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Abstract: The internal gear is part of the planetary and epicyclic gear pairs in the transmission system
of the helicopter. Gear tooth wear is one of the most usual gear failures. This paper establishes an
analytical model to evaluate the influence of tooth wear on the mesh relationship. A new mesh
relationship can be derived for internal spur gears with tooth wear by the proposed analytical model.
Consequently, using the new mesh relationship, the two most important meshing excitations, mesh
stiffness and unloaded static transmission error (USTE), are quantitatively evaluated for the internal
gear with tooth wear. The results indicate that tooth wear mainly affects the meshing ranges of single-
tooth and double-teeth in mesh stiffness, rather than its amplitude. Additionally, the amplitudes
of USTE increase with the increasing wear depth. Finally, this study can offer a foundation for the
dynamic modeling and fault diagnosis of internal spur gears with wear faults.

Keywords: tooth wear; mesh relationship; internal spur gear; mesh stiffness; transmission error

1. Introduction

In gear transmission systems, the internal and external gear pairs are two common
meshing forms. Different from the external gear pair that contains two external gears, the
internal gear pair includes an external gear and an internal gear. The internal gear pair
is usually used in planetary gears, which are widely applied in the gear transmissions
of helicopters. The transmission system is a critical life-deciding part of the helicopter,
containing dozens of planetary gear pairs. However, when the planetary gear transmission
system operates for long-term operation or short-term dry operation, gear wear unavoid-
ably occurs and aggravates the internal gear pairs. As a common form of early failures,
tooth wear is a critical factor leading to more serious faults such as the reduction of trans-
mission accuracy and the aggravation of vibration and noise. Helicopter health and usage
monitoring systems (HUMS) mainly use the condition indicators to monitor the wear status
of the gear components of the transmission system, which needs a clear fault mechanism
for the gear wear. Therefore, it is of great significance to accurately evaluate the influence
of tooth wear on gear transmission systems. This study intends to establish an analytical
model for internal spur gears with tooth wear that can reveal the effects of tooth wear on
gear mesh relationship and mesh stiffness and provide instructive information for gear
transmission fault diagnosis.

Some studies have in fact focused on the fault mechanism of gear wear. Flodin
developed a numerical model based on the Archard’s wear equation to predict mild tooth
wear in external and helical gears [1,2]. Bajpai et al. proposed a wear depth prediction
methodology of parallel axis gear pairs by combining a FEM-based gear contact model
with the Archard’s wear equation [3]. Subsequently, according to the variation of dynamic
contact pressures, Ding established a wear evaluation model of gear tooth considering
the time-varying wear coefficient [4]. Akbarzadeh predicted the steady state adhesive
wear of spur gears under the elastohydrodynamic lubrication (EHL) [5]. Moreover, Osman
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simulated mild abrasive wear in wide-faced solid spur and helical gears by considering
the Archard’s law and the influence of the lubrication regime [6]. Tunalioğlu adapted
Archard’s wear equation to investigate wear theoretically [7], and the result was verified
experimentally. As can be seen from the aforementioned studies, the Archard’s wear
equation has been successfully used for the evaluation of gear tooth wear distribution.

Based on the results of the tooth wear distribution obtained from the above models,
some scholars have studied the influences of tooth wear on gear ratio, backlash, tooth
profile deviation, mesh stiffness, and transmission error. Akbarzadeh et al. investigated
the variation of gear ratio caused by tooth wear [8]. Inspired by the investigation in this
work, the mesh relationship of internal spur gears with tooth wear is investigated, which is
described in Figure 1. Kuang et al. introduced gear tooth wear into the dynamic model
by directly turning the gear tooth wear into the tooth profile deviation [9]. Yuksel et al.
employed a computational model to study the effects of tooth wear on the dynamic
behavior of planetary gears, in which contact theory and Archard’s wear model were used
to obtain the wear distribution [10]. In addition, Wu et al. investigated the increasing
backlash caused by gear wear [11]. In their work, the tooth wear was regarded as backlash
and then incorporated into the dynamic model. As for the effect of tooth wear on the
transmission error, Lundvall proposed a finite element procedure to study the development
of transmission error with gear tooth wear [12]. Atanasiu et al. assumed the wear depth as
profile error and took the dynamic contact load into account to analyze the transmission
error of spur gears [13]. In addition, Chin et al. and Feng et al. used transmission error
and vibration signal as the indicators to evaluate gear wear conditions [14,15] but lack a
physical explanation from the perspective of dynamics/kinematics. Tooth wear has an
important influence on mesh stiffness. Choy et al. qualitatively analyzed the effects of
gear wear on the phase and magnitude of gear mesh stiffness [16]. Yesilyurt et al. carried
out modal analysis to obtain the reduction of mesh stiffness in spur gears [17]. Liu et al.
proposed a wear prediction method which combined loaded tooth contact analysis (LTCA)
method and gear dynamic model to evaluate the mesh stiffness of spur gears [18]. Using the
same method, Huangfu et al. studied the influences of tooth modification on thin-rimmed
gears with tooth wear [19]. Brethee et al. used the variation of contact lines of helical gears
to develop an accurate wear detection approach, in which the effects of tooth wear on
mesh stiffness was analyzed [20]. A modified analytical mesh stiffness model was derived
by Chen et al. [21] who introduced the tooth wear into mesh stiffness. In our previous
work, tooth wear was simplified as the change of tooth profile parameters and gear wear
only reduces the amplitude of mesh stiffness [22]. The effect of tooth wear on the mesh
stiffness was quantitatively analyzed, where tooth wear was equivalent to tooth profile
deviation [23]. However, our existing studies mainly focus on the influence of tooth wear
on geometric parameters through equivalence or finite element method, while ignore the
new mesh relationships caused by tooth wear.
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This paper focuses on the evaluation of tooth wear on the gear model, including the mesh
relationship, mesh stiffness, and transmission error. Aiming at the shortcomings of existing gear
modeling for tooth wear, the main contributions of this paper can be summarized as:

