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Abstract: Existing studies have attempted to determine the tool chipping condition using the indirect
method of data capture and intelligent analysis techniques considering machine parameters, and
tool conditions using signal processing techniques. Due to the obstructive nature of the machining
operation, however, it is daunting to use signal capturing to intelligently capture the condition
of the tool as well as that of the workpiece. This study aimed to apply some advanced signal
processing techniques to the vibration signals captured experimentally during machining operation
for the decision making and analysis of tool and workpiece conditions. Vibration signals were
captured during turning operations while using four (4) classes of tools, based on their flank wear.
The signals were first pre-processed and decomposed using the Empirical Mode Decomposition
(EMD) method. The Hilbert–Huang transform (HHT) was applied to the resulting IMFs obtained
to compute the feature vectors used to classify the condition of the tool and workpiece. A total
of 12 features, consisting of instantaneous properties such as instantaneous energy, instantaneous
frequencies, and amplitudes, were obtained for data training and classification of tool conditions.
To optimize the classification process, feature selection was performed using a genetic algorithm
(GA) to reduce the number of features from 12 to 4 for data training and classification. The feature
vectors were first trained for tool classification with a neural network scaled conjugate gradient
(SCG) algorithm. The result showed that the model classification error was 0.102. Two other
machine learning models, support vector machine (SVM) and K-Nearest Neighbors (KNN), were
also implemented for classifying the tool conditions, from the feature vector, to determine the model
that most accurately predicted the condition of the tool. To avoid bias and reduce misclassification
errors, the k-fold cross-validation technique was applied with ‘k’ taken as 5 and 10. The computed
feature vectors were used as inputs to train the machine learning model using both SVM and KNN
models to classify the tool and workpiece condition during machining. The error loss of each model
was evaluated and plotted to review the performance. The average overall error loss of 0.5031
was observed for the SVM model with 5-fold cross-validation, whereas the error loss of 0.0318 was
observed for the KNN model with 5-fold cross-validation. The average overall error loss of 0.5009 was
observed for the SVM model with 10-fold cross-validation when trained using the features selected
by a genetic algorithm (GA), while the average overall error loss of 0.0343 was observed for the KNN
model. The optimal performance of the SVM model was obtained when all features were used for
the training, whereas the KNN model performed better when feature selection was implemented.
The error losses of the models were evaluated to be less in KNN models, compared to SVM and
SCG. The obtained results also showed that the developed KNN models performed 10 times better
than the SVM model in predicting the tool condition from the captured vibration signal during the
machining process.

Keywords: Machine Learning; Scaled Conjugate Gradient (SCG); Empirical Mode Decomposition
(EMD); tool and workpiece condition; tool wear; Generic Algorithm (GA); Hilbert–Huang Transform
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1. Introduction

Smart manufacturing has become the focus of most manufacturing companies due to
product requirements, materials, technology, and data processing techniques [1]. Achieving
the required product quality at a machining station is a daunting task due to the operating
condition of the machine tool and the cutting tool condition. Tool wear/chipping directly
impact the quality of the workpiece/product output from the machining station and the
production cost. Chung, Wang [2] researched the effect of the complexity of product
output on the cutting tool and the cost of machining and, hence, optimized some turning
parameters concerning the tool conditions and the machining cost. Besides optimizing
the turning parameters and machining cost, estimating the tool condition before and
during the machining operation can also provide a knowledge base for determining the
workpiece/product quality output. Tool wear/chip measurements have been evaluated
using different direct and indirect techniques. Whereas the former method tries to measure
the threshold of the wear/chip from the cutting tool, the latter estimates the wear/chip
threshold from the effect caused by it [3–5]. The direct measurement approach evaluates the
chip size of the tool using different techniques and tools that can measure the chip size. The
shortfall of this approach is that it requires intermittent stopping of the machining operation
for the measurement to be taken. However, this limitation was avoided in the study by
Junaid, Siddiqi [6] using a computer vision-based system for measuring the dimension
of an object in real-time during the machining process. On the other hand, the indirect
method estimates the tool wear/chip condition by measuring the corresponding effect
caused by the condition during machining [7]. Machine tool conditions during operation,
such as the vibration of the tail-stock, the tool post, and the acoustics from the operation,
may be evaluated to diagnose the condition of the tool and workpiece during operation.
Furthermore, due to the obstructive nature of the machining operation, this method has
been used by several research. In the current study, an integrated direct and indirect
approach for tool condition monitoring was developed that is capable of non-obstructively
evaluating the tool condition during machining.

