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Abstract: Traditional inventory routing problems ignore the time consumption in transportation. In
this paper, an inventory routing problem with air–land transportation and route-dependent lead
times is studied. The model is based on the rolling horizon framework which can serve as a “here-
and-now” approximation for multi-period inventory routing problems. A planning horizon crossing
strategy is proposed to consider the effect of the single-period decision on long-term planning. The
box uncertainty set is used to depict demands. A tractable closed-form robust solution for optimal
replenishment quantity is derived. An adaptive variable neighborhood search algorithm is developed
for this problem. A novel shaking phase is proposed, and the performance of shaking operators is
evaluated in numerical experiments. Results also validate the effectiveness of the robust solution and
the planning horizon crossing strategy.

Keywords: dual-sourcing; inventory routing problem; rolling horizon; robust optimization; adaptive
variable neighborhood search

1. Introduction

Integrating the two areas in logistic planning of transportation and inventory can
reduce costs system-wisely, such as vendor-managed inventory (VIM), has gained accep-
tance in many supply chain environments. Comi examines the activities and decision
makers involved in urban goods movements, showing the need to integrating optimize
purchasing, restocking, and delivery [1]. This paper addresses the combined problem
which introducing air–land transportation and the dual-sourcing inventory policy into the
inventory routing problem (IRP). The central depot serves several demand locations by
land vehicles (e.g., trucks) and aerial crafts (e.g., drones or helicopters). The central depot
decides which demand locations are to be replenished by land and aerial modes and in
what order. We consider the transportation time in the replenishment as the lead time for
each demand location. This feature makes decisions on the replenishment quantity and
routing depend more tightly on each other. It is very useful in application scenarios that
require high timeliness, such as emergency logistics and perishable goods supply chains.

This problem is an extension of the inventory routing problem, which is first studied by
Bell et al. [2]. The central decision-maker determines an inventory policy and a set of vehicle
routes to minimize the total cost. All vehicles must leave the depot at the beginning of each
inventory planning period and return at the end, while also staying within capacity constraints
and meeting the demands of locations. There are many situations where the routing and the
replenishment quantity decisions should be determined simultaneously, such as the retail
supply chain, for companies such as Wal-Mart and Proctor&Gamble; the petrochemical supply
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chain; and emergency logistics [3–5]. Inventory management and vehicle routing decisions are
interrelated. The inventory policy determines which demand locations must be served and
the replenishment quantity. It affects the inventory cost. On the other hand, the delivery cost
depends on the vehicle routes, which, in turn, need information about the demand location
selection and the replenishment quantity. This inter-relationship recently motivate some
researchers to model these two decisions simultaneously. Moin and Salhi present a review
of IRPs from aspects of single-period models, multi-period models, infinite horizon models,
and stochastic models [6]. Coelho et al. summarize the 30 years develop of IRP studies from
1983 to 2013 comprehensively [7]. Recently, Shaabani presents a review paper focusing on
perishable inventory routing problems [8].

Most existing IRP models assume the replenishment lead time is determined exoge-
nously. As a consequence, their application to physical distribution problems is confined to
situations where the timeliness does not significantly influence the decision rather than in
an emergency or perishable goods supply chain. Most IRP studies for perishable goods
focus on product perishability, such as [9–13]. Li et al. first study the timeliness for per-
ishable IRP by considering the transportation time in replenishment lead time [14]. They
propose a myopic policy that in each stage the replenishment and routing decision is
only made once, then repeat the stage to minimize the cost. Dror and Ball first study the
effect of the short-term on long-term planning [15]. They consider single-period models as
sub-problems and use penalty and incentive factors to affect the later period’s decisions.
Then, Coelho and Laporte discuss several exact algorithms for multi-period integrated
optimization models [16]. The multi-period models are useful in that they offer a more
realistic strategy. However, these approaches produce a high-quality solution that requires
significantly a larger computing effort.

Decomposing a multi-period problem into a series of single-period problems is often
achieved. Federgruen and Zipkin first use a single-period model to solve IRP by rolling
horizon [17]. They propose a myopic solution of multi-period IRP and describe the scenario
for each planning stage: first, the depot’s initial inventory level of each demand location is
revealed at the beginning of the stage. Then the decision-maker determines the inventory
and routing decision. After replenishment is made, the demand occurs. The inventory
retention and shortage costs are calculated at each demand location based on demand
information. Finally, determine the end-of-the-day inventory levels, and repeat these
procedures. The rolling horizon framework solves a short-term problem approximated as a
periodic solution over a long-term horizon. Such efforts include Jaillet et al., Sakiani et al.,
and SteadieSeifi et al. [18–20].

The stochastic demand IRP is a difficult challenge. Archetti et al. consider a finite
planning horizon IRP with stochastic demand [21]. Hvattum et al. propose a cyclic
distribution strategy [22]. They point out that stochastic IRP can be solved by solving
a scenario tree. Huang and Lin study a multi-product IRP with uncertain demand and
stockout [23]. They assume that the demand is only revealed when the vehicle arrives at
the demand location and included a recourse mechanism consisting of a return trip to the
depot when stockouts occur. Alvarez et al. propose a two-stage decision framework to deal
with a scenario-based stochastic IRP [24]. They determine the routing decisions in the first
stage while the inventory policies are determined in the second stage. These studies are
based on stochastic optimization, whereby it assumes that the probability distribution is
known for demand. However, obtaining the probability distribution of demand in practice
is extremely complex, even impossible sometimes.

Robust optimization is a powerful methodology for uncertain problems with incom-
plete information on their probability distributions. Robust optimization is to optimize
the objective when considering the worst case of uncertain parameters under the defined
uncertainty set. Soyster and Allen first propose robust optimization for solving linear
programming problems with uncertain parameters, considering their worst-case values in
the uncertainty set [25]. Mamani et al. derive a closed-form robust solution for an uncertain
inventory problem with stochastic demand [26]. Their work is based on the dual balancing
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policies proposed by Levi et al. [27,28]. Then, Sun and Van Mieghem extend their work
to dual-sourcing inventory problems [29]. They provide a closed-form robust solution by
normalizing the slow ordering cost and fast lead time to 0. Dual-sourcing inventory policy
is using two replenishment sources, where the regular one is cheaper but slower than the
other one. By interspersing one or several faster and more expensive replenishment periods
in a regular one, the dual-sourcing policy can reduce retention costs and the impact of the
demand uncertainty [30].