1. An analytical model for a new mesh relationship of internal spur gear with tooth wear
is proposed for the first time.

2. The multi-tooth mesh rule to evaluate the effect of tooth wear on the multi-tooth mesh
relationship is proposed.

3. According to the new mesh relationship and the multi-tooth mesh rule, the effects of
tooth wear on the mesh stiffness and USTE are studied.

The proposed model will reveal the internal gear wear fault mechanism, which is
helpful to build the condition indicators and realize the effective monitoring of the wear
status of the helicopter transmission system.

The rest of this paper is arranged as follows. In Section 2, the analytical model is
introduced and a new mesh relationship of internal spur gears with tooth wear is derived.
In Sections 3 and 4, the multi-tooth mesh rule is explored and the effect of tooth wear on
the mesh stiffness and USTE is evaluated. Finally, conclusions are drawn in Section 5.

2. Mesh Relationship Modeling of Internal Spur Gears with Tooth Wear

Generally speaking, we can use mesh relationship to describe the gear relative kine-
matic relationship when the gears are meshing. In this section, an analytical model is
proposed to evaluate the new mesh relationship of internal spur gears caused by tooth
wear. Firstly, the single-tooth analytical model of the internal spur gears is established. Sub-
sequently, we establish the single-tooth meshing analytical model with tooth wear through
two analytical models. Finally, solving the geometric equations, the new mesh relationship
can be derived. Moreover, the results of the new mesh relationship are discussed in the
typical case of non-uniform wear.

2.1. Analytical Model

Figure 2 shows the gear transmission of perfect involute internal spur gear pair, where
the ideal meshing line t is tangent to the base circle of two gears at points N1 and N2,
respectively. Moreover, O1 and O2 are the rotation centers of the driving and driven gears,
Rb1 and Rb2 are the base circle radii of two gears, respectively. According to the elative
kinematic relation of gears, the meshing point appears on the meshing line t and moves
as the gear rotates when the perfect internal spur gear pair are engaged. Generally, the
meshing condition is not changed by local gear faults such as tooth crack, pitting, and
spalling, which means that the meshing point on the tooth profile keeps moving along the
ideal meshing line. However, tooth wear changes the tooth involute profile, resulting in
the formation of a new mesh relationship when the gear pair engages. In such condition,
the meshing point is not on the ideal meshing line N1N2. Therefore, it is vital to deduce a
new mesh relationship describing the tooth wear of internal spur gear.
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Figure 3 presents the single-tooth analytical model in the driving gear, where X1O1Y1
denotes the local coordinate system and it rotates with the driving gear. Moreover, A1perfect
represents the meshing point on the prefect tooth profile. When tooth wear occurs, the
position of the meshing point changes from A1perfect to A1, and the wear depth between
the two meshing points A1perfect and A1 is hA1_x1. In addition, RA1perfect and RA1 are the
corresponding radii of the two meshing points.
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Figure 3. Analytical model of single tooth in the driving gear.

In the local coordinate system X1O1Y1, the single-tooth geometric relationships of the
driving gear can be written as follows:

γ1perfect = arctan(α2 + α1)− α1 (1)

RA1perfect =
Rb1

cos(α1 + γ1perfect)
(2)

γ1 = arctan

(
RA1perfect sin γ1perfect − hA1_x1

RA1perfect cos γ1perfect

)
(3)

RA1 =
RA1perfect cos γ1perfect

cos γ1
(4)

where α1 represents the angle of the perfect meshing point A1perfect on the prefect tooth
profile, and α2 represents the half tooth angle on the base circle. γ1perfect and γ1 represent
the angles that correspond to points A1perfect and A1, respectively.

As shown in Figure 4, the local coordinate system of the driven gear X2O2Y2 rotates
with the driven gear. Moreover, the meshing point on the perfect profile of the driven gear is
represented by A2perfect, and represented by A2 on the worn tooth profile. hA2_x2 is the wear
depth between the two meshing points. RA2perfect and RA2 represent the corresponding
radii of the two meshing points A2perfect and A2.