Smart machining manufacturing is superseding conventional methods in precision
manufacturing and optimization of facility outlay, resulting in improved productivity. The
concern in machining operation is the tool condition and the quality of the product output.
While the former affects the latter, the specifications of the product quality finish determine
whether or not the product will be accepted, re-worked, or scrapped. Damage to the cutting
tool during the machining process may cause either an upper-bound or lower-bound ap-
proach. The former affects only the cutting tool whereas, in the latter, damage to the cutting
tool directly affects the workpiece, causing it to be scrapped. This directly increases the
cost of production as both the tool and workpiece are replaced. Şap, Usca [8] investigated
the effects of different machining parameters on surface roughness, tool wear, cutting tem-
perature, and chip formation while turning Cu/Mo-SiCp composites. The result indicates
that the most important parameter affecting surface roughness, tool wear, and the cutting
temperature was the particle additive ratio. Usca, Uzun [9] also evaluated the tool wear,
surface roughness, cutting temperature, and chip morphology using an Al/TiN-coated
carbide cutting tool and found that optimization methods during the machining of particles
play a significant role in extending the tool life considering the nature of the machining
environment. Machining conditions and the machining environment significantly affect
both the quality of the product output and the cutting tool wear at a machining station [10].
Many machining stations have resulted in a just-in-time maintenance policy that replaces
the cutting tool at a specified time before the end of its useful life [11]. The shortfall of
this approach is that the cutting tool is under-utilized, which also increases the running
cost during machining. This has encouraged many research approaches to adopt smart
manufacturing, because of the possibility of incorporating product quality requirments
and manufacturing conditions into the manufacturing system, using fourth industrial
revolution technologies such as smart sensors, smart IoT devices, cloud computing, and
machine learning (ML) techniques [12]. Data processing and analysis for decision making
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are essential for smart machining. Most approaches have adopted parameters from the tool,
workpiece, and machine tool for decision making at the machining station. Several studies
have shown that acoustic and vibration signals can be used for intelligent decision making
using machine learning techniques. Although a vibration signal may accurately reflect the
condition of the tool during operation, much effort is required to extract the significant
component of the signal relating to the tool and workpiece condition during operation.

Cutting tool failure is a complex phenomenon that requires painstaking study, as
the effect impacts the productivity, in diverse ways, of a machining station. Tool crack-
ing/fracture (chipping) happens when a small fragment breaks from the cutting [13].
Although this condition may occur during the cutting operation, it may also happen during
any phase of the tool’s useful life. Tool wear, on the other hand, is the gradual change in the
geometry of the cutting tool due to the progressive removal of materials [14]. Even though
this condition happens gradually over a period during the useful life of the tool, it affects
and determines the quality of the product/workpiece at a machining station. Another tool
condition that affects the workpiece/product quality during the machining process is tool
breakage. This happens when the cutting edge of the cutting tool breaks off [15].

Gradual or sudden deterioration of the cutting tool condition often results in the
highlighted tool failures or conditions depending on the operating conditions. These
failures are mainly due to two (2) mechanisms, which are the abrasion/friction between
the interface of the tool and workpiece, and the adhesion due to the plastic deformation
of the workpiece material [16]. This makes the unified study of both the workpiece and
tool condition compelling. Khan and Gupta [17] carried out a study on the effect of the
operating parameters on the cutting tool wear, considering cutting velocity, feed rate, and
depth of cut, and found that tool wear was found to increase with increased feed rate and
depth of cut. A similar result was shown by Roy [18], i.e., that cutting speed and depth
of cut have significant impacts on principal and flank wear, with the latter lower than the
standard limit of 0.2 mm with the maximum surface roughness of 0.99 µm. These studies
showed that the operating conditions of the machine tool, such as the depth of cut, feed rate,
and cutting speed, have a significant effect on the tool wear condition during machining.

