to line 13) is created based on the UPPAAL-SMC built-in function of random ();
while the normal distribution function (from line 5 to line 8) is implemented based on the
standard normal distribution function (from line 1 to line 4), which is created using the
Box–Muller method [24].

Listing 1. Implementation of the uncertainty delay time constraints in the SAS systems.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

// normal distribution for delay time N(0, 1)
double stdNormal() {
return sqrt(−2*ln(1-random(1)))*cos(2*PI*random(1));
}
// normal distribution for delay time
double Normal(double mean, double stdDev){
return mean + stdDev*stdNormal();
}
// uniform distribution for delay time
double Uniform(double min, double max){
. . .
X = min + random(max–min);
. . .
// type of uncertainty delay time
double delay (int type, double par1, double par2){
. . .
if (type == 1) //N(par1, par2)
. . .
else if (type == 2) //U(par1, par2)
. . .

Appl. Sci. 2023, 13, 2018 10 of 20

4.2.2. Templates for Uncertainty Environment

In order to simulate the dynamic software running environment, we created a template
called Uncertainty Environment1, as shown in Figure 9. This modeling template describe
two kinds of uncertainty, i.e., the stochastic software behaviors and the dynamic system
loads. The former is handled with the probabilistic choices between multiple enabled tran-
sitions. As shown in Figure 9, there are five transitions following the state of “trigger”, and
the transitions are executed with different probabilities, i.e., pr1, pr2, pr3, pr4, and pr5. While
the latter is simulated with different kinds of functions. For example, transition (a) and (b),
respectively, represent the linearly increasing and linearly decreasing monitored-variables;
transition (d) and (e) respectively describe the sudden increase and decrease monitored
variables; while transition (c) represents the periodical changing monitored variables.

Figure 9. The NPTA-based modeling templates for Uncertainty Environment.

The above formal modeling templates consolidate design knowledge of time behaviors
and uncertainty environment for the SAS systems, and they can be customed and reused
by users.

4.2.3. Application of the Formal Modeling Templates

By instantiating the modeling templates in Sections 4.2.1 and 4.2.2, the formal model of
the SUIS example was easily created. During the instantiation process, the front-end model
in Figure 8 remained unchanged, the back-end functions and local variables of Monitor,
Analyze, Plan, Execute, and Uncertainty Environment were customized according to the
SUIS example. In addition, the application logic model of SUIS was newly created.

Concretely, in the processes of Monitor and Analyze, we mainly customized the
functions of getData(), compare() and analyze(), and instantiated the Monitoring Period
as const int Period = 5 (i.e., MPeriod =5), the Triggering-Delay Time as const int D_T1 = 3,
D_T2 = 3 (i.e., ADelay = 3). In the processes of Plan and Execute, we mainly instantiated the
uncertainty delay function of delay(), except for customizing the functions of plan_LCL(),
plan_UCL(), exe_LCL() and exe_UCL(). As for Plan, the uncertainty delay time DelayPlan
arised from the running time of the self-adaptation strategies, therefore, the parameter
type in the delay function was set as Uni, i.e., the strategy running time obeys the uniform
distribution, i.e., U (1, 3); while the uncertainty delay time in the Execute process (i.e.,
DelayExecute) was caused by server scheduling, thus, the parameter type was set as Norm,
i.e., the server scheduling time follows the normal distribution, i.e., N (5, 0.1). As for the
Uncertainty Environment template, it needed to simulate a Slashdot effect [16], thus, the
parameters of pr1, pr2, pr3 and pr4 were set as 0, while pr5 = 1, which simulated a rapid
increase of user visits (i.e., 42% increase of CPU Utilization). With the above templates,
the self-adaptation strategy in Section 2.1 (i.e., if Utilization > UpperLimit for N seconds,
then add P more VMs) can be implemented. In this strategy, “if Utilization > UpperLimit”
was implemented with the Monitor process, “for N seconds” was implement with the time
constraint of Triggering-Delay Time, and “add P more VMs” was implemented with the
plan_UCL() function of Plan process and the exe_UCL() function of Execute process.

Appl. Sci. 2023, 13, 2018 11 of 20

Except for instantiating the templates in Sections 4.2.1 and 4.2.2, we constructed the
application logic model for SUIS, as shown in Figure 10. It simulated the influence of server
number changing on the CPU utilization. Combined with the user-customized application
logic model, the self-adaptation loop became a closed feedback loop.

Figure 10. The user customized application logic model for SUIS.

From the above example application, it can be seen that the created modeling templates
can consolidate design knowledge for reuse, and thus reduce the modeling difficulty of the
SAS systems.

4.3. Quantitative Analysis Templates and Application
4.3.1. Quantitative Analysis Templates

The traditional NTA-based SAS modeling framework and model checking technique
suffer from the problem of state–space explosion during formal verification. The NPTA-
based modeling templates and the SMC based quantitative analysis technique can avoid
this problem. The quantitative analysis templates1 are shown in Table 1.

Table 1. Quantitative analysis templates for the SAS systems.

NO. Types Description and Usage Implementation

1 Self-adaptation reachability
Analyzing if the self-adaptation
logic can be triggered, and the

triggering time.
simulate [<=2T; N]{flagA}

2 Self-adaptation strategy reachability

Analyzing if the corresponding
self-adaptation strategies can be

triggered, and the triggering
probability and the average

triggering time.