Given the above definitions, the single-tooth geometric relationships of the driven
gear can be expressed as follows:

γ2perfect = arctan(α2′+ α1′)− α1′ (5)

RA2perfect =
Rb2

cos(α1′+ γ2perfect)
(6)

γ2 = arctan

(
RA2perfect sin γ2perfect + hA2_x2

RA2perfect cos γ2perfect

)
(7)
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RA2 =
RA2perfect cos γ2perfect

cos γ2
(8)

where α1′ represents the angle of the perfect meshing point A2perfect on the single-tooth
profile, and α2′ represents the half tooth angle on the base circle. γ2perfect and γ2 represent
the angles of the points A2perfect and A2, respectively.
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Figure 4. Analytical model of single tooth in the driven gear.

According to the above two analytical models, the single-tooth meshing analytical
model with tooth wear can be established, which is presented in Figure 5. Three coordinates
XO2Y, X1O1Y1, X2O2Y2 and two meshing points A1 and A2 are contained in the proposed
model, in which XO2Y is the fixed global coordinate system, which can be established
through the axis O1O2 of two gears. For each gear, there is a corresponding local coordinate
system rotating with, X1O1Y1 for the driving and X2O2Y2 for the driven gears, respectively.
Additionally, t1 and t2 are the tangents of two meshing points.
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In order to obtain the new mesh relationship of internal spur gear with tooth wear, the
following geometric principles need to be satisfied:

(1) The meshing point of the driving gear moves from tooth root to tip as the gear rotates,
and the driven gear is the opposite.

(2) The gear center distance remains unchanged, which can be written as follows:

RA2 cos(γ2 + ϕ2)− RA1 cos(γ1 + ϕ1) = aω (9)
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(3) With the meshing points A1 and A2 engaging, the axis Y and the tangents of two
meshing points are the same, which can be expressed as:

RA1 sin(γ1 + ϕ1) = RA2 sin(γ2 + ϕ2) (10)

θ1 = θ2 (11)

Additionally, in order to describe the geometric relationships shown in Figure 5, there
are the following formulas:

θ1 = δ1 − ψ1 (12)

θ2 = δ2 − ψ2 (13)

ψ1 = γ1 + ϕ1 (14)

ψ2 = γ2 + ϕ2 (15)

δ1 = λ1 + γ1 (16)

δ2 = λ2 + γ2 (17)

where δ1 and δ2 are the angles between the tangent t1 and O1 A1, the tangent t2 and O2 A2,
respectively. ψ1 denotes the angle between O1X and O1 A1, where ψ1 > 0 when A1 is
above O1X and ψ1 < 0 when A1 is below O1X. ψ2 denotes the angle between O2X and
O2 A2, where ψ2 > 0 when A2 is above O2X and ψ2 < 0 when A2 is below O2X. θ1 and
θ2 represent the acute angles between the tangent t1 and O2X, the tangent t2 and O2X,
respectively. ϕ1 represents the rotational angle of X1O1Y1 relative to O1X, where ϕ1 > 0
when the axis X1 is above O1X and ϕ1 < 0 when the axis X1 is below O1X. ϕ2 presents the
rotational angle of X2O2Y2, where ϕ1 > 0 when the axis X2 is above O2X and ϕ1 < 0 when
the axis X2 is below O2X. λ1 and λ2 represent the angles between the tangent t1 and the
axis X1 and the tangent t2 and the axis X2, respectively.

In addition to the axes O1Y1 and O2Y2 of the meshing points A1 and A2, the slope of
the tangents t1 and t2 is also changed by gear wear. In general, the relationship between
slope dy1/dx1 and angle λ1 can be written as follows:

λ1 = arctan(−dy1/dx1) (18)

where the slope of the axis O1Y1 in X1O1Y1 can be expressed by the wear depth hA1_x1 and
the perfect profile function g1(x1), which can be expressed as:{

y1 = g1(x1)− hA1_x1
dg1(x1)/dx1 = − tan α1

(19)

Substituting Equation (19) into Equation (18), the new geometric relationship between
slope dhA1_x1/dx1 and angle λ1 can be obtained as:

λ1 = arctan(tan α1 + dhA1_x1/dx1) (20)

Similarly, the relationship between angle λ2 and slope dy2/dx2 can be written as:

λ2 = arctan(−dy2/dx2) (21)

where the slope of the axis O2Y2 in X2O2Y2 can be expressed by the wear depth hA2_x2 and
the perfect profile function g2(x2), which can be expressed as:{

y2 = g2(x2) + hA2_x2
dg2(x2)/dx2 = − tan α1′

(22)
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Similarly, substituting Equation (22) into Equation (21), the new geometric relationship
between the slope dhA2_x2/dx2 and angle λ2 can be obtained as:

λ2 = arctan(tan α1′ − dhA2_x2/dx2) (23)

Therefore, with the established analytical model of single-tooth meshing, the new
mesh relationship for internal spur gears with tooth wear can be derived. It should be
noted that wear depths hA1_x1 and hA2_x2 are denoted in Equations (3) and (7), and the
slopes of wear depth dhA1_x1/dx1 and dhA2_x2/dx2 are denoted in Equations (20) and (23).
Next, these geometric equations are solved to acquire the new mesh relationship of internal
spur gears with tooth wear.