Traffic congestion will lead to a longer travel time, thus affecting the timeliness of
replenishment. Musolino et al. study the a vehicle routing problem based on reliable link
travel times [31]. The network fundamental diagram is very useful for dynamic traffic
assignment, which can reflect the impact of traffic conditions at different times on routing
choices. Then, Comi and Polimeni use the floating car data for choosing transportation
routes [32]. Croce et al. use floating and probe vehicle data to estimate energy consumption
of electric vehicles [33]. In addition, Russo et al. study regional transport plans, which
can help the traffic situation from the perspective of upper level planning [34]. To ensure
the timeliness of replenishment, it is an essential strategy to combine air and ground
transportation, especially in the perishable goods supply chain and emergency supplies
distribution [35]. Sacramento et al. propose an air–land transportation vehicle routing
problem, which uses drones for last-mile delivery [36]. Their study shows that air–land
transportation is more efficient in terms of time than only using land vehicles. Zheng and
Zhou study an air–land transportation problem for disaster relief, taking into account road
damage [37]. They use a set of congestion coefficients to adjust the adjacency matrix of land
transportation to reflect the impact of road congestion on transportation time.

The inventory routing problem is NP-hard because it subsumes the classical VRP [7].
Most of the papers propose heuristics for its solution, such as genetic algorithm [38,39],
large neighborhood search approach [40], variable neighborhood search approach [41],
etc. However, a number of exact algorithms are also available, such as general-purpose
solver [42], Lagrangian relaxation approach [43], branch-and-cut algorithm [16,44], branch-
and-pricing algorithm [45], etc.

In this paper, we combine the dual-sourcing inventory policy with the air–land trans-
portation routing problem, where the demand is uncertain and replenishment lead time
depends on the routing decision. By doing so, we are filling in a significant gap in the
literature, which is also relevant to practice, especially in perishable supply chains and
emergency logistics. The purpose is to improve the timeliness of replenishment and reduce
the cost of the system as a whole. To our knowledge, ours is the first attempt to integrate the
dual-sourcing inventory policy and the air–land transportation routing problem in a single
model. For the seek of route-dependent lead times IRP, the complexity of multi-period
models is very high. So we develop a single-period model based on the rolling horizon
framework, our work can serve as a “here-and-now” approximation. At the end of each
planning cycle, the initial inventory level of the next planning cycle is revealed. Then
we roll the planning horizon to optimize the next planning cycle. The box uncertainty
set is used to depict the demand. A planning horizon crossing strategy is proposed to
consider the effect of the single-period decision on long-term planning. We develop a
non-linear programming model of the problem. While it is quite complex, the model can
be decomposed into a routing master problem and several inventory sub-problems. We
can solve this problem using a two-stage algorithm. To illustrate this, we now describe
the methodology in greater detail: since the uncertainty demands are only contained in
inventory sub-problems, we derive a closed-form robust solution of the sub-problem to
determine replenishment quantity. An adaptive variable neighborhood search (AVNS)
algorithm is developed to solve the routing master problem. In the first stage, obtain a set
of replenishment routes by AVNS. In the second stage, using the closed-form solution of
sub-problems, the optimal replenishment quantities of each demand location are revealed.
Then return to the first stage, and recheck the capacity of vehicles. A penalty occurs if
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any vehicle exceeds its capacity. These two stages are iterated repeatedly, and the whole
problem can be solved under the framework of the AVNS algorithm.

To summarize the remainder of the paper, a description of the problem and a single-
period model are presented in Section 2. Then, in Section 3, the decomposition methodology
and an adaptive variable neighborhood search algorithm are discussed. Section 4 presents
numerical results. Conclusions and future work are discussed in Section 5. An Appendix A
presents proofs of lemma and propositions.

2. Problem Description and Formulations

The problem addressed in this paper is a dual-sourcing inventory routing problem with
route-dependent lead times. The road network congestion can be reflected by the adjacency
matrix of land transportation. We propose a single-period model and roll the planning horizon
to solve the multi-period problem. Considering the transportation time as the replenishment
lead time makes the links between replenishment quantity and delivery routes much tighter
and more complex. The replenishment sequence of demand locations will impact the arrival
time, which affects the replenishment quantity. Then, in turn, affects the route decision. To
minimize the delivery and inventory cost, routes and replenishment quantity should be
optimized simultaneously. Furthermore, the inventory cost before the first replenishment
arrival in each planning cycle depends on the replenishment quantity of the last planning
cycle. So we use a planning horizon crossing strategy to affect long-term planning. The
interaction between the routing decision and the inventory policy is shown in Figure 1.

Figure 1. A brief sketch for the problem (two planning cycles).

2.1. Problem Description

In this problem, we define a directed graph G = (V, A), where V = {0, . . . , n + 1}
is a vertex set, and A = {(i, j) ∈ V, i 6= j} is an arc set. The vertex 0 and n + 1 represent
the same central depot. For each route, the starting vertex is 0 and the ending vertex is
n + 1. The vertex set V′ = {1, . . . , n} represents demand locations. For convenience, we
further define V0 = V′ ∪ 0 and Vn+1 = V′ ∪ n + 1. The arc (i, j) represents the shortest
route between vertices i and j.

The planning horizon in each cycle is T. At the beginning of the planning cycle, check
the initial inventory level Ii0. Then, a set of land vehicles and a set of aerial crafts depart
from the central depot. They must return to the central depot before the end of the planning
cycle. The unit transportation cost of a land vehicle is cl , and the unit transportation cost of
an aerial craft is ca, where ca > cl . Similarly, for each kind of vehicle, there are a capacity
Ql , Qa and a fixed cost f l , f a.

We assume that the replenishment lead time of each demand location under each
replenishment mode only considers the time consumption of transportation. We use la

and ll to represent the aerial and land replenishment lead time of each demand location,
respectively. qa and ql represent the aerial and land replenishment quantity. Then we further
define the lead time and replenishment quantity as 0 if the replenishment mode does not
visit the demand location. For a demand location, the land replenishment mode may arrive
earlier than the aerial mode due to the delivery order. Therefore, let l f = min

{
la, ll

}
and

ls = max
{

la, ll
}

be defined as the lead time of the faster arrival replenishment method and
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the slower one when the demand location is replenished by both two modes. Similarly,
q f and qs are faster and slower replenishment quantities, respectively. For a demand
location, the inventory cost before the first replenishment arrival is not dependent on
the replenishment quantity in the planning cycle, only depends on the initial inventory
level, as shown in Figure 1. The initial inventory level is determined by the replenishment
quantities of the last planning cycle. So, the objective should minimize the routing cost
and the inventory cost from the beginning of this planning cycle to the fast replenishment
arrival time in the next planning cycle. However, it is impossible to know the lead time
information of the next planning cycle when planning the current cycle. Thus, we use the
average fast lead time lavg

p−1 in the previous planning cycle to estimate it. This strategy is the
planning horizon crossing.