Pr[<=Bound](<>Plan.LCL_Plan)
Pr[<=Bound](<>Plan.UCL_Plan)

3 Triggering-Delay Time
(ADelay) Analysis

Analyzing whether the predefined
Triggering-Delay Time is effective.

Pr[<=Bound](<>Analyze.analyze1)
Pr[<=Bound](<>Analyze.analyze2)

4 Uncertainty Delay Time
(DelayPlan) Analysis

Analyzing the total average delay
time when finishing the Plan

process, and the
triggering probability.

Pr[<=Bound](<>Plan.PlanReady1)
Pr[<=Bound](<>Plan.PlanReady2)

5 Uncertainty Delay Time
(DelayExecute) Analysis

Analyzing the total average delay
time when finishing the Execute

process, and the
triggering probability.

Pr[<=Bound](<> Execute.end)

6 Self-adaptive Adjusting Time and
Self-adaptive Steady Time Analysis

Analyzing the effectiveness of the
self-adaptation logic, the average

time used to get back to normal and
steady states, and the probabilities
to get back to normal states within a

given time limit.

simulate [<=Bound; N]{VAR}
Pr[<=Bound](<>VAR<=UCL)
Pr[<=Bound](<>VAR>=LCL)

Concretely, the first property “self-adaptation reachability” is verified with the formal
logic of “simulate [<=2T; N]{flagA}”, which checks whether the self-adaptation logic can

Appl. Sci. 2023, 13, 2018 12 of 20

be triggered during 2T time. If the self-adaptation logic is triggered after N times of
simulation, the variable flagA would change from 0 to 1 or −1. The second property “self-
adaptation strategy reachability” is used to verify whether the strategies can be triggered
in response to the environment changes, and to compute the triggering probability and
the average triggering time. The third to fifth properties are used to, respectively, analyze
the Triggering-Delay Time, the Uncertainty Delay Time in Plan, and the Uncertainty Delay
Time in Execute. The final property “Self-adaptive Adjusting Time and Self-adaptive Steady
Time Analysis” is formally described as “simulate [<=Bound; N]{VAR}”, which simulates
changes of the monitored variable. Furthermore, the users can identify the average Self-
adaptive Adjusting Time and Self-adaptive Steady Time according to the formal logic of
“Pr[<=Bound](<>VAR<=UCL) or Pr[<=Bound](<>VAR>=LCL)”.

4.3.2. Application of the Formal Analysis Templates

By instantiating the analysis templates in Section 4.3.1, the SUIS application was
quantitatively verified and analyzed, and the results are shown in Figure 11. Concretely, the
property of “self-adaptation reachability” was analyzed with the expression of “simulate
[<=10; 10]{flagA}”. According to Figure 11a, the value of flagA turned from 0 to 1 at time 5,
which meant the out-of-range CPU utilization (i.e., Util>=UCL) was detected after one cycle
(i.e., Period = 5) of monitoring, and the self-adaptation logic was subsequently triggered.
According to Figure 11b, the Plan.UCL_Plan state can be reached, which meant the self-
adaptation strategy plan_UCL() was effectively executed at an average triggering time
of 9.82. According to Figure 11c, the Analyze.analyze2 state can be reached at an average
time of 8.80, which meant that the predefined Triggering-Delay Time (i.e., D_T2 = 3) was
effective. According to Figure 11d,e, the processes of Plan and Execute can be reached,
and the average finishing time were 11.8 and 18.0, respectively. Figure 11f shows that
the CPU utilization fell in the normal range (i.e., Util < =85%) during the time of [16.44,
32.38], and the average Self-adaptive Adjusting Time was 21.20, which was analyzed with
Pr[<=32](<>Util<=85); subsequently, it went through another times of self-adaptation and
finally fell in the steady state during [22.24, 44.46], and the average Self-adaptive Steady
Time was 30.30, which was analyzed with Pr[<=44](<>Util<=80).

For further analysis, on the basis of the above simulated values and the instantiated
design values (i.e., the time features in Section 4.2.3), we plotted the timeline of the SUIS
example, as shown in Figure 12. It shows that all the simulated values of the time behaviors
fell in the design range. According to the above quantitative analysis, we can conclude
that the self-adaptation behaviors, the self-adaptation strategies, and the time behaviors
of the SUIS example were effective in dealing with the dynamic environment changes.
Meanwhile, it can also be seen that the average Self-adaptive Steady Time was much longer
than the average Self-adaptive Adjusting Time, and the number of servers in operation
needed several times of adjustment, which indicated that current self-adaptation strategies
were effective but not optimal.

For further optimization, we have improved the self-adaptation strategy of “if Uti-
lization > UCL for ADelay, then add P more VMs”, and adjusted the time constraints, as
shown in Table 2. On one hand, the monitoring period, the server number P and the
Triggering-Delay Time ADelay were optimized to avoid the repeated adjustment of the
server number in operation. On the other hand, the delay time in the Plan and Execute
processes were optimized to shorten the Self-adaptive Adjusting Time. The system be-
haviors after optimization are shown in Figure 13. As can be seen from Figure 13a, the
number of servers in operation only went through one time of adjustment, and thus the
Self-adaptive Adjusting Time was equal to the Self-adaptive Steady Time. In addition,
the average Self-adaptive Steady Time was shortened to 26.64, compared with the initial
model, as shown in Figure 13b. Back to the SUIS example in Section 2.1, the self-adaptation
strategy can be optimized as “if Util > 85% for 16 unit time, then add ((Util−0.25)/5 + 2)
more VMs”.