To derive the new mesh relationship, the algorithm flow for solving the analytical
model is written in detail as follow (Algorithm 1):

Algorithm 1: Algorithm of the analytical model solution

1. Initialize geometric parameters:
Rb1, Rb2, α2, α2′, aω , hA1_x1, hA2_x2, dhA1_x1/dx1, dhA2_x2/dx2

2. Initialize tolerable error of center distance and number of meshing points: εa, NUM
3. Get meshing range of the driving gear: root angle c1 and tip angle a1
4. Get meshing range of the driven gear: tip angle a2 and root angle c2
5. For i = 1, 2, · · · , NUM
6. From tooth root to tip α1 = c1 + (a1 − c1)(i− 1)/(NUM− 1)
7. Solve directly α1 → γ1perfect, RA1perfect, γ1, RA1, λ1, δ1

8. For j = 1, 2, · · · , NUM
9. From tooth tip to root α1′ = a2 + (c2 − a2)(j− 1)/(NUM− 1)
10. Solve directly α1′ → γ2perfect, RA2perfect, γ2, RA2, λ2, δ2

11. Solve ϕ1 = arctan
(
−RA1 sin γ1+RA2 sin(γ2+λ2−λ1)
RA1 cos γ1−RA2 cos(γ2+λ2−λ1)

)
, ϕ2 = λ2 − λ1 + ϕ1

ψ1 = γ1 + ϕ1, ψ2 = γ2 + ϕ2, θ1 = δ1 − ψ1, θ2 = δ2 − ψ2

12. End For
13. Find corresponding meshing point:

α1′ = argmin
α1′

‖RA2 cos(ϕ2 + γ2)− RA1 cos(γ1 + ϕ1)− aω‖2

14. If ‖RA2 cos(ϕ2 + γ2)− RA1 cos(γ1 + ϕ1)− aω‖2 < εa
15. Get corresponding meshing point α1′, γ2perfect, RA2perfect, γ2, RA2, λ2, δ2

16. Else
17. Fail to get corresponding meshing point
18. End If
19. End For

2.2. Results of Mesh Relationship with Tooth Wear

This case will introduce a new mesh relationship with non-uniform wear. Figure 6 shows
the non-uniform wear on tooth profile, where non-uniform wear indicates that the wear depth
of tooth profile is different, while the wear distribution for each tooth in gears is the same. In
addition, Wear01, Wear02, and Wear03 are used to represent different degrees of non-uniform
wear, where Wear01 is slight, Wear02 is moderate, and Wear03 is severe. It should be noted
that slight, moderate, and severe wear refer only to the relative severity level among three wear
conditions instead of the actual definition of wear degrees. Meanwhile, the basic parameters of
internal spur gear pair employed in both cases are listed in Table 1.

Figure 7 shows different non-uniform wear depths of the driving and driven gears
tooth profiles. It can be seen that the wear depth does not vary linearly from root to tip, but
decreases first and then increases, which is consistent with the trend of gear wear evolution.
Figure 8 depicts different slopes of non-uniform wear depth of the internal spur gear pair
tooth profiles, represented by dhA1_x1/dx1 and dhA2_x2/dx2.
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Table 1. The parameters of internal spur gear pair.

Items Driving/Driven Gear Items Driving/Driven Gear

Tooth number 40/100 Base circle radius (mm) 112.8/281.9
Tooth width (mm) 50 Root circle radius (mm) 112.5/307.5
Pressure angle (◦) 20 Center distance (mm) 180

Module (mm) 6 Tooth root angle (rad) 0.1540/0.3872
Poisson’s ratio 0.3 Tooth tip angle (rad) 0.4444/0.0542

Young’s modulus (Pa) 2.05 × 1011 Number of meshing points 1849
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Figure 7. Non-uniform wear depths on tooth profile: (a) driving gear; (b) driven gear.

Given the wear depths and the slopes obtained above, we can obtain the mesh relation-
ship through Algorithm 1, which includes two parts: one is the position of two meshing
points on the driving and driven gears tooth profiles, represented by α1 and α1′, and the
other one is the rotational angles of driving and driven gears, represented by ϕ1 and ϕ2.
The results are shown in Figure 9. The influence of non-uniform wear on the single-tooth
mesh relationship between α1 and α1′ is presented in Figure 9a. Compared with the perfect
condition, the tooth wear changes the meshing points position obviously and the single-
tooth meshing range of α1 and α1′ also decreases. Meanwhile, the relationship between
α1′ and α1 is no longer linear. The single-tooth mesh relationship between ϕ1 and ϕ2 with
non-uniform wear is shown in Figure 9b. It can be observed that the rotational meshing
range of ϕ1 and ϕ2 is increased with respect to the perfect condition, and ϕ2 changes
approximately linearly with ϕ1.
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3. Mesh Stiffness of Internal Spur Gears with Tooth Wear

Generally speaking, gear mesh stiffness is one of the most important excitation sources
for gear dynamic system. In this section, we evaluate the mesh stiffness of the internal spur
gear with worn profile based on the new mesh relationship deduced in Section 2. First, the
expression of single-tooth mesh stiffness for internal spur gear with tooth wear is deduced
using the potential method and the new mesh relationship. Then, the multi-tooth mesh
rule is proposed, and the multi-tooth mesh stiffness is calculated by superimposing the
single-tooth mesh stiffness as the multi-tooth mesh rule. The results of mesh stiffness are
analyzed. Finally, the mesh stiffness with tooth wear is validated by comparing it with the
finite element results.