Due to incomplete information, the distribution of demand is unknown. We assume
demands d̃it are independent, and their values are in the positive symmetric interval
[d̄it − d̂it, d̄it + d̂it], where d̄it is the estimated value of the demand and d̂it the maximum
deviation of the demand. At the time point t, shelters deduct the demand between t− 1 to
t from the inventory held. If the available inventory does not meet the demand, it will have
a backlog of demand to be met in the future, and a shortage cost will occur; otherwise, the
on-holding inventory will be stored in the demand location to meet future demand, and
lead to a holding cost. Each demand location has a unit holding cost h and a unit shortage
cost s, where s > h.

2.2. Notations

Notations used in the model are listed as follows:
Sets
V: Vertex set.
V′: Demand location set.
V0: V′ ∪ 0.
Vn+1: V′ ∪ n + 1.
K: Land vehicle set.
A: Aerial vehicle set.
Parameters
tl
ij: Time cost of transportation from i to j by land vehicles.

ta
ij: Time cost of transportation from i to j by aerial vehicles.

cl : The unit cost of land transportation mode.
ca: The unit cost of aerial transportation mode.
f l : Fixed cost of land transportation mode.
f a: Fixed cost of aerial transportation mode.
Ql : Capacity of a land vehicle.
Qa: Capacity of an aerial vehicle.
Ii0: Initial inventory level of the demand location i at the beginning of the planning cycle.
lavg
p−1: Average lead time for the first replenishment in the previous planning cycle.

T: Planning horizon of the planning cycle.
H: Inventory planning horizon, where H = T + lavg

p−1.
Variables
lik: Arrival time of the demand location i replenished by vehicle k.
lia: Arrival time of the demand location i replenished by aerial vehicle a.
Iit: Inventory level of the demand location i at time t.
ql

i : Replenishment quantity of the demand location i replenished by land vehicles.
qa

i : Replenishment quantity of the demand location i replenished by aerial vehicles.
xijk: 1 if vehicle k of land transportation mode travels directly from vertex i to j; 0 otherwise.
xija: 1 if vehicle a of aerial transportation mode travels directly from vertex i to j; 0 otherwise.
yik: 1 if demand location i is assigned to route k; 0 otherwise.
yia: 1 if demand location i is assigned to route a; 0 otherwise.
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2.3. Model

The objective function is the total cost in the planning cycle, including the transporta-
tion cost, and the inventory cost.

min : f l ∑
k∈K

∑
j∈V′

x0jk + f a ∑
a∈A

∑
j∈V′

x0ja + cl ∑
k∈K

ln+1,k + ca ∑
a∈A

ln+1,k + ∑
i∈V′

H

∑
t=1

max{hIit,−sIit}. (1)

s.t.:

Iit = Ii0 + ql
isgn

{
t− ∑

k∈K
yiklik

}
+ qa

i sgn

{
t− ∑

a∈A
yialia

}
−

t

∑
δ=1

d̃iδ ∀i ∈ V′, t ∈ {1, . . . , H}. (2)

ql
i ≤ Ql ∑

k∈K
yik ∀i ∈ V′. (3)

qa
i ≤ Qa ∑

a∈A
yia ∀i ∈ V′. (4)

lik + tl
ij − (1− xijk)T ≤ ljk ∀k ∈ K, i ∈ V0, j ∈ Vn+1, i 6= j. (5)

lia + ta
ij − (1− xija)T ≤ lja ∀a ∈ A, i ∈ V0, j ∈ Vn+1, i 6= j. (6)

∑
k∈K

yik ≤ 1 ∀i ∈ V′. (7)

∑
a∈A

yia ≤ 1 ∀i ∈ V′. (8)

∑
j∈Vn+1

xijk = yik ∀i ∈ V′, k ∈ K. (9)

∑
j∈Vn+1

xija = yia ∀i ∈ V′, a ∈ A. (10)

∑
i∈V0

xijk = ∑
i∈Vn+1

xjik ∀j ∈ V′, k ∈ K. (11)

∑
i∈V0

xija = ∑
i∈Vn+1

xjia ∀j ∈ V′, a ∈ A. (12)

xijk ∈ {0, 1} ∀i ∈ V0, j ∈ Vn+1, k ∈ K. (13)

xija ∈ {0, 1} ∀i ∈ V0, j ∈ Vn+1, a ∈ A. (14)

yik ∈ {0, 1} ∀i ∈ V′, k ∈ K. (15)

yia ∈ {0, 1} ∀i ∈ V′, a ∈ A. (16)

lik ∈ {0, . . . , T} ∀i ∈ V, k ∈ K. (17)

lia ∈ {0, . . . , T} ∀i ∈ V, a ∈ A. (18)

ql
i ≥ 0 ∀i ∈ V. (19)
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qa
i ≥ 0 ∀i ∈ V. (20)

Constraint (2) is an inventory balance equation, where ∑t
δ=1 d̃iδ is the accumulated

demand. sgn{} is an indicator function, sgn{A} = 1 if A > 0, and sgn{A} = 0; constraints
(3) and (4) guarantee the replenishment quantity is zero if no replenishment in the planning
cycle; constraints (5) and (6) are used to determine the arrival time which equals to the
replenishment lead time of demand locations, and it also eliminates subtours; constraints
(7) and (8) guarantee that each demand location can only be replenished no more than
once by each transportation mode; constraints (9) and (10) are assignment constraints;
equations (11) and (12) are flow conservation constraints; and (13)–(20) are non-negativity
and integrity of variables constraints.

3. Methodology

Under the rolling horizon framework, multi-period problems can be solved by follow-
ing procedures. Firstly, set H = T and solve the single-period model in the first planning
cycle. Secondly, after the end of the planning cycle, initial inventory levels Ii0 of the next
planning cycle and the average lead time lavg

p−1 of the current planning cycle are revealed.
Thirdly, update the inventory planning horizon H and roll the planning horizon to repeat
the procedures until the last planning cycle. Note that the inventory planning horizon H
will reset to T at the last planning cycle.