Appl. Sci. 2023, 13, 2018 13 of 20

Figure 11. Quantitative analysis of the SUIS example: (a) self-adaptation reachability analysis;
(b) self-adaptation strategy reachability analysis; (c) Triggering-Delay Time Analysis; (d) Uncertainty
Delay Time (Plan) Analysis; (e) Uncertainty Delay Time (Execute) Analysis; and (f) Self-adaptive
Adjusting Time and Self-adaptive Steady Time Analysis.

Figure 12. Time behavior analysis for the SUIS example.

Table 2. Optimization of self-adaptation strategies and time behaviors.

Initial Parameter Configurations Optimized Parameter Configurations

P = (Util-UCL)/5 + 1 P = (Util-UCL)/5 + 2
MPeriod = 5 MPeriod = 2
ADelay = 3 ADelay = 16

DelayPlan~U(1.0, 3.0) DelayPlan~U(1.0, 2.0)
DelayExecute~ N(5.0, 0.1) DelayExecute~ N(2.0, 0.1)

Appl. Sci. 2023, 13, 2018 14 of 20

Figure 13. Time behaviors of the optimized SUIS application: (a) the changes of CPU utilization; and
(b) the average value of TAdjust and TSteady.

As can be seen from the above example application, the created quantitative analysis
templates are effective in analyzing the self-adaptation properties as well as the time
properties of the SAS systems. In addition, the templates can help to optimize the self-
adaptation logic.

5. Experiment Evaluation

The objective of this experiment was to evaluate the effectiveness and efficiency of the
templates created in the Timed-SAS approach. The effectiveness was examined from the
reusability of the modeling and analysis templates, while the efficiency was evaluated from
the modeling and analysis time of the SAS applications.

5.1. Experiment Setting

The experiment was performed in the context of a graduate course called ‘Advanced
Software Engineering’ at Rocket Force University of Engineering, and the participants were
20 graduate students taking the course. The participants were randomly divided into five
groups, and each group was randomly divided into two sub-groups, A and B. During
the experiment, the participants were asked to finish modeling and formal analysis of
five classical SAS applications, i.e., Body Sensor Network [25], Fire Detection System [18],
Znn.com [20], Lon893OPCServer [26], and SUIS in Section 2.1.

According to the experiment design in Table 3, the experiment was carried out fol-
lowing five steps. In the first step, all the 20 participants equally received a 2-h lecture on
the SAS systems and the MAPE-K architecture. Then, they were trained in a 6-h course
to understand and to use the NPTA model and the UPPAAL-SMC tool. Notably, none of
them was trained with the Timed-SAS approach in the above training. In the third step,
each group selected one SAS application at random. The selection results were shown in
Table 3, with specific modeling and analysis requirements set for each SAS application
(https://github.com/DeshuaiHan/Timed-SAS-templates-and-examples). In the subse-
quent fourth step, each group was asked to finish modeling and formal analysis of the
corresponding application in 4 h. Among each of the groups, Sub-group A was asked to use
the templates created in the Timed-SAS approach, while Sub-group B was asked to directly
use the NPTA model. Finally, in the fifth step, two teachers, who were not involved in the
Timed-SAS project, were asked to check the finished tasks according to a set of concrete
criteria (https://github.com/DeshuaiHan/Timed-Timed-SAS-experiment-evaluation).

https://github.com/DeshuaiHan/Timed-SAS-templates-and-examples
https://github.com/DeshuaiHan/Timed-Timed-SAS-experiment-evaluation

Appl. Sci. 2023, 13, 2018 15 of 20

Table 3. Design of the experiment.

Steps Group 1 (A, B) Group 2 (A, B) Group 3 (A, B) Group 4 (A, B) Group 5 (A, B)

1st Step: SAS training Lectures on the SAS systems and the MAPE-K architecture (2 h)
2nd Step: Formal method training Training on the NPTA formal model and the UPPAAL-SMC tool (6 h)

3rd Step: Application selection Znn.com [20] Lon893OPCServer
[26]

Body Sensor
Network [25]

Fire Detection
System [18] SUIS

4th Step: Formal modeling and analysis Formal modeling and analysis with the Timed-SAS approach and the NPTA model, respectively
(limited in 4 h)

5th Step: Results analysis Checking the modeling and formal analysis results
(i.e., work quality, finishing time, and template reusability).

5.2. Experiment Results and Discussion

After the experiment, we obtained two set of results for each example application
(https://github.com/DeshuaiHan/Timed-Timed-SAS-experiment-evaluation). Due to
space limitations, we only present the analysis results for each case study.

5.2.1. Data Analysis

According to the checking results of two teachers, Tables 4 and 5 were created. As
shown in Table 4, Sub-group A of the five groups, who used the templates of the Timed-SAS
approach, all finished modeling and formal analysis of the specified SAS applications, and
the average working time was 60.2 min. As for Sub-group B, who directly used the NPTA
model, three of five sub-groups (i.e., Group 1-B, Group 2-B and Group 4-B) finished the
specific tasks, and the average finishing time was 155.3 min. The other two sub-groups
failed in the specific tasks because of timeout (i.e., Group 3-B) or unqualified work (i.e.,
Group 5-B).