A comparative study was also carried out on tool faults using vibration and cutting
force signals to classify the conditions of the tool as healthy, worn flank, broken insert, and
extended tool [19]. This study indicated that the conditions of the machine tool, such as
vibration and acoustics, could influence or indicate the tool condition and be used as a
factor for evaluating the tool condition. A similar study was carried out on the effect of
vibration and cutting zone temperature on the surface roughness of workpiece and tool
wear in an eco-friendly minimum quantity lubrication (MQL) at a constant cutting depth
and feed rate. The results showed that, at a reduced vibration signal and temperature,
there was also reduced tool wear and surface roughness [20]. Another study carried out
by Rizal, et al. [21] classified different levels of tool wear in the milling process, using
vibrations, tool tip temperature, and cutting force, into medium and critical wear stages.
This literature has illustrated that there is a link between the tool condition, the surface
roughness of the workpiece, and the machine tool operating parameters during machining.
However, extracting more features from the captured vibration signal may provide better
analytical results when trained using machine learning (ML) algorithms. A larger number
of extracted features provides more available data for the classification algorithm.

Presently, most manufacturers use time as a conventional tool replacement strategy
subject to the operator’s experience [22]. This strategy often results in either an early
replacement (under-utilizing the tool) or a late replacement, which often causes damage
to both the workpiece and machine tool. Therefore, tool condition monitoring (TCM)
has been considered a key enabling technology for manufacturing optimization [23]. The
system estimates the tool condition by either deploying sensor-based models or analytical
models [24].

Plaza, López [25] revealed that not all vibration feature extraction methods are ap-
propriate for real-time monitoring of the surface finish, but the vibration signal with the
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wavelet packet transform (WPT) method can effectively be used for real-time surface finish
monitoring, with high accuracy and reliability, and a low computational cost, in CNC
machining. The study shows that the vibration signal is a better feature than the acous-
tic emission (AE) in monitoring the surface finish of the workpiece. In addition, Kiew,
Brahmananda [26] showed that tool wear and the machine vibration signal are related
to each other at varying depths of cut and feed rates in different experiments. Although
Ochoa, Quinde [27] proposed that the AE signal, when mounted on the tool holder rather
than the workpiece, could enhance the reliability of the TCM system, in contrast, Deja and
Licow [28] disproved the ability of AE sensors to distinguish between a new and worn-out
tool when mounted on either the tool holder or the workpiece. It may therefore be of
interest to note that the vibration signal is an important parameter in the TWCM system
for depicting the state of the tool and the workpiece during the turning operation.

Sensor-based tool and workpiece condition monitoring systems comprise highly sensi-
tive sensors integrated with IoT controllers, which help with signal interpretation, analysis,
and decision making. Like TCM, these systems can be divided into broad methods, which
are direct and indirect [29]. The direct TCM method directly measures the changes in the
geometry of the cutting tool during the cutting process, whereas the indirect TCM method
measures the online operating parameters as a way of detecting the tool’s deteriorating
condition. Due to the nature of the cutting region during the process, however, the direct
TCM method is challenging. Because direct TCM methods are grueling to implement
online, most studies have adopted indirect TCM methods [30]. Similarly, TCM methods can
be extended to monitor the surface quality of the workpiece using the same approach. This
implies that the accuracy and precision of the measured conditions of the cutting tool, and
of the workpiece/product quality, directly inform the accuracy and precision of the indirect
online TCM system based on the acquired signals and the robustness of the processing
techniques. The measured parameters are the data that are interpreted by the monitoring
system to evaluate the current condition and the changing conditions; hence, more detailed
attention needs to be paid to this system.

Accelerometer sensors are devices that sense the displacement of a component or
machine from its mean position [31]. The vibration effect during a cutting operation may
result from several factors. A cutting tool that is broken or worn-out during a cutting
operation can cause a resultant vibration effect on the machine tool. Similarly, a faulty jaw
can induce spindle vibration, which affects both the tool condition and the workpiece [32].
Cheng and Dang [33] detected varying conditions, such as a normal spindle, an unbalanced
rotor, a gearbox crack, and a bearing crack, on a CNC machine tool by analyzing vibration
signals captured by accelerometer sensors installed on the spindle surface near the bearing.
This captured the vibration signal resulting from malfunctioning of the machine tool
component, which in turn affected the surface roughness of the workpiece and tool wear.
In contrast, Munawar, Mufti [34] deployed a magnetic-type accelerometer, attached to the
spindle bearing housing, to capture the vibration signals from the machine tool during the
machining of AISI 1040 carbon steel.