For the model proposed in Section 2.3, constraint (2) is non-linear and couples variables
of replenishment quantities and lead times, which is hard to be solved. We decouple it into
a master problem and a set of sub-problems. The sub-problem is an inventory problem.
For any demand location, the sub-problem can be formulated as follows:

min :
H

∑
t=1

max{hIt,−sIt}

s.t. : It = I0 + qlsgn

{
t− ∑

k∈K
yklk

}
+ qasgn

{
t− ∑

a∈A
yala

}
−

t

∑
δ=1

d̃δ ∀t ∈ {1, . . . , H}.

ql ≥ 0

qa ≥ 0

(21)

For the sub-problem, y and l are exogenous variables, which is determined by the routing
decision. We derive a closed-form solution in Section 3.2. Thus, the problem can be solved
by following procedures. Firstly, given a set of replenishment routes, the lead time of each
demand location is determined. Then the optimal replenishment quantities can be solved by
sub-problems. Finally, check the capacity constraints and repeat these procedures.

3.1. Robust Counterpart of Sub-Problem

For any demand locations, we assume the uncertainty demand between t− 1 and t
with the following non-negative bounded box uncertainty set:

Ut =
{

dt|d̄t − d̂t ≤ dt ≤ d̄t + d̂t, t = 1, 2, . . . , H
}

(22)

Let zt denote the inventory cost between t− 1 and t, the robust counterpart of the
inventory model can be formulated as the following three situations:
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1. When a demand location is not replenished in the planning cycle, the inventory cost is

min : ∑
t∈H

zt

s.t. : zt ≥ h(I0 −
t

∑
δ=1

(d̄t − d̂t)) ∀t ∈ {1, . . . , H}

zt ≥ −s(I0 −
t

∑
δ=1

(d̄t + d̂t)) ∀t ∈ {1, . . . , H}

(23)

2. When a demand location is replenished by only one mode in the planning cycle, the
inventory cost is

min : ∑
t∈H

zt

s.t. : zt ≥ h(I0 −
t

∑
δ=1

(d̄t − d̂t)) ∀t ∈ {1, . . . , l}

zt ≥ −s(I0 −
t

∑
δ=1

(d̄t + d̂t)) ∀t ∈ {1, . . . , l}

zt ≥ h(I0 + q−
t

∑
δ=1

(d̄t − d̂t)) ∀t ∈ {l + 1, . . . , H}

zt ≥ −s(I0 + q−
t

∑
δ=1

(d̄t + d̂t)) ∀t ∈ {l + 1, . . . , H}

q ≥ 0

(24)

where l is the lead time, and q is the replenishment quantity.
3. When a demand location is replenished by both two modes in the planning cycle, the

inventory cost is

min : ∑
t∈H

zt

s.t. : zt ≥ h(I0 −
t

∑
δ=1

(d̄t − d̂t)) ∀t ∈
{

1, . . . , l f
}

zt ≥ −s(I0 −
t

∑
δ=1

(d̄t + d̂t)) ∀t ∈
{

1, . . . , l f
}

zt ≥ h(I0 + q f −
t

∑
δ=1

(d̄t − d̂t)) ∀t ∈
{

l f + 1, . . . , ls
}

zt ≥ −s(I0 + q f −
t

∑
δ=1

(d̄t + d̂t)) ∀t ∈
{

l f + 1, . . . , ls
}

zt ≥ h(I0 + q f + qs −
t

∑
δ=1

(d̄t − d̂t)) ∀t ∈ {ls + 1, . . . , H}

zt ≥ −s(I0 + q f + qs −
t

∑
δ=1

(d̄t + d̂t)) ∀t ∈ {ls + 1, . . . , H}

q f ≥ 0

qs ≥ 0

(25)

where l f and ls are the faster and the slower replenishment lead time, respectively.
Similarly, q f and qs are the faster and the slower replenishment quantity.
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3.2. Closed-Form Solution for Replenishment Quantity

Given a set of replenishment routes, the lead time of each demand location is an
exogenous variable for a sub-problem. In Section 3.1, a linear programming model for
sub-problems is proposed. In this section, we further derive a closed-form solution for
replenishment quantity. When d̄ = d̄t and d̂ = d̂t for any t = {1, . . . , H}, the following
proposition derives an approximate optimal solution under the continuous time condition.

Proposition 1. For any demand under a box uncertainty set U, let λ = (s + h)d̄i + (s− h)d̂i the
robust optimal replenishment quantity satisfy:

1. For any demand location i replenished by a single replenishment mode, the optimal replenish-
ment quantity is

qi =


(sH + hl)
(s + h)2 λ− Ii0 Ii0 <

λ

s + h
H

0 Ii0 ≥
λ

s + h
H

(26)

2. For any demand location i replenished by two replenishment modes, the faster and slower
optimal replenishment quantities are

q f
i =


(sls + hl f )

(s + h)2 λ− Ii0 Ii0 <
λ

s + h
ls

0 Ii0 ≥
λ

s + h
ls

(27)

and

qs
i =


(sH + hls)

(s + h)2 λ− Ii0 − q f
i Ii0 + q f

i <
λ

s + h
H

0 Ii0 + q f
i ≥

λ

s + h
H

(28)

Appendix A is the proof of Proposition 1.

3.3. Adaptive Variable Neighborhood Search

The variable neighborhood search (VNS) algorithm uses a set of fixed sequence neigh-
borhoods for search. However, this problem contains two replenishment modes, and
changing the routes of one replenishment mode will affect the route selection of another
mode. A fixed search sequence may produce a fixed search structure, resulting in insuf-
ficient diversity of solutions. In this section, an adaptive variable neighborhood search
algorithm is proposed. Two customer pools for each mode to determine which demand
location is not served by the replenishment mode in the planning cycle. The “inter-route”
and “pool” operators are used in the shaking phase, and the “intra-route” operators are
used in the variable neighborhood descent (VND) phase. An adaptive mechanism is de-
veloped to select the operator from the shaking neighborhoods set in the first phase. The
AVNS heuristic is described as follows:

1. Algorithm framework

The algorithm begins with an initial solution Sinit which is generated randomly. At
each iteration, a neighborhood solution S′ is generated from the current solution Scur by
using a selected shaking operator. Five heuristics are employed in this phase: removal,
insertion, exchange, swap, and relocation operators. Then a neighborhood solution S′′ is
generated from S′ by using the VND strategy. Three heuristics are employed in this phase:
2-Opt, Or-Opt, and 3-Opt operators. The current solution is updated by the simulated
annealing (SA) acceptance criterion. At the end of each iteration, scores for shaking
operators are updated by the improvement of the solution. A segment contains several
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iterations, and the select probability of shaking operators is updated at the end of each
segment. These processes repeat until the termination criteria are satisfied.