Table 4. The finishing time and work quality for each case study.

SAS Applications Modeling and Analysis with
the Timed-SAS Approach

Modeling and Analysis with
the NPTA Model

Znn.com [20] 63 min (Group 1-A) 195 min (Group 1-B)
Lon893OPCServer [26] 52 min (Group 2-A) 163 min (Group 2-B)

Body Sensor Network [25] 75 min (Group 3-A) /(Group 3-B)
(out range of 4 h)

Fire Detection System [18] 45 min (Group 4-A) 108 min (Group 4-B)

SUIS 66 min (Group 5-A) /(Group 5-B)
(105 min, but unqualified)

Average time 60.2 min 155.3 min

Table 5. The template reusability for each example application.

SAS Applications MAPE-K Uncertainty MPeriod ADelay DelayPlan DelayExecute TAdjust TSteady

SAS
Reachabil-

ity

Strategy
Reachabil-

ity

Znn.com [20]
√ √ √ √ √ √ √ √ √ √

Lon893OPCServer [26]
√ √ √ √ √ √ √ √ √ √

Body Sensor Network [25]
√ √ √ √ √ √ √

–
√ √

Fire Detection System [18]
√

–
√ √ √ √ √

–
√ √

SUIS
√ √ √ √ √ √ √ √ √ √

Number of uses 5/5 4/5 5/5 5/5 5/5 5/5 5/5 4/5 5/5 5/5

Note: 1. MAPE-K: Modeling templates for MAPE-K processes; 2. Uncertainty: Modeling templates for uncertainty
environment; 3. MPeriod: Modeling and analysis templates for MPeriod; 4. ADelay: Modeling and analysis templates
for ADelay; 5. DelayPlan:Modeling and analysis templates for DelayPlan; 6. DelayExecute: Modeling and analysis
templates for DelayExecute; 7. TAdjust: Modeling and analysis templates for TAdjust; 8. TSteady: Modeling and
analysis templates for TSteady; 9. SAS reachability: Self-adaptation reachability analysis; 10. Strategy reachability:
Self-adaptation reachability analysis.

√
: shows that the template is useful in the example. –: shows that the

template is not useful in the example.

Table 5 details the reusability for each template created in the Timed-SAS approach.
Notably, all the templates were reused in three applications (i.e., the application of Znn.com,

https://github.com/DeshuaiHan/Timed-Timed-SAS-experiment-evaluation

Appl. Sci. 2023, 13, 2018 16 of 20

Lon893OPCServer and SUIS). For the above three applications, the templates were directly
reused after modifying parameters. In the application of Fire Detection System, the Uncer-
tainty Environment template was not useful, as the danger of fire was a determined value
of 0 or 1. In the application of Fire Detection System and Body Sensor Network, the Self-
adaptive Steady Time Analysis template was not useful, as the two systems were not closed
loop feedback systems. In addition, the NTA model for Fire Detection System in Figure 14,
was an instantiated and simplified version of the templates in Figure 8. From the above
application and instantiation, we can conclude that the templates created in Timed-SAS
can cover modeling and formal analysis requirements of the five example applications.

Figure 14. Modeling the Fire Detection System by reusing and simplifying the templates of Timed-
SAS: (a) reusing the templates of Monitor and MPeriod; (b) reusing and simplifying the templates of
Analyze and ADelay; (c) reusing and simplifying the templates of Plan and DelayPlan; and (d) reusing
and simplifying the templates of Execute and DelayExecute.

5.2.2. Experiment Results

Considering the experiment objective mentioned at the beginning of this experiment,
i.e., evaluating the effectiveness and efficiency of the templates created in the Timed-SAS
approach, we discuss the experiment results in this subsection.

Effectiveness. The effectiveness is examined from the template reusability. According
to Tables 4 and 5, the templates created in the Timed-SAS approach can be directly instan-
tiated and reused and can satisfy the modeling and formal analysis requirements of the
general SAS systems. In addition, from the application in Sections 4.2.3 and 4.3.2, it can be
seen that the templates help to reduce modeling and formal verification difficulties of the
time behaviors, and to optimize the self-adaptation logic. Thus, the templates created in
the Timed-SAS approach are effective.

Efficiency. Similarly, the efficiency depends on the formal modeling and analysis
time with the templates. According to Table 4, the average working time when using the
templates was shortened by 61.24%, compared with directly using the NPTA model. Thus,
the Timed-SAS approach has a distinct advantage in improving the formal modeling and
analysis efficiency of the SAS time behaviors.

5.2.3. Discussion

Strengths. The above experiment evaluation has demonstrated that the templates
created in the Timed-SAS approach are effective to describe and analyze the self-adaptation
processes, the time behaviors, and the uncertainty environment of the SAS systems. The
templates can help to reduce formal modeling and analysis difficulties and improve the
modeling and analysis efficiency of the SAS systems.