3.1. Single-Tooth Mesh Stiffness

Gear mesh stiffness is usually considered to be the main factor affecting gear dynamics
with failures [24–26]. The influence of tooth wear on mesh stiffness will be analyzed with
the use of the new mesh relationship gained in Section 2. The gear tooth is considered to be
a cantilever beam, and the potential energy method is used to calculate mesh stiffness. In
reference [22], the potential energy of a single tooth contains four parts: Hertzian contact
energy Uh, bending energy Ub, shear deformation energy Us, and axial compressive energy
Ua, and the corresponding stiffness includes Hertzian contact stiffness kh, bending stiffness
kb, shear stiffness ks, and axial compressive stiffness ka.

The internal gear pair contains external and internal gears. For external spur gears,
there are two different situations in calculating mesh stiffness: Situation 1: Rb1 > Rr1 and
Situation 2: Rb1 ≤ Rr1.

In Situation 1, the base circle radius is larger than the root circle radius. Figure 10
shows the cantilever beam model for the gear tooth with wear where wear occurs on both
sides of single tooth. It is worth noting that the wear depth on both sides of the gear is
consistent, and the tooth wear changes both the height of tooth profile, represented by h
and hx, and the action force direction, represented by λ1.
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Figure 10. Beam model for single tooth with worn profile when base circle is larger than root circle.

These parameters are derived as:

Fa = F sin λ1, Fb = F cos λ1 (24)

h = Rb1[(α1 + α2) cos α1 − sin α1]− hA1_x1 (25)

hx = Rb1[(α2 − α) cos α + sin α]− hwear_x1 (26)
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d = Rb1[(α1 + α2) sin α1 + cos α1]− Rb1 cos α2 (27)

Ix =
1
12

(2hx)
3b, Ax = 2hxb (28)

Id1 =
1

12
(2Rb1 sin α2)

3b, Ad1 = 2Rb1 sin α2b (29)

where hwear_x1 denotes the wear depth at the axis X1. Ix and Ax depict the moment of
inertia and the area in section x, respectively. Id1 and Ad1 depict the moment of inertia and
the area in section d1, respectively.

According to the potential energy theory, the relationship between the potential energy
and corresponding stiffness is composed of two parts: from root circle to base circle and
from base circle to the meshing point A1, which are expressed as:

Uh =
F2

2kh
, kh =

πEb
4(1− v2)

(30)

Ub =
F2

2kb
=

d∫
0

[Fb(d− x)− Fah]2

2EIx
dx +

d1∫
0

[Fb(d + x)− Fah]2

2EId1
dx (31)

Us =
F2

2ks
=

d∫
0

1.2Fb
2

2GAx
dx +

1.2Fb
2d1

2GAd1
(32)

Ua =
F2

2ka
=

d∫
0

Fa
2

2EAx
dx +

Fa
2d1

2EAd1
(33)

where b represents the tooth width. v represents the Poisson’s ratio. E and G represent
Young’s modulus and shear modulus, respectively, and G = E/(2(1 + v)). d1 is approxi-
mately replaced by Rb1 − Rr1.

Thus, these stiffness values are derived as follows:

1
kb

=

α2∫
−α1

3(α2 − α) cos α× D2

2EbH3 dα +

Rb1−Rr1∫
0

[(d + x) cos λ1 − h sin λ1]
2

EId1
dx (34)

1
ks

=

α2∫
−α1

1.2(1 + v)(α2 − α) cos α cos2 λ1

EbH
dα +

1.2 cos2 λ1

GAd1
(Rb1 − Rr1) (35)

1
ka

=

α2∫
−α1

(α2 − α) cos α sin2 λ1

2EbH
dα +

sin2 λ1

EAd1
(Rb1 − Rr1) (36)

where D = cos λ1[(α1 + α2) sin α1 + cos α1 − (α− α2) sin α− cos α] + sin λ1[hA1_x1/Rb1 +
sin α1− (α1 + α2) cos α1], and H = sin α + (α2 − α) cos α− hwear_x1/Rb1.

In addition, the foundation stiffness is derived in [27]:

1
k f

=
δ f

F
=

cos2 λ1

Eb

L∗
(

u f

S f

)2

+ M∗
(

u f

S f

)
+ P∗(1 + Q∗ tan2 λ1)

 (37)

where u f = Rb1/ cos(λ1)− Rr1 and reference [27] depicts these parameters L∗, M∗, P∗, Q∗

in detail.
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In Situation 2, the root circle radius is bigger than the base circle radius. Figure 11
shows the beam model of the single tooth with wear. Compared with Situation 1, the
different geometric parameter is:

d = Rb1[(α1 + α2) sin α1 + cos α1]− Rr1 cos α3 (38)
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Figure 11. Beam model for single tooth with worn profile root circle is bigger than base circle.