2. Shaking operators

In the shaking phase, five operators are used. Removal and insertion operators are
“pool” operators, which are used for one route to evaluate whether a demand location
should be replenished. Let f (S) represent the objective value and the penalty of the so-
lution S, we define the operation cost as f (S′)− f (Scur). These two operators choose a
replenishment mode randomly, then traverse their entire neighborhood of Scur to select
the lowest operation cost solution as S′. The removal operator removes a demand location
from a route and puts the demand location into the pool accordingly to the replenishment
mode. The insertion operator inserts a demand location from the pool accordingly to the
replenishment mode into a route. Exchange, swap, and relocation operators are used for
“inter-route”, which operates on two routes under the same replenishment mode. These
three operators randomly select a solution as S′ from their neighborhood. The exchange
operator exchanges two segments of different routes randomly. The swap operator ran-
domly chooses two different routes. Then an arc of each route is opened, and swap demand
locations are after the breakpoint. The relocation operator randomly chooses a demand
location from a route and inserts it into another route. The illustration of these operators is
shown in Figure 2.

Figure 2. Shaking operators.

3. VND operators

After the shaking phase, the “intra-route” operators with the VND strategy further
optimize the affected routes. 2-Opt, Or-Opt, and 3-Opt operators are employed in this phase.
These operators traverse their entire neighborhood of S′ to select the lowest operation cost
solution. Let i, j, and k are three positions in a route, where i < j < k. The 2-Opt operator
first opens the arc (i, i + 1) and the arc (k, k + 1), then reverse the route between i + 1 and
k, and finally connect the arc (i, k) and the arc (i + 1, k + 1). The Or-Opt operator opens arc
(i, i + 1), (j, j + 1), (k, k + 1) and connect arcs (i, j + 1), (k, i + 1), (j, k + 1). Similarly, the
3-Opt operator opens three arcs and connects them, respectively. However, the connection
of this operator contains five situations, where two of them as the same as the 2-Opt and
Or-Opt operators. So this operator only checks the other three situations. The illustration
of these operators is shown in Figure 3.
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Figure 3. VND operators.

4. SA acceptance criterion

We use an acceptance criterion based on the simulated annealing mechanism. For
a current solution Scur, a neighbour solution S′′ is accepted if f (S′′) < f (Scur) and with
probability Paccept = e−[ f (S′′)− f (Scur)]/τ otherwise. The current temperature is τ, where
τ > 0. The initial temperature is τstart, and there is a cooling rate factor φ to decrease the
temperature in each iteration, where 0 < φ < 1.

5. Adaptive mechanism

The roulette-wheel mechanism determines the choice of which shaking operator is
applied in each iteration. The probability for selection is based on the weight of each
operator, which depends on its past performance, e.g., let θi be the weight of operator i,
then operator j will be selected with probability θj/ ∑∀i θi. The weight is updated by scores.
In each iteration, the applied shaking operator will gain a score. If the neighbour solution
S′′ is better than the best solution Sbest, get σ1; if S′′ is better than the current solution Scur,
get σ2; if S′′ is no better than Scur but accepted by the SA acceptance criterion, get σ3; if S′′ is
not accepted, get 0. As mentioned before, the search progress is divided into segments, and
each segment contains segcap iterations. After the last iteration of each segment, shaking
operators update their weights based on their scores. Let πi represent the sum of scores in
the segment for shaking operator i, and κi is the number of times it is used in the segment.
Then the weight of operator i in the next segment is updated by

θi =

{
θi κi = 0

(1− η)θi + ηπi/κi κi 6= 0
(29)

where η = [0, 1] is called the reaction factor, controlling the adjustment speed. We set a
protection threshold so that the weight will not be lower than 0.1 to ensure that it is still
may possible to select the operator with a lower weight in the later-stage iteration

6. Termination criteria

When the temperature reaches the cut-off threshold τcut at each planning cycle, the
iterations will cease.

7. Pseudocode

The pseudocode of the proposed AVNS heuristic shows in Algorithm 1:
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Algorithm 1: Adaptive variable neighborhood search
Data: Inventory planning horizon H, initial inventory Ii0
Result: Optimal replenishment routes R∗, Optimal replenishment quantity Q∗

1 Generate an initial solution Sinit;
2 Scur: Current solution;
3 Sbest: Best so far solution;
4 iter: Number of iterations;
5 iterseg Iteration number in segment ;
6 segcap: Segment capacity ;
7 Determine set of neighborhood structures for shaking {Nk|k = 1, . . . , kmax} and

for local search {Nl |l = 1, . . . , lmax};
8 Scur, Sbest ← Sinit ;
9 iter, iterseg ← 1;

10 Temperature← τstart;
11 while Temperature ≥ τcut do // Apply shaking
12 Select a shaking neighborhood Nk by Pselect;
13 Choose a solution S′ from Nk randomly;
14 l ← 1;
15 while l ≤ lmax do // Apply VND
16 Find the best solution S′′ in Nl(S′);
17 if f (S′′) ≤ f (Sbest) then
18 Sbest ← S′′;
19 Scur ← S′′;
20 Update score by σ1;
21 else
22 if f (S′′) ≤ f (Scur) then
23 Scur ← S′′;
24 Update score by σ2;
25 if ρ ≤ Paccept then
26 Scur ← S′′;
27 Update score by σ3;
28 else
29 l ← l + 1
30 end
31 end
32 end
33 end
34 end
35 end
36 iter ← iter + 1;
37 iterseg ← iterseg + 1;
38 Temperature← Temperature× φ;
39 if iterseg > segcap then
40 Update Pselect;
41 Clear score;
42 iterseg ← 1;
43 end
44 end

4. Numerical Experiments

This section provides the numerical experiments of the methodology proposed in
Section 3. The AVNS algorithm is implemented on Python 3.9.0 and on a laptop with an
Intel i7 1065G7 CPU processor and 16 GB RAM. All experiment results report in tables are
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the average of running 30 times, and outliers removed based on the PauTa criterion. Due
to the absence of suitable benchmark instances available for the dual-sourcing inventory
routing problem, we use a CVRP benchmark set and adjust some information. Nodes of
Augerat’s CVRP benchmark instance set A is randomly generated in the range 100× 100,
where the first node is the central depot and the others are demand locations.