Weakness. The experiment evaluation also reveals one deficiency of the Timed-SAS
approach. Currently, the NPTA model still lacks an effective mechanism to handle high
system complexity. To make up for this deficiency, we made a preliminary study [21] with

Appl. Sci. 2023, 13, 2018 17 of 20

the stepwise refinement mechanism of the Event-B model [27]. In future work, we will
attempt to integrate the Timed-SAS approach with the Event-B model.

5.3. Threats to Validity

The validity of our controlled experiments may be subject to the following threats:
Construct validity. This kind of validity analyzes the relationship between theory and

observation. The above experiment was conducted to evaluate the effectiveness and effi-
ciency of the created templates. The concepts of “effectiveness” and “efficiency” are broad
and general and are prone to construct validity. To minimize this threat, the effectiveness
was examined from the template reusability, and the corresponding evaluation metrics
were concrete and quantifiable; while the efficiency was evaluated with the modeling and
analysis time of the SAS applications, which was also a quantitative metric.

Internal validity. As for internal validity, the manual assessment of tasks in the fifth
step of the experiment (i.e., results analysis in Table 3) is prone to errors and bias. To reduce
this kind of threat, the task assessment was conducted by two domain experts who were
not directly involved in our project. In addition, the assessment followed a blind procedure.

External validity. External validity refers to the generalizability of the experiment
conclusions. In this study, we performed the experiments with five classical self-adaptive
software scenarios, and the experiment results are satisfactory. However, the backgrounds
of the experiments’ subjects are limited. In the above experiments, we chose 20 grad-
uate students as subjects, but the modeling and quantitative analysis templates of the
Timed-SAS approach is designed not only for students but also for industrial software
developers. In the future, we plan to conduct more experiments with subjects from the
industrial community.

6. Related Work and Discussion

Recently, the study on the SAS systems has become a hot topic in the software en-
gineering community. Particularly, formal methods for the SAS systems are attracting
increasing interest. The self-adaptive software community has made several comprehen-
sive surveys [28–30], focusing on modeling dimensions, engineering approaches and formal
methods of self-adaptive systems, respectively. This study focuses on formal modeling and
analysis of the self-adaptation processes and the time behaviors for the SAS systems, and
we review studies that are relevant to our Timed-SAS approach.

Formal modeling and verification on the self-adaptation processes. In order to for-
mally describe and verify the self-adaptation processes, researchers have proposed many ap-
proaches, such as the CSP-based approaches [31,32], the Petri-Net based approaches [33,34],
the NTA-based approaches [10–12], the Event-B based approaches [18,21,35], the ap-
proaches based on domain specific language [36,37], etc. One popular approach is the
NTA-based approach, owing to its simplicity and ease-of-use features. On basis of the
timed automata model, the AdaptWise research group of Linnaeus University proposed
the ActivFORMS approach [10], the MAPE-K formal templates [11], and the eARF ap-
proach [12] for the SAS systems. The above research concentrates on formal modeling and
verification of the dynamic self-adaptation processes, but they lack a systematic definition
and description on the time behaviors within the SAS systems. In addition, model checking
of the above formal models encounters the problem of state–space explosion when system
scales increase. By contrast, our Timed-SAS approach provides a systematic definition
on the time behaviors within the SAS systems and supports formal modeling and quan-
titative analysis of the dynamic self-adaptation processes as well as the time behaviors.
Furthermore, the Timed-SAS approach can avoid the state–space explosion problem with
the Statistical Model Checking technique.

Formal modeling and verification on the time behaviors of the SAS systems. Time
behavior is an important characteristic for the self-adaptive systems. Ji Zhang and BHC
Cheng [38] have long pointed out the need to specify the adaptation requirements with
temporal logic. Furthermore, they have proposed the Adapt operator-extended LTL (A-

Appl. Sci. 2023, 13, 2018 18 of 20

LTL) [39] to specify adaptation semantics. Similarly, Zhao et al. [40] have proposed the
mode-supported Linear Temporal Logic (mLTL) to specially describe global specifications
of the self-adaptive software. The above studies have treated time behaviors as first-class
elements to handle, but they lack a systematic definition on the time behaviors within
the SAS systems. As for definitions on the time behaviors, the authors in [18] defined
the time behaviors of deadline, delay, and expiry for the self-adaptive systems. On the
basis of these definitions, the authors proposed to extend the Event-B model with timing
semantics, and defined the refinement patterns for deadline, delay and expiry, which can
reduce modeling difficulties of time behaviors. Unfortunately, the above modeling patterns
cannot describe the time behaviors under uncertainty environment. Apart from definitions
on the deterministic time behaviors, we have defined the uncertainty time behaviors to
describe the delay time under uncertainty environment.

Quantitative analysis on the SAS systems. In order to quantitatively analyze the
system behaviors under uncertainty, the researchers have proposed the Probabilistic Model
Checking based approaches [41–44] for the SAS systems. These approaches possess the
advantages of automatic analysis and quantitative verification and can avoid the state–space
explosion problem of model checking. However, there is still a lack of quantitative metrics
to evaluate the self-adaptation logic [45]. To make up for this deficiency, we proposed the
metrics of Self-adaptive Steady Time and Self-adaptive Adjusting Time, which can be used
to quantitatively evaluate the performance and response time of the self-adaptation logic.
Furthermore, on the basis of the Statistical Model Checking technique, we created a set
of quantitative analysis templates to analyze the self-adaptation properties and the time
properties under uncertainty.