Furthermore, Gao, He [35] noted that an abrupt increase in the spindle rotation
frequency to the natural frequency of the spindle structure increased spindle vibration,
which degraded both the surface of the workpiece and the spindle performance. Therefore,
capturing the vibration signals using an accelerometer is of great interest in monitoring
the surface roughness of the workpiece and the tool condition. Signals captured from the
monitoring devices installed on the machine tool can be classified as steady-state signals
and dynamic/transient signals. The former are captured when the condition of the machine
is stable during operation, whereas the latter are captured during the unstable operating
condition of the machine tool. These two distinctive categories of signals captured from
the machine tool have been analyzed using different techniques and methods to extract
intelligent information that is useful in depicting the state of the process. Different signal
processing methods can be adopted for the TWCM system. Whereas time domain analysis
techniques are used to evaluate physical signals and mathematical functions with reference
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to time [36–39], frequency domain techniques are used to analyze signals or mathematical
functions with reference to frequency [40–42].

Signals can be converted from either the time domain to the frequency domain or vice
versa with an operator called a transform. Early research on the TCM system adopted
the Fourier transform, which converts a time function into an integral of sine waves of
various frequencies; however, this is deficient for the analysis of non-periodic and non-
stationary signals, hence, other types of transforms have been developed [43]. Wavelet
packet transforms (WPTs) have shown better results as a computational method for time–
frequency signal conversion and, as a result, have been widely used in many tool condition
monitoring studies [44–47]. A comparative study to predict bearing degradation [48]
using a discrete wavelet transform (DWT), tabular Generative Adversarial Networks
(TGANs), and ML models also showed that the DWT is an efficient signal processing
tool for decomposing signals that are non-stationary signals. Other transforms exist for
signal decomposition and computing time–frequency conversion, such as the Hilbert–
Huang transform [49]. In addition, artificial intelligence techniques are another type
of signal-processing method used for TCM systems [50]. This technique was adopted
by Bhavsar and Vakharia [51] for fault prognosis and condition monitoring using the
previous data to predict the remaining useful life (RUL) of the component using various
regression/degradation models. Due to the robustness and strength of this technique in the
analysis of large volumes of data, and the development of intelligent models for predicting
the condition of the workpiece and tool, the usage of this method has increased recently
in TCM systems [52,53]. Several AI algorithms have been deployed in either predicting
or classifying tool or workpiece conditions at a machining station. The support vector
machine (SVM) algorithm has been applied in many TCM systems for classifying tool
conditions [54,55], and the artificial neural network (ANN) algorithm has been widely used
for predicting tool conditions and workpieces [56]. A recently evolved deep learning AI
algorithm finding its way into TCM systems is the convolutional neural network (CNN) [57].
The CNN algorithm takes in input data in the form of an image, processes it by extracting
its features, and evaluates the cutting tool’s condition. Ambadekar and Choudhari [58]
developed a tool wear prediction system to monitor the flank wear of a cutting tool using
a CNN, and concluded that the method gives a good response to the data in the form of
images, with accuracy of 87.26%.

Several studies have been carried out on the evaluation of tool conditions and work-
piece roughness. In this study, tool conditions were classified based on flank wear. The
corresponding quality output of each tool class was experimentally determined by measur-
ing the surface roughness parameters of the workpiece. The vibration signals were captured
during machining operations using IoT-enabled sensors and gateways. The signals were
decomposed by applying the EMD method to the raw vibration signals. This method was
applied because of the nature of the vibration signals captured from the machining process.
The Hilbert transform (HHT) was applied to the resulting IMFs from the decomposition
to extract the feature vectors that were used to classify the cutting tool. To optimize the
classification algorithm and make it less expensive, a genetic algorithm (GA) was used for
feature selection. Finally, the features selected using the GA model after applying HHT to
the decomposed signals were fed into machine learning (ML) models to classify each tool
condition and the corresponding quality output. The classification was performed using
three different ML models, and the error loss of each model was evaluated. Neural net-
works with SCG, KNN, and SVM algorithms were used to develop the classification models.
The error loss of each model was evaluated to determine the optimal algorithm for the clas-
sification problem. The study can provide an alternative solution to intermittently stopping
the machining process to evaluate the tool and workpiece condition during machining.
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2. Materials and Method
2.1. Vibration Signal Capturing and Processing for TWCM System