These numerical experiment parameters’ selection is based on the disaster relief
background. We set the scale is 1:2 km. Trucks are land replenishment vehicles, and
helicopters are aerial replenishment crafts. The land and aerial fleet size are set to be
1 + bn/15c and 1 + bn/30c, respectively. For a truck, the speed is 60 km/h, the fixed cost is
500, the using cost is 50/h, and the capacity is 5000. For a helicopter, the speed is 260 km/h,
the fixed cost is 10,000, the using cost is 250/h, and the capacity is 2000. For a demand
location, the average demand d̄ = 20, the maximum deviation d̂ = 10, the unit holding cost
is 0.05, and the unit shortage cost is 2. The planning horizon at each planning cycle is 24 h,
that T = 24. In Augerat’s benchmark instance set A, demands are generated in the interval
[1, 30]. We use the demand information as the initial inventory level, where the volume
times 20 to fit the number scale.

The score update parameters setting refers to Coelho et al. (2012), where σ1 = 10,
σ2 = 5, and σ3 = 2 [40]. The starting temperature τstart is set to 30, 000 and the cut-off
temperature τcut = 0.01. The cooling rate φ is 0.995 which yields roughly 3000 iterations at
each planning cycle. The segment capacity segcap = 50 and the reaction factor η = 0.1.

4.1. Algorithm Analyzes

The normalized weights of shaking operators are the selection probability of the
operator in iterations. It can reflect the ability of an operator to find an acceptable/better
solution than the current/best solution in the past iterations. As shown in Figure 4,
normalized weights of five shaking operators are tested on three different instance scales.
Removal and insertion operators outperform the other three operators. The normalized
weights tend to be equal at the later-stage iterations. That is because as the temperature
cools down and the iteration goes on, operators are more difficult to obtain scores. Their
weight will gradually approach the protection threshold. This feature increases the diversity
in searching at the later stage of iterations.

However, the high weight can not entirely indicate that an operator can find a new
best solution more effectively. The new acceptable solution also can obtain scores. So
the %UBest/%IUsage ratio can reflect the ability of operators to find a new best solution,
where %UBest is the percentage of an operator finding a new best solution times to the
total best solution updated times, and %IUsage is the percentage of an operator is used
times to total iterations. Table 1 shows the %UBest/%IUsage ratio of shaking operators,
which reflects the ability to find a new best solution in iterations.

The insertion operator shows the most effective ability to find new best solutions,
whereas the exchange and swap operators demonstrate the least impressive results. How-
ever, removal and insertion operators traverse their entire neighborhood and select the
lowest operation cost solution, instead of exchange, swap, and relocation operators select-
ing randomly. The removal and insertion operators are employed to evaluate if a demand
location needs to be replenished, which is much like the “destroy–repair” strategy in the
adaptive large neighborhood search algorithm. The other three operators provide diversity,
similar to the shaking strategy in traditional VNS. The results of Figure 4 and Table 1 show
that, although the weights of exchange, swap, and relocation operators are much lower
than removal and insertion operators, the %UBest/%IUsage ratio of them are 0.30, 0.29,
and 0.42, respectively. That means these three operators also effectively find new best
solutions by providing diversity.
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Figure 4. Normalized weights of shaking operators.

Table 1. Performance of shaking operators (%UBest/%IUsage ratio).

Instance Removal Insertion Exchange Swap Relocation

n32 1.28 1.41 0.34 0.18 0.44
n33a 1.30 1.89 0.12 0.18 0.61
n33b 1.22 2.07 0.21 0.19 0.70
n34 1.16 1.44 0.32 0.60 0.89
n36 1.49 1.21 0.61 0.20 0.64
n37a 0.87 1.50 0.24 0.19 1.06
n37b 1.02 1.43 0.37 0.35 0.96
n38 1.10 1.62 0.36 0.31 0.27
n39a 0.83 1.76 0.58 0.13 0.58
n39b 1.05 1.64 0.33 0.22 0.41
n44 0.76 1.96 0.43 0.64 0.21
n45a 1.18 1.63 0.24 0.23 0.37
n45b 1.15 1.59 0.34 0.24 0.51
n46 1.20 1.29 0.44 0.41 0.57
n48 1.22 1.55 0.19 0.07 0.41
n53 1.14 1.48 0.67 0.29 0.18
n54 1.16 1.66 0.06 0.31 0.18
n55 0.97 1.78 0.26 0.23 0.26
n60 1.06 1.68 0.26 0.41 0.23
n61 1.03 1.61 0.26 0.24 0.45
n62 0.93 1.67 0.30 0.25 0.15
n63a 1.00 1.96 0.21 0.35 0.15
n63b 1.14 1.68 0.17 0.27 0.40
n64 0.91 1.76 0.19 0.40 0.20
n65 0.68 1.99 0.24 0.44 0.26
n69 0.91 1.89 0.10 0.20 0.16
n80 0.82 2.08 0.22 0.16 0.17
Average 1.06 1.68 0.30 0.29 0.42
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4.2. Model Analyzes

The single-period model under the rolling horizon framework is tested on all instances
with three and seven planning cycles, respectively. We first study the robust solution and
the deterministic solution on three planning cycles, where the robust solution is proposed
by this work and the deterministic solution is solved by the average demands d̄. Then the
planning horizon crossing strategy is studied on instances with three and seven planning
cycles. All gaps are calculated by

Gap =
Objother −Objbaseline

Objbaseline
× 100%. (30)

Table 2 shows the total cost of the robust solution and the deterministic solution when
the real demands are d = d̄ or d = d̄ + d̂. The baseline is the robust solution. The gap
between the robust solution and the deterministic solution when the real demands are
d̄ is only 1.12%. This gap is so small that we can hardly use more times experiments to
exclude the influence of solution errors on the results. Because the solution is solved by
the meta-heuristic algorithm and we cannot evaluate the gap between the obtained best
solution and the optimal solution. It can explain why the robust solution is better than
the deterministic solution in a few instances. When the real demands are the worst case
(d = d̄ + d̂), the robust solution outperforms the deterministic solution 49.86% on average.

Table 2. Performance of robust solution under mean/maximum demand (3 cycles).