To summarize, our work concentrated on definition, formal modeling and quantitative
analysis of the self-adaptation processes and the time behaviors for the SAS systems. To the
best of our knowledge, this is the first attempt to systematically tackle the time behaviors
within the SAS systems.

7. Conclusions and Future Work

Formal modeling and quantitative analysis of time behaviors is of vital importance for
the SAS systems. However, few studies have systematically considered the time behaviors,
especially the uncertainty delay time constraints within the self-adaptation loops. To this
end, the Timed-SAS approach, which supports definition, formal modeling, quantitative
analysis and optimization for the time behaviors of the SAS systems, was proposed in this
paper. The Timed-SAS approach was created based on the commonly used MAPE-K self-
adaptive software architecture, and its contribution is two-fold: the approach provides a
systematical definition on the time constraints within each MAPE-K process and on the time-
based evaluation metrics for the self-adaptation loops, and presents a set of formal modeling
templates and quantitative analysis templates for the time behaviors within the SAS systems.
The defined time constraints can be used to depict the deterministic time constraints,
and the uncertainty time constraints within the self-adaptation processes; the time-based
evaluation metrics can be used to evaluate the performance and response-time of the
self-adaptation loops and the self-adaptation strategies; and the modeling and quantitative
analysis templates can consolidate design knowledge for reuse, and can alleviate modeling
difficulty and improve modeling efficiency of the SAS systems. Furthermore, the Timed-
SAS approach can be used to optimize the self-adaptation strategies of the SAS systems.
We evaluated the Timed-SAS approach with several example applications and a subject-
based experiment. The results demonstrated that the Timed-SAS approach can satisfy
modeling requirements of the SAS time behaviors, and effectively reduce the modeling and
quantitative analysis difficulty of the SAS time behaviors.

In future work, we will continue to study the formal analysis of self-adaptation
properties, simplify the quantitative analysis complexity and enrich the verifiable self-
adaptation properties.

Appl. Sci. 2023, 13, 2018 19 of 20

Author Contributions: Conceptualization, D.H. and Y.C.; methodology, D.H.; software, W.C.; vali-
dation, W.C.; formal analysis, D.H.; data curation, W.C.; writing—original draft preparation, D.H.
and Z.C.; writing—review and editing, D.H. and Y.C.; visualization, Z.C.; supervision, A.L.; project
administration, D.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Natural Science Basic Research Plan in Shaanxi Province of
China (Program No. 2021JQ-374).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, X.; Wang, H.; Ma, Y.; Zheng, X.; Guo, L. Self-adaptive resource allocation for cloud-based software services based on

iterative QoS prediction model. Future Gener. Comput. Syst. 2020, 105, 287–296. [CrossRef]
2. Gerostathopoulos, I.; Bures, T.; Hnetynka, P.; Keznikl, J.; Kit, M.; Plasil, F.; Plouzeau, N. Self-adaptation in software-intensive

cyber–physical systems: From system goals to architecture configurations. J. Syst. Softw. 2016, 122, 378–397. [CrossRef]
3. Salehie, M.; Tahvildari, L. Self-adaptive software: Landscape and research challenges. ACM Trans. Auton. Adapt. Syst. TAAS 2009,

4, 14. [CrossRef]
4. Weyns, D. Software engineering of self-adaptive systems. In Handbook of Software Engineering; Cha, S., Taylor, R.N., Kang, K., Eds.;

Springer: Berlin/Heidelberg, Germany, 2019; pp. 399–443.
5. Abbas, N.; Andersson, J.; Weyns, D. ASPLe: A methodology to develop self-adaptive software systems with systematic reuse. J.

Syst. Softw. 2020, 167, 110626. [CrossRef]
6. Kephart, J.O.; Chess, D.M. The vision of autonomic computing. Computer 2003, 36, 41–50. [CrossRef]
7. Fülöp, E.; Pataki, N. A DSL for resource checking using finite state automaton-driven symbolic execution. Open Comput. Sci. 2021,

11, 107–115. [CrossRef]
8. Fernandes Costa, T.; Sobrinho, Á.; Chaves e Silva, L.; da Silva, L.D.; Perkusich, A. Coloured Petri Nets-Based Modeling and

Validation of Insulin Infusion Pump Systems. Appl. Sci. 2022, 12, 1475. [CrossRef]
9. Weyns, D.; Bencomo, N.; Calinescu, R.; Cámara, J.; Ghezzi, C.; Grassi, V.; Grunske, L.; Inverardi, P.; Jézéquel, J.-M.; Malek, S.; et al.

Assurances for Self-Adaptive Systems; Springer: Berlin/Heidelberg, Germay, 2017.
10. Weyns, D.; Iftikhar, M.U. ActivFORMS: A Model-Based Approach to Engineer Self-Adaptive Systems. IEICE Trans. Fundam.

Electron. Commun. Comput. Sci. 2019, 2019, 3522585. [CrossRef]
11. Iglesia, D.G.D.L.; Weyns, D. MAPE-K formal templates to rigorously design behaviors for self-adaptive systems. ACM Trans.