The vibration signal during the machining operation was captured by installing an
advanced vibration sensor, MNS 2-9-W2-AC-ADV, on the tool post of the machine tool.
An Alta wireless vibration sensor enabled with IoT technology was used in this study, as
indicated in Figure 1. The heartbeat of the sensor was adjusted to be captured per second.
This enabled the measurement of the vibration signals corresponding to the varying tool
and workpiece conditions. Abrupt or gradual changes in the condition of the tool and
the workpiece could hence be continuously monitored by monitoring the vibration signal
emanating from the machining station.
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Figure 1. Flow Chart of the Proposed Methodology.

2.1.1. Experimental Set-Up

To determine the condition of the tool and workpiece during the operation based
on the vibration signals, four (4) cutting tool categories were used for the machining
experiment. An indexable tungsten cutting tool with CCMT09T3034 carbide inserts was
used for the turning operations. The first class of tools was brand-new tools, the second
class was used good tools, and the third and fourth classes were rough and worn-out tools,
respectively. A new tool has 100% of its useful life remaining, while a worn tool has zero
(0%) life remaining. A good tool has a useful life of about 70% or more. A worn tool has less
than 50% useful life, however, it can be used depending on the surface finish requirement
of the job or product. A standard recommended value in defining a tool life criterion based
on ISO 3685:1993 requires that cutting tool inserts with flank wear of 0.3 mm be discarded.
Rizal, Ghani [21] states that the ranges of flank wear values were divided into three
classifications, normal wear (VB = 0–0.15 mm), medium wear (VB = 0.15–0.25 mm), and
critical wear (VB = 0.25–0.35 mm), adhering to the ISO 3685:1993 standard. Similarly, this
study classified tools using flank wear, where a new tool was presumed to have 0 flank wear,
a good tool was taken to have the same range as that of normal wear (VB = 0–0.15 mm), a
rough tool had medium wear (VB = 0.16–0.29 mm), and a worn tool had flank wear similar
to the critical wear range (VB > 3.0 mm). As tools gradually move from one phase of useful
life to another during the turning operation, it becomes very important to monitor the tool
conditions, so as to optimize production by reducing the chances of nonconformities in the
product quality. Bright carbon cylindrical steel workpiece materials, BS 970 080m40 and BS
970 070m55, were used for running the test, and the corresponding vibration during the
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machining operation was recorded. The set-up of the back-end for remote collection of the
captured data and installation of sensors for data capturing is illustrated in Figure 2.
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The experiment was repeated by capturing the vibration signals from the respective
cutting tool class used for the machining process. The data were recorded as the captured
vibration signals, the time intervals and labels that indicate the tool category used for the
machining process. The vibration data may not be applied to analyses for decision making
because they are time-series data, and because of the transient conditions that may have
contaminated the precision of the signal. Hence, the data were processed using advanced
signal analysis techniques, and a feed-forward neural network algorithm was employed to
classify the signals into each condition class.