The potential energy is from the root circle to the meshing point A1:

Ub =
F2

2kb
=

d∫
0

[Fb(d− x)− Fah]2

2EIx
dx (39)

Us =
F2

2ks
=

d∫
0

1.2Fb
2

2GAx
dx (40)

Ua =
F2

2ka
=

d∫
0

Fa
2

2EAx
dx (41)

The derived stiffness values are as follows:

1
kb

=

−α4∫
−α1

3(α2 − α) cos α× D2

2EbH3 dα (42)

1
ks

=

−α4∫
−α1

1.2(1 + v)(α2 − α) cos α cos2 λ1

EbH
dα (43)

1
ka

=

−α4∫
−α1

(α2 − α) cos α sin2 λ1

2EbH
dα (44)

where D and H are the same as Situation 1. The foundation stiffness k f and Hertzian contact
stiffness kh are the same in Situations 1 and 2.

As another part of internal gear pair, Figure 12 depicts the beam model of the single
tooth of an internal spur gear with a worn profile. Tooth wear changes both the height
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of tooth profile, represented by h and hx, and the action force direction, represented by β.
These parameters are derived as:

β = θ0 + λ2 (45)

Fa = F sin β, Fb = F cos β (46)

h = Rb2[sin(α1 + θ0)− (α1 + α2) cos(α1 + θ0)]− hA2_x2 cos θ0 (47)

hx = Rb2[sin(α + θ0)− (α + α2) cos(α + θ0)]− hwear_x2 cos θ0 (48)

d = Rb2

[(
α f + α2

)
sin
(

α f + θ0

)
+ cos

(
α f + θ0

)
− (α1 + α2) sin(α1 + θ0)− cos(α1 + θ0)

]
− hA2_x2 sin θ0 (49)

x = Rb2

[(
α f + α2

)
sin
(

α f + θ0

)
+ cos

(
α f + θ0

)
− (α + α2) sin(α + θ0)− cos(α + θ0)

]
− hwear_x2 sin θ0 (50)

Ix = (2hx)
3b/12, Ax = 2hxb (51)

where the angle λ2 is obtained through the analytical model in Equation (23). hwear_x2
denotes the wear depth at coordinate x2. Ix and Ax depict the moment of inertia and the
area in section x, respectively.
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Figure 12. Beam model of single tooth in internal spur gear with worn profile.

The potential energy is from the root circle to the meshing point A2:

Ub =
F2

2kb
=

d∫
0

[Fb(d− x)− Fah]2

2EIx
dx (52)

Us =
F2

2ks
=

d∫
0

1.2Fb
2

2GAx
dx (53)
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Ua =
F2

2ka
=

d∫
0

Fa
2

2EAx
dx (54)

The derived stiffness values are as follows:

1
kb

=

α1∫
α f

[
[cos(β)(d−x)−sin(β)h]2

EIx
· dx

dα

]
dα (55)

1
ks

=

α1∫
α f

[
1.2(cos(β))2

GAx
· dx

dα

]
dα (56)

1
ka

=

α1∫
α f

[
(sin(β))2

EAx
· dx

dα

]
dα (57)

where dx
dα = −Rb2(α + α2) cos(α + θ0)− Rb2

dhwear_x2
dx2

(α2 + α) cos α sin θ0.
Through the potential energy method utilized in external and internal gears, the

single-tooth stiffness for the internal spur gear is obtained, and then the single-tooth mesh
stiffness with wear can be introduced. Based on the new mesh relationship with wear, the
relationship between the meshing position of meshing point A1 in the driving gear and the
meshing position of corresponding meshing point A2 in the driven gear can be obtained,
denoted by α1 and α1′, respectively.

In general, the contact ratio of internal spur gear pair is from 1 to 2. Therefore,
superimposing single-tooth stiffness of the meshing teeth, the single-tooth mesh stiffness
can be deduced as follows:

k =
1

1
kh

+
2
∑

i=1

(
1

kbi
+ 1

ksi
+ 1

kai
+ 1

k f i

) (58)

where the subscripts i = 1, 2 represent the driving gear and driven gear, respectively.
Given the same wear depths and the gear parameters as in Section 2, the single-tooth

mesh stiffness with different non-uniform wear depths can be obtained as presented in
Figure 13, while Figure 13a presents the single-tooth mesh stiffness of α1. It can be seen
that tooth wear decreases the mesh stiffness and the mesh range is smaller. In addition,
α1 denotes the meshing position of the driving gear and it varies from tooth root to tooth
tip, where α1 varies from small to large. In this figure, the initial meshing position α1 is
increased and the final meshing point α1 remains unchanged, which indicates that the
single-tooth meshing range gradually decreases with the increasing wear depth. However,
we usually consider the single-tooth mesh stiffness at different rotational angles. The
single-tooth mesh stiffness of ϕ1 is shown in Figure 13b, where ϕ1 denotes the rotational
angle of the driving gear. It can be seen that the single-tooth mesh stiffness of ϕ1 increases
significantly in both mesh-in and mesh-out stages as the depth of wear increases, which
is obviously different from that of α1. Meanwhile, the range of rotational meshing also
increases with the increase of gear wear depth.
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Figure 13. Single-tooth mesh stiffness with different non-uniform wear depths: (a) tooth angle α1; (b)
rotational angle.

3.2. Multi-Tooth Mesh Stiffness
3.2.1. Multi-Tooth Mesh Rule

For internal spur gears, the contact ratio is usually 1~2, which means the single-tooth
and double-teeth of the gear pair alternately engage during the engagement process. In
this section, the multi-tooth mesh rule which describes the meshing relationship between
single and double teeth is deduced to obtain the law of gear meshing with tooth wear.