Auton. Adapt. Syst. 2015, 10, 2724719. [CrossRef]
12. Abbas, N.; Andersson, J.; Iftikhar, M.U.; Weyns, D. Rigorous architectural reasoning for self-adaptive software systems. In

Proceedings of the 1st Workshop on Qualitative Reasoning about Software Architectures, Venice, Italy, 5–8 April 2016; pp. 11–18.
13. Bulychev, P.; David, A.; Larsen, K.G.; Mikučionis, M.; Poulsen, D.B.; Legay, A.; Wang, Z. UPPAAL-SMC: Statistical model checking

for priced timed automata. arXiv 2012, arXiv:1207.1272. [CrossRef]
14. Sen, K.; Viswanathan, M.; Agha, G. Statistical model checking of black-box probabilistic systems. In Proceedings of the

International Conference on Computer Aided Verification, Boston, MA, USA, 13–17 July 2004; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 202–215.

15. Han, D.; Xing, J.; Yang, Q.; Li, J.; Wang, H. Handling uncertainty in self-adaptive software using self-learning fuzzy neural
network. In Proceedings of the IEEE Computer Society, Proceedings of the 40th IEEE Annual Computer Software and Applications
Conference (COMPSAC), Atlanta, GA, USA, 10–14 June 2016; pp. 540–545.

16. Adler, S. The Slashdot Effect: An Analysis of Three Internet Publications. Linux Gazette. 1999, p. 38. Available online:
https://linuxgazette.net/issue38/adler1.html (accessed on 29 January 2023).

17. Arcaini, P.; Riccobene, E.; Scandurra, P. Modeling and analyzing MAPE-K feedback loops for self-adaptation. In Proceedings of
the 10th IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-Managing Systems, Florence, Italy,
18–19 May 2015; pp. 13–23.

18. Hachicha, M.; Halima, R.B.; Kacem, A.H. Design and timed verification of self-adaptive systems. In Proceedings of the IEEE/ACIS
16th International Conference on Computer and Information Science (ICIS), Wuhan, China, 24–26 May 2017; pp. 227–232.

19. Han, D.; Yang, Q.; Xing, J.; Li, J.; Wang, H. FAME: A UML-based framework for modeling fuzzy self-adaptive software. Inf. Softw.
Technol. 2016, 76, 118–134. [CrossRef]

20. Cheng S, W. Rainbow: Cost-Effective Software Ar-Chitecture-Based Self-Adaptation; Carnegie Mellon University: Pittsburgh, PA, USA, 2008.
21. Han, D.S.; Yang, Q.L.; Xing, J.C.; Ma, G.L. EasyModel: A Refinement-Based Modeling and Verification Approach for Self-Adaptive

Software. J. Comput. Sci. Technol. 2020, 35, 1016–1046. [CrossRef]

http://doi.org/10.1016/j.future.2019.12.005
http://doi.org/10.1016/j.jss.2016.02.028
http://doi.org/10.1145/1516533.1516538
http://doi.org/10.1016/j.jss.2020.110626
http://doi.org/10.1109/MC.2003.1160055
http://doi.org/10.1515/comp-2020-0120
http://doi.org/10.3390/app12031475
http://doi.org/10.1145/3522585
http://doi.org/10.1145/2724719
http://doi.org/10.4204/EPTCS.85.1
https://linuxgazette.net/issue38/adler1.html
http://doi.org/10.1016/j.infsof.2016.04.014
http://doi.org/10.1007/s11390-020-0499-x

Appl. Sci. 2023, 13, 2018 20 of 20

22. David, A.; Larsen, K.G.; Legay, A.; Mikučionis, M.; Poulsen, D.B. Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 2015, 17,
397–415. [CrossRef]

23. Larsen, K.G.; Pettersson, P.; Yi, W. UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. 1997, 1, 134–152. [CrossRef]
24. Chen, M.; Yue, D.; Qin, X.; Fu, X.; Mishra, P. Variation-aware evaluation of MPSoC task allocation and scheduling strategies

using statistical model checking. In Proceedings of the 2015 IEEE Design, Automation & Test in Europe Conference & Exhibition
(DATE), Grenoble, France, 9–13 March 2015; pp. 199–204.

25. Rodrigues, A.; Rodrigues, G.N.; Knauss, A.; Ali, R.; Andrade, H. Enhancing context specifications for dependable adaptive
systems: A data mining approach. Inf. Softw. Technol. 2019, 112, 115–131. [CrossRef]

26. Yang, Q.L.; Lv, J.; Tao, X.P.; Ma, X.X.; Xing, J.C.; Song, W. Fuzzy self-adaptation of mission-critical software under uncertainty. J.
Comput. Sci. Technol. 2013, 28, 165. [CrossRef]

27. Abrial J, R. Modeling in Event-B: System and Software Engineering; Cambridge University Press: Cambridge, UK, 2013.
28. De Lemos, R.; Garlan, D.; Ghezzi, C.; Giese, H.; Andersson, J.; Litoiu, M.; Schmerl, B.; Weyns, D.; Baresi, L.; Bencomo, N.;

et al. Software engineering for self-adaptive systems: Research challenges in the provision of assurances. In Proceedings of
the Software Engineering for Self-Adaptive Systems III, Wadern, Germany, 15–19 December 2013; Springer: Berlin/Heidelberg,
Germany, 2017; Volume 9640.