Instances
Average Demands Maximum Demands

Robust Deterministic Gap Robust Deterministic Gap

n32 163,211.08 162,561.91 −0.40% 593,052.13 1,061,567.47 79.00%
n33a 163,960.52 160,677.23 −2.00% 654,320.31 1,099,284.42 68.00%
n33b 163,045.56 159,020.76 −2.47% 571,797.45 942,360.21 64.81%
n34 174,358.00 173,273.86 −0.62% 725,834.88 1,159,553.98 59.75%
n36 188,342.72 188,228.09 −0.06% 880,603.57 1,431,663.78 62.58%
n37a 204,748.18 204,123.95 −0.30% 940,380.94 1,442,303.22 53.37%
n37b 206,469.35 200,307.17 −2.98% 898,549.54 1,470,116.91 63.61%
n38 196,769.57 196,682.15 −0.04% 1,009,831.03 1,528,817.70 51.39%
n39a 221,019.42 217,361.24 −1.66% 1,079,649.65 1,686,721.84 56.23%
n39b 227,172.40 228,662.91 0.66% 1,071,752.88 1,547,831.06 44.42%
n44 263,389.99 262,025.32 −0.52% 1,519,597.96 2,213,194.72 45.64%
n45a 257,700.96 253,246.45 −1.73% 1,187,074.80 1,858,238.81 56.54%
n45b 239,301.02 228,462.98 −4.53% 1,113,656.30 1,840,635.76 65.28%
n46 237,234.85 235,542.43 −0.71% 1,199,051.82 1,953,179.97 62.89%
n48 269,601.58 268,197.32 −0.52% 1,401,310.60 2,136,987.47 52.50%
n53 405,822.68 397,117.12 −2.15% 1,806,340.99 2,512,484.42 39.09%
n54 413,459.23 408,530.44 −1.19% 1,902,235.27 2,621,106.86 37.79%
n55 336,885.68 333,575.64 −0.98% 1,875,911.41 2,676,433.96 42.67%
n60 385,908.80 386,102.40 0.05% 1,672,097.42 2,526,153.39 51.08%
n61 361,645.48 363,106.42 0.40% 1,768,019.65 2,627,647.38 48.62%
n62 478,530.30 464,378.70 −2.96% 2,019,104.19 2,718,603.33 34.64%
n63a 432,636.94 434,074.39 0.33% 2,050,851.04 3,064,180.25 49.41%
n63b 378,874.95 369,294.36 −2.53% 1,941,360.67 2,783,145.96 43.36%
n64 430,339.57 424,170.68 −1.43% 2,099,369.22 2,808,516.82 33.78%
n65 449,687.04 448,473.30 −0.27% 2,230,200.12 2,917,425.54 30.81%
n69 665,654.17 657,378.93 −1.24% 2,681,859.09 3,401,871.00 26.85%
n80 947,864.67 944,031.08 −0.40% 3,375,881.26 4,124,163.85 22.17%
Average - - −1.12% - - 49.86%

To evaluate the performance of our planning horizon crossing strategy, we test with
and without this strategy on instances with three planning cycles and seven planning
cycles. The baseline is the solution with planning horizon crossing strategy. Note that
the planning horizon in the first and the last planning cycle are not crossing (H = T).
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As shown in Table 3, the gap between the model with and without planning horizon
crossing in three cycles and seven cycles are 6.31% and 15.21%, respectively. The result
shows that the planning horizon crossing strategy can balance short-term decisions and
long-term decisions, and reduce the out-of-stock cost before replenishment arrives in each
planning cycle.

Table 3. Comparing the model with/without planning horizon crossing.

Instances
3 Cycles 7 Cycles

Crossing No Crossing Gap Crossing No Crossing Gap

n32 163,211.08 164,938.34 1.06% 327,308.35 356,441.07 8.90%
n33a 163,960.52 169,704.94 3.50% 303,855.91 348,547.88 14.71%
n33b 163,045.56 166,200.35 1.93% 298,161.20 347,464.29 16.54%
n34 174,358.00 180,087.03 3.29% 334,671.20 382,719.74 14.36%
n36 188,342.72 202,710.57 7.63% 375,903.20 452,502.22 20.38%
n37a 204,748.18 223,892.86 9.35% 399,978.16 465,360.22 16.35%
n37b 206,469.35 215,343.30 4.30% 398,508.10 473,262.75 18.76%
n38 195,769.57 210,628.85 7.59% 393,328.47 469,974.37 19.49%
n39a 221,019.42 236,318.88 6.92% 449,661.71 524,091.30 16.55%
n39b 227,172.40 240,192.50 5.73% 463,826.21 523,908.45 12.95%
n44 263,389.99 282,210.79 7.15% 996,281.28 1,212,032.23 21.66%
n45a 257,700.96 273,531.88 6.14% 566,026.06 631,478.46 11.56%
n45b 239,301.02 255,655.97 6.83% 503,419.06 574,148.90 14.05%
n46 237,234.85 254,382.18 7.23% 533,961.97 585,141.99 9.58%
n48 269,601.58 294,109.66 9.09% 621,412.08 657,455.90 5.80%
n53 405,822.68 420,274.01 3.56% 1,024,807.46 1,264,783.87 23.42%
n54 413,459.23 459,495.61 11.13% 1,130,646.78 1,557,692.75 37.77%
n55 336,885.68 359,488.04 6.71% 1,258,609.13 1,612,273.16 28.10%
n60 385,908.80 409,793.86 6.19% 800,523.92 885,149.57 10.57%
n61 361,645.48 388,489.22 7.42% 786,827.68 848,578.68 7.85%
n62 478,530.30 506,094.86 5.76% 1,003,965.14 1,084,640.69 8.04%
n63a 432,636.94 459,679.05 6.25% 1,091,721.73 1,141,790.13 4.59%
n63b 378,874.95 408,041.14 7.70% 989,831.89 1,115,628.85 12.71%
n64 430,339.57 455,573.92 5.86% 1,145,910.45 1,268,798.23 10.72%
n65 449,687.04 461,608.99 2.65% 1,197,400.02 1,400,670.03 16.98%
n69 665,654.17 735,229.66 10.45% 1,781,092.36 2,003,821.23 12.51%
n80 947,864.67 1,032,533.93 8.93% 2,710,575.82 3,140,257.61 15.85%
Average - - 6.31% - - 15.21%

5. Discussion

This study focuses on a novel inventory routing problem in which the lead time is
dependent on the routing and has two modes of replenishment. Considering the trans-
portation time in the lead time is of great significance for application scenarios with high
timeliness requirements. For example, in emergency rescue, the central depot replenishes
materials to shelters, and fresh food retailers replenish goods from the central depot to
the front warehouse, etc. Supply of goods to demand locations more precisely can reduce
waste and contribute to sustainability.