With the expressions of the new single-tooth mesh relationship deduced in Section 2.1,
the mesh relationship between the driving and driven gears rotational angles can be
gained, which are represented by ϕ1 and ϕ2. The multi-tooth meshing can be obtained by
superimposing the single-tooth meshing, and the formula can be expressed as:{

ϕ1
(
2nd) = ϕ1(1st) + 2π

z1
ϕ2
(
2nd) = ϕ2(1st) + 2π

z2

,

{
ϕ1
(
3rd) = ϕ1(1st) + 2× 2π

z1
ϕ2
(
3rd) = ϕ2(1st) + 2× 2π

z2

, · · · ,

{
ϕ1
(
nth) = ϕ1(1st) + (n− 1)× 2π

z1
ϕ2
(
nth) = ϕ2(1st) + (n− 1)× 2π

z2

(59)

where nth is the nth tooth pair, and z1 and z2 are the tooth numbers of the driving and
driven gears, respectively.

Figure 14 presents the single-tooth and multi-tooth mesh relationship when the tooth
profile is prefect, in which the second gear pair single-tooth meshing is presented in
Figure 14b. The meshing process consists of three parts in the multi-tooth meshing: dou-
ble/single/double, in which single means that a pair of teeth mates and double indicates
that two pairs of teeth mesh at the same time. Meanwhile, the multi-tooth mesh rule is
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proposed to acquire the multi-tooth mesh relationship of internal spur gear with tooth
wear, and its two principles are as follows:

(1) The tooth pair whose ϕ2 is larger meshes first in the initial double-tooth meshing
range with the increase of ϕ1.

(2) Two tooth pairs mesh concurrently when ∆ϕ2 < Threshold for the same ϕ1 where
Threshold represents the threshold of the tolerable error of rotational angle.

Furthermore, the multi-tooth mesh relationship with tooth wear is presented using the
multi-tooth mesh rule. The new single-tooth and multi-tooth mesh stiffness are discussed
in both prefect and worn cases.
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Figure 14. Tooth mesh relationship with perfect tooth profile: (a) single-tooth; (b) multi-tooth.

3.2.2. Results of Multi-Tooth Mesh Stiffness with Tooth Wear

Once the single-tooth mesh relationship and the multi-tooth mesh rule are gained, we
can obtain the multi-tooth mesh relationship with non-uniform tooth wear. The parameters
of the internal spur gears used in the simulation for calculation of multi-tooth mesh stiffness
with tooth wear are given in Table 1. Taking Wear03 as an example, the results are presented
in Figure 15. Figure 15a shows the mesh relationship between ϕ1 and ϕ2 of the first, second,
and third tooth pairs. Figure 15b is the zoomed picture of Figure 15a, which depicts the
meshing ranges of the first and second tooth pairs, and there is a difference ∆ϕ2 between
two pairs. In this paper, the Threshold in the proposed multi-tooth mesh rule is set to
10−4 rad and then the influence of tooth wear on meshing range of internal spur gear can
be acquired. Figure 15c shows the new meshing range of double teeth and the meshing
range of double/single/double meshing process is changed in Figure 15d. Compared to the
results shown in Figure 14, the meshing range of the second tooth-pair reduces obviously,
and the main reason is that when the gear suffers tooth wear, the double-tooth meshing
range decreases, while that of the single-tooth increases.

The results above show that the multi-tooth mesh relationship affects the meshing
range of single tooth in Section 3.1. With the new obtained single-tooth meshing range,
the new single-tooth mesh stiffness is calculated, which is shown in Figure 16. The results
indicate that with the degree of wear increasing, the meshing range of the new mesh
stiffness decreases gradually, and correspondingly, the amplitude of the meshing stiffness
increases slightly.
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of (a); (c) double-tooth meshing range of (b); (d) double/single/double meshing range.
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Therefore, the multi-tooth mesh stiffness can be evaluated by superimposing the new
single-tooth mesh stiffness as the multi-tooth mesh relationship, which is written as follows:

k =
2

∑
i=1

1
1

kh,i
+ 1

kb1,i
+ 1

ks1,i
+ 1

ka1,i
+ 1

k f 1,i
+ 1

kb2,i
+ 1

ks2,i
+ 1

ka2,i
+ 1

k f 2,i

(60)

where the subscript i = 1, 2 is the number of the meshing tooth-pair.
Figure 17 shows the multi-tooth meshing stiffness. It is clearly visible that the ap-

pearance of tooth wear mainly affects the meshing range of the mesh stiffness, in which
the single-tooth meshing range decreased first and then increased with the increasing
wear depth. However, the effect of tooth wear on the mesh stiffness amplitude is not
significant, and only the amplitude of double-teeth meshing range is slightly increased
with the increasing wear depth.
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3.3. Finite Element Verification