29. Krupitzer, C.; Roth, F.M.; VanSyckel, S.; Schiele, G.; Becker, C. A survey on engineering approaches for self-adaptive systems.
Pervasive Mob. Comput. 2015, 17, 184–206. [CrossRef]

30. Krupitzer, C.; Roth, F.M.; VanSyckel, S.; Schiele, G.; Becker, C. A survey of formal methods in self-adaptive systems. In Proceedings
of the Fifth International C* Conference on Computer Science and Software Engineering, Guilin, China, 21–23 October 2022;
pp. 67–79.

31. Göthel, T.; Jähnig, N.; Seif, S. Refinement-based modelling and verification of design patterns for self-adaptive systems. In
Proceedings of the 19th International Conference on Formal Engineering Methods, Xi’an, China, 13–17 November 2017; Springer:
Berlin/Heidelberg, Germany; pp. 157–173.

32. Kleine, M. A CSP-based framework for the specification, verification, and implementation of adaptive systems. In Proceedings of
the 6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, Honolulu, HI, USA, 23–24
May 2011; 2011; pp. 158–167.

33. Ding, Z.; Zhou, Y.; Zhou, M. Modeling self-adaptive software systems with learning petri nets. IEEE Trans. Syst. Man Cybern. Syst.
2017, 46, 483–498. [CrossRef]

34. Kachi, F.; Bouanaka, C.; Merkouche, S. A formal model for quality-driven decision making in self-adaptive systems. In Proceedings
of the Second Workshop on Formal Methods for Autonomous Systems, Constantine, Algirea, 7 December 2020; pp. 48–64.

35. Su, W. Modeling of timing constraints in hybrid systems using Event-B. IEEE Trans. Reliab. 2020, 69, 581–593. [CrossRef]
36. Arcaini, P.; Mirandola, R.; Riccobene, E.; Scandurra, P. MSL: A pattern language for engineering self-adaptive systems. J. Syst.

Softw. 2020, 164, 110558. [CrossRef]
37. Vogel, T. Model-Driven Engineering of Self-Adaptive Software; University of Potsdam: Potsdam, Germany, 2018.
38. Zhang, J.; Cheng, B.H.C. Model-based development of dynamically adaptive software. In Proceedings of the 28th International

Conference On Software Engineering, Shanghai, China, 20–28 May 2006; pp. 371–380.
39. Zhang, J.; Cheng, B.H.C. Using temporal logic to specify adaptive program semantics. J. Syst. Softw. 2006, 79, 1361–1369.

[CrossRef]
40. Zhao, Y.; Li, Z.; Shen, H.; Ma, D. Development of global specification for dynamically adaptive software. Computing 2013, 95,

785–816. [CrossRef]
41. Calinescu, R.; Gerasimou, S.; Johnson, K.; Paterson, C. Using runtime quantitative verification to provide assurance evidence for

self-adaptive software. In Proceedings of Software Engineering for Self-Adaptive Systems III, Wadern, Germany, 15–19 December 2013;
Springer: Cham, Switzerland, 2017; pp. 223–248.

42. Filieri, A.; Tamburrelli, G.; Ghezzi, C. Supporting self-adaptation via quantitative verification and sensitivity analysis at run time.
IEEE Trans. Softw. Eng. 2015, 42, 75–99. [CrossRef]

43. Jamshidi, P.; Cámara, J.; Schmerl, B.; Käestner, C.; Garlan, D. Machine learning meets quantitative planning: Enabling self-
adaptation in autonomous robots. In Proceedings of the IEEE/ACM 14th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), Montreal, QC, Canada, 25 May 2019; pp. 39–50.

44. Gerasimou, S. Runtime Quantitative Verification of Self-Adaptive Systems; University of York: York, UK, 2016.
45. Gerostathopoulos, I.; Vogel, T.; Weyns, D.; Lago, P. How do we evaluate self-adaptive software systems? In Proceedings of the

16th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, Madrid, Spain, 23–24 May
2021; pp. 158–167.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s10009-014-0361-y
http://doi.org/10.1007/s100090050010
http://doi.org/10.1016/j.infsof.2019.04.011
http://doi.org/10.1007/s11390-013-1321-9
http://doi.org/10.1016/j.pmcj.2014.09.009
http://doi.org/10.1109/TSMC.2015.2433892
http://doi.org/10.1109/TR.2019.2936026
http://doi.org/10.1016/j.jss.2020.110558
http://doi.org/10.1016/j.jss.2006.02.062
http://doi.org/10.1007/s00607-013-0295-3
http://doi.org/10.1109/TSE.2015.2421318

	Introduction
	Background
	Adaptation Scenario: SUIS
	NPTA Model and UPPAAL-SMC

	Approach Overview
	Implementation of the Timed-SAS Approach
	Definition on Time Behaviors
	Deterministic Time Constraints
	Uncertainty Delay Time Constraints
	Time Evaluation Metrics

	Formal Modeling Templates and Application
	Templates for Self-Adaptation Processes and Time Behaviors
	Templates for Uncertainty Environment
	Application of the Formal Modeling Templates

	Quantitative Analysis Templates and Application
	Quantitative Analysis Templates
	Application of the Formal Analysis Templates

	Experiment Evaluation
	Experiment Setting
	Experiment Results and Discussion
	Data Analysis
	Experiment Results
	Discussion

	Threats to Validity

	Related Work and Discussion
	Conclusions and Future Work
	References