2.1.2. Advanced Vibration Signal Processing

Due to the nature of the machining operation, and the obstructive nature of the
operation, the vibration signal needs to be processed for the proposed machine learning
algorithm to achieve a great result. A graphical plot of the vibration data from the tool
classes against the time interval is presented in Figure 3, for which the cutting tools were
replaced at different intervals to capture the varying vibration signals being transmitted
by different cutting tool classes. The plot illustrates the different vibration signals of each
class of cutting tool used for the machining operation. The vibration signal can be observed
on the graph. The excitation is firstly due to the alignment of the accelerometer (vibration
sensor) to the gravitational field and, secondly, because of the power generated due to the
reaction between the cutting tool and the workpiece during the turning operation. The
vibration signals may vary as the tool gradually moves from one phase of the condition to
another; therefore, to be able to discriminate the signals propagated as the tool condition
changes, a new signal that can be differentiated based on the shape of oscillation and how
quickly the signal varies over time was created from the vibration signals.
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The major characteristics of the vibration signals captured during the machining
operation are the non-linearity and non-stationary natures of the signals. Non-stationary
continuous signals are composed of sinusoidal waves with a distinct change in frequency.
Therefore, a signal processing method capable of analyzing these signal characteristics
must be adopted. Since the fast Fourier transform (FFT) is ideal for linear and stationary
signals due to its uniform trigonometric function, wavelet transform was introduced as an
alternative to extracting time–frequency resolutions of a signal. However, the EMD method
is a better approach for analyzing non-linear and non-stationary signals. This is because the
EMD method is based on the data, in contrast to most other methods. The EMD method
decomposes signals into components to provide insight into inherent features. The signal
is decomposed into a finite number of IMFs (real part) and the residual (imaginary part), as
indicated in Equation (1):

f (t) = ∑
i

im fi + res (1)

where im f f represents the intrinsic mode functions and the residual. The EMD function
evaluates the local extrema of the signal and fits the maxima (Eup(t)) and the minima
(Elow(t)) to an individual envelope. The mean of the upper and lower envelope is deter-
mined as indicated in Equation (2):

Emean(t) =

(
Eup(t) + Elow(t)

)
2

(2)

The residual component of the signal is determined as indicated in Equation (3):

res(t) = f (t)− Emean(t) (3)
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Since the process is finite, the stopping criterion is determined by Equation (4):

∑ t =
(res(t)− f (t))2

f (t)2 <∈ (4)

Therefore, the decomposition stops when the residual approaches a monotonic func-
tion. The signal is decomposed into IMFs and residuals, as indicated in Figure 4.
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To determine the instantaneous properties from the decomposed IMFs and residuals,
the Hilbert–Huang transform (HHT) was applied. HHT was applied to compute the
instantaneous energy and instantaneous frequency of each IMF mode. For each IMF, xi, the
HHT function computes the components as indicated in Equation (5):

xi = f (i) + iH{ f (t)} = A(t)eiϕ(t) (5)

where H{xi} is the Hilbert transform of xi, A(t) is amplitude, and ϕ is instantaneous phase.
The amplitude and phase are expressed in Equations (6) and (7), respectively:

A(t) =
√

f 2(t) + H{ f (t)}2 (6)

ϕ(t) = arctan

(
H{ f (t)}2

f (t)

)
(7)

The Hilbert transform provides a unique imaginary component, H{f(t)}2, with the
instantaneous energy given in Equation (8) and the instantaneous frequency in Equation (9):

ρ = |A(t)|2 (8)

ω(t) =
dϕ(t)

dt
(9)
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Since most frequencies are not continuous, the Hilbert transform is based on the
discrete Fourier transform.

The feature vectors for classifying the conditions of the tools were computed by
applying the Hilbert transform to the IMFs of the decomposed signals. The features were
therefore the instantaneous frequencies, energy, and amplitude of the IMFs, as indicated
in Equations (6)–(9), respectively. Since the instantaneous energy is very dependent on
the amplitude, the feature vectors are usually the instantaneous frequency and energy for
classification models. In this study, a total of 12 features were computed from the IMFs of
the decomposed signals.

To reduce the computational cost of the classification model, hyperparameter opti-
mization using the GA model was applied to the features to select the features that were
essential for the learning algorithm. The number of features was reduced to four (4) after
feature selection was undertaken using the genetic algorithm model, using the Roulette
Wheel (RW) method. The fitness probability of a single chromosome in the generation was
determined by Equation (10):

Fp =
Fi

∑n
i=1 Fi

(10)

where Fp, is the fitness probability of the ith chromosome, and Fi is the fitness value of the
ith chromosome.

The feature vector was trained for data classification using the ML classification
algorithm. The neural network SCG algorithm was first applied to train the data for classi-
fication. Furthermore, SVM and KNN learning models were also used for the classification
model and the best-performing model was essentially determined from the loss function of
each model.