The finite element method (FEM) is a successful strategy for evaluating the mesh
stiffness, which has been widely employed in verification of the mesh stiffness of gears with
defects [28–32]. To validate the calculated multi-tooth mesh stiffness with non-uniform
wear, a finite element model using the same gear pair in Section 3.2 is established in ANSYS
for result comparison and model verification. First, the three-dimensional gear models of
the ring-planet gear pairs are established. Then, element type Solid185 is used to mesh the
gears. The element shape is mapped hexahedral and the meshing teeth are further refined,
as shown in Figure 18, to improve the precision of simulation. The shaft centers O1 and O2
are defined by Mass21 element and all nodes on the hub hole are fixed on corresponding
shaft centers. Driving gear shaft center O1 only has the DOF of rotation around the Z-axis
and the torque T is applied to the reference node O1 of the driving gear. Moreover, all
DOFs of O2 are constrained. In addition, a surface-to-surface contact pair (Conta174 and
Targe170) is used in the finite element modeling process. Solving the finite element model,
the mesh stiffness can be calculated by the following equation:

K =
T

R2
b1 × θ

(61)

where θ represents the angular displacement at the node O1, and Rb1 is the base circle
radius of the driving gear.
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Figure 18. Finite element model of internal gear pair.

After finite element simulation, the multi-tooth mesh stiffness is evaluated. Figure 19
compares the mesh stiffness between the proposed method and the finite element simula-
tion, and the wear degree is Wear03. It demonstrates that the meshing ranges of the two in
the single-tooth-pair and the double-tooth-pair mesh period match well. The maximum
error is 6.4% in the double-tooth meshing range and 3.2% in the single-tooth meshing range
for the prefect pair, and for the worn gear pair (Wear03), the maximum error is 9.8% in the
double-tooth meshing range and 4.6% in the single-tooth meshing range, and the amplitude
of mesh stiffness is slightly different. Therefore, the effectiveness of the proposed method
for the calculation of internal spur gear mesh stiffness with tooth wear is validated, and the
analytical model of internal spur gears with non-uniform tooth wear is verified indirectly.
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Figure 19. Comparisons of the mesh stiffness between the theoretical calculation and the FEM simulation.

4. Unloaded Static Transmission Error of Internal Spur Gears with Tooth Wear

In the above theoretical derivation and verification for the analytical model of internal
spur gear pair with tooth wear, the new mesh relationship is obtained and it further verifies
the mesh stiffness with tooth wear. In this section, the effect of tooth wear on the unloaded
static transmission error (USTE) will be studied using the new mesh relationship.

USTE is usually caused by tooth profile error, assembly error and so on, which is
defined as the deviation between the theoretical position and the actual position of the
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driven gear under unloaded condition. This paper only considers the USTE caused by
tooth wear and the expression is as follows:

ewear =
Rb1
Rb2

ϕ1 − ϕ2 (62)

Because tooth wear changes the mesh relationship, USTE also changes. According to
the obtained mesh relationship between ϕ1 and ϕ2 of the internal spur gear, we can directly
derive the USTE with wear. Furthermore, USTE is introduced in both cases.

According to the multi-tooth mesh relationship with non-uniform wear, as shown
in Figure 15, we can calculate and obtain the USTE by Equation (62). The USTE of non-
uniform wear is given in Figure 20, which illustrates that the USTE of the internal spur gear
varies periodically as the gear pair meshing. Meanwhile, the amplitude increases obviously
with the increase in wear depth.
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5. Conclusions

In this paper, an analytical model for internal spur gear with tooth wear is proposed.
On the basis of this, the new mesh relationship of internal spur gear pair with non-uniform
wear is obtained. To deduce the multi-tooth mesh relationship, the multi-tooth mesh rule is
proposed. Based on the multi-tooth mesh rule and the new mesh relationship, the influence
of different wear depths on mesh stiffness and USTE is discussed. Furthermore, the mesh
stiffness is verified by finite element method. Through the analysis, the main conclusions
are summarized as follows:

(1) An analytical model for internal spur gears with tooth wear is proposed, based on
which the new mesh relationship of tooth wear is derived. With the proposed multi-
tooth mesh rule and new mesh relationship, the evaluation method of the influence of
tooth wear on mesh stiffness and USTE is presented.

(2) The case of non-uniform wear illustrates that tooth wear mainly affects the meshing
ranges of mesh stiffness in a single tooth and double teeth and has relatively less effect
on the amplitude of the meshing stiffness.

(3) The multi-tooth mesh stiffness of the internal spur gear calculated by the proposed
analytical model has been verified by the FE models. The meshing ranges of the two
in single-tooth-pair and double-tooth-pair mesh period match well. The maximum
error is 6.4% and 3.2% in double-tooth meshing range and single-tooth meshing range,
respectively, for the prefect pair. The maximum error for the worn gear pair is 9.8% in
the double-tooth meshing range and 4.6% in the single-tooth meshing range.

(4) According to the new mesh relationship and multi-tooth mesh rule, USTE is com-
prehensively analyzed. The results indicate that the USTE varies periodically as the
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gear pair meshing and its amplitude grows with the increase of the wear depth. The
effectiveness of the proposed model is verified by the finite element method.

Furthermore, the proposed model for the internal spur gears with tooth wear is also
instructive for the dynamic modeling and analysis of the gear transmission systems of
helicopters with multiple faults. These topics will be discussed in our coming works.
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