A robust model and an adaptive variable neighborhood search algorithm are proposed
for the problem. There are five attractive features of our work: (1) the joint decision on in-
ventory and transportation is investigated by considering replenishment-route-dependent
lead time, which can better highlight the relationship between the arrival time and the re-
lated replenishment quantity; (2) a robust optimization model based on the rolling horizon
framework is proposed, which is more appropriate to describe the features of the applica-
tion scenarios under uncertainty, such as emergency logistics and perishable goods supply
chains. (3) A closed-form optimal solution of replenishment quantity is derived under the
box uncertainty set. (4) A planning horizon crossing strategy is proposed for balancing
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short-term decisions and long-term decisions in the rolling horizon framework. (5) A novel
shaking stage of the adaptive variable neighborhood search algorithm is developed.

Numerical experiments study the proposed model and algorithm on a modified
benchmark instance set. The robust solution is only worse than the deterministic solution
1.12% when the demand is the predicted mean. On the other hand, when the demand
is the worst case, the robust solution is 49.86% better than the deterministic solution. It
shows that our robust model can greatly reduce the effect of uncertainty at a very low
cost. The planning horizon crossing strategy is effective and can save costs. The three
cycles and seven cycles experiments show the planning horizon crossing strategy can save
6.31% and 15.21% costs than without it. For shaking operators in the AVNS algorithm,
the insertion operator outperforms the others, and the %UBest/%IUsage ratio is 1.69. The
%UBest/%IUsage ratio of removal, exchange, swap, and relocation operators are 1.06, 0.30,
0.29, and 0.42, respectively. It shows the insertion operator has the best performance of the
ability to find new best solutions in iterations.

As with any research, ours begs for further extensions. Box uncertainty set is too conser-
vative, other more novel uncertainty performs better on overcoming over-conservativeness.
However, the closed-form solution for more complex uncertainty sets is a challenge. The
rolling horizon framework is solved multi-period problems as a multi-stage decision-making
problem by rolling planning horizon. Adjustable robust optimization is a methodology for
multi-stage optimization. We will introduce adjustable robust optimization to our problem in
future research. Compared with other articles that focus on the timeliness of replenishment,
this paper introduces air–land transportation into the inventory routing problem to avoid the
shortcomings that only use land transportation, such as road congestion or road damage after
disasters. The adjacency matrix coefficient can reflect these situations. However, the model
proposed in this paper cannot reflect the road congestion changes over time, and the dynamic
model combined with real-time data will be a challenge.
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Appendix A. Proof

Proof of Proposition 1. For a demand location, the inventory cost before the replenish-
ment arrival is not affected by the replenishment quantity, it only depends on the initial
inventory level. So the sub-problem is determining replenishment quantities to minimize
the inventory cost after the replenishment arrival.

If the demand location is replenished, there are two situations:

1. The demand location is replenished by one replenishment mode.
If the initial inventory is enough, where

h(I0 − Hd̄ + Hd̂) ≥ −s(I0 − Hd̄− Hd̂). (A1)

Let λ = (s + h)d̄ + (s− h)d̂, the optimal replenishment quantity is 0 when

I0 ≥
λ

s + h
H. (A2)

If I0 < λH/(s + h) there is a turning point t1 between the replenishment arrival time
and the inventory planning horizon H. Where the inventory cost is from the holding
cost turning to the shortage cost under the worst case. The turning point t1 and the
replenishment quantity q satisfy:

h(I0 + q− t1d̄ + t1d̂) = −s(I0 + q− t1d̄− t1d̂). (A3)

Then,

t1 =
(s + h)(I0 + q)

(s + h)d̄ + (s− h)d̂
. (A4)

For any replenishment lead time l, the inventory cost after the replenishment is

ICreplenished =
∫ t1

l
h(I0 + q− td̄ + td̂)dt−

∫ H

t1

s(I0 + q− td̄− td̂)dt. (A5)

The optimal replenishment quantity is

q = arg

{
dICreplenished

dq
= 0

}
. (A6)

The closed-form solution for optimal replenishment quantity is

q =


(sH + hl)
(s + h)2 λ− Ii0 Ii0 <

λ

s + h
H

0 Ii0 ≥
λ

s + h
H

(A7)

2. The demand location is replenished by both two replenishment modes.
If the initial inventory is enough before the slower replenishment arrival, where

h(I0 − lsd̄ + lsd̂) ≥ −s(I0 − lsd̄− lsd̂). (A8)

The optimal faster replenishment quantity is 0 when

I0 ≥
λ

s + h
ls. (A9)

Similarly, the optimal slower replenishment quantity is 0 when

I0 + q f ≥ λ

s + h
H. (A10)
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For the faster arrival replenishment, if I0 < λls/(s + h), there is a turning point t1
between the twice replenishment.

t1 =
(s + h)(I0 + q f )

(s + h)d̄ + (s− h)d̂
. (A11)

For any replenishment lead time l f , the inventory cost between the faster and the
slower replenishment arrival time is

ICreplenished1 =
∫ t1

l f
h(I0 + q f − td̄ + td̂)dt−

∫ ls

t1

s(I0 + q f − td̄− td̂)dt. (A12)

The closed-form solution for the faster replenishment quantity is

q f
i =


(sls + hl f )

(s + h)2 λ− Ii0 Ii0 <
λ

s + h
ls

0 Ii0 ≥
λ

s + h
ls

(A13)

For the slower arrival replenishment, if I0 + q f < λH/(s + h), there is a turning point t2
between the slower replenishment arrival time and the inventory planning horizon H.

t2 =
(s + h)(I0 + q f + qs)

(s + h)d̄ + (s− h)d̂
. (A14)

For any replenishment lead time ls, the inventory cost after the slower replenishment
arrival is

ICreplenished2 =
∫ t2

ls
h(I0 + q f + qs − td̄ + td̂)dt−

∫ H

t2

s(I0 + q f + qs − td̄− td̂)dt. (A15)

The closed-form solution for the slower replenishment quantity is

qs
i =


(sH + hls)

(s + h)2 λ− Ii0 − q f
i Ii0 + q f

i <
λ

s + h
H

0 Ii0 + q f
i ≥

λ

s + h
H

(A16)
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