3. Results and Discussions

Extracting features using the signal decomposition method with the Hilbert transform
helps to provide detailed and useful information on each signal buffer produced by different
classes of tools and workpiece conditions, and thus to optimize manufacturing. This
implies that the condition of the tool and workpiece can accurately be determined during
production while avoiding machine downtime, meeting job requirements, and reducing
scraps due to product damage (i.e., surface quality exceeding the required standards). Due
to the non-linear and non-stationary characteristics of the signal captured at the machining
station, it is advantageous to use the signal decomposition function to identify the varying
condition of the cutting tool during the machining operation. In a review, Bokde, Feijóo [59]
showed that 80% of the most recent analyses of non-stationary and non-linear wind turbine
signals adopted EMD for signal analysis for the prediction models. Compared to other
decomposition methods, EMD generates relatively stationary subseries (IMFs) that are
easily modeled [60]. Furthermore, IMFs developed with EMD eliminate stochastic volatility
and, therefore, improve the prediction results [61]. The vibration signals captured during
the machining operation were decomposed using the EMD method to extract the IMFs, as
indicated in Equation (11):

[IMFs, res] = emd(data); (11)

Six IMFs and one residual were obtained after the decomposition of the signals, as
indicated in Figure 4. The iterative decomposition was stopped using the stopping criterion
indicated in Equation (4).

The instantaneous properties of the signals were obtained by applying the Hilbert
transform (HHT) to the IMFs. The obtained feature vectors comprised 12 features. These
included the instantaneous frequencies, amplitude, and energy of the IMFs. These features
were fed into the ML algorithm to classify the varying signals from each tool type. The
feature vectors were first trained using a feed-forward neural network model with a scaled
conjugate gradient (SCG) algorithm. The model had four (4) features, while the hidden
layer had eighteen (18) nodes, and four (4) output classes were used. The label for the data
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to be trained had one (1) column and a thousand (1000) samples. The network trained the
data set using 44 iterations and the confusion matrix was used to evaluate the performance
of the network. The best validation performance, as shown in Figure 5, was 0.047349 at
epoch 103.
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The histogram of the error of the neural network with the SCG algorithm indicates
the classification prediction error after training the feed-forward backprop neural network.
It shows how the prediction class differs from the target class in a training example. This
is very important in determining the accuracy of the trained network in classifying new
samples of data. The error histogram has 20 bins, which indicate that the range of error
bars on the histogram is divided into 20 samples, as shown in Figure 6. This is evaluated
from Equation (12):

Bin Width =
Right limit− lower limit

20
(12)

The bin width from Figure 6 can be evaluated to be 0.08882. Although the classification
algorithm performs very well according to the error histogram, there are other error
distributions to the left and right of the zero-error line.

The confusion matrix in Figure 7 shows that the accuracy of the classification algorithm
is 89.2%.

To further determine the accuracy of the classification algorithm, other ML classifica-
tion algorithms were considered for classifying the conditions of the cutting tool during
machining operation from extracted vibration signals. The SVM is a powerful technique
used in data classification and regression analysis, and it has become one of the most used
classification methods due to its good theoretical foundations and good generalization
capacity [62]. Kaya, Kuncan [63] applied SVM and logistic regression (LR) to classify the vi-
bration signals at varying bearing speeds, and the result showed that the LR model yielded
a poorer prediction. Similarly, whereas Chen, Li [42] classified vibration signals based on
variational mode decomposition (VMD) and energy entropy using the SVM technique, for
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fault diagnosis in rotating bearings, Glowacz, Glowacz [64] applied a linear support vector
machine (LSVM) for the classification of data between two classes of signals captured from
the vibration of an induction motor machine by finding the best hyperplane.
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However, Altaf, Akram [65] classified EMD features and FFT features extracted from
vibration signals to diagnose bearing faults without any statistical information using KNN
classifiers, with the method yielding a reduction percentage of 96.64%. The result of this
classification algorithm showed a good performance, even though the study applied FFT
to the decomposed signal, in contrast to this study, which applied HHT to the decomposed
signal. Similarly, [66] applied both KNN and SVM to features extracted from vibration
signals processed through FFT and principal component analysis (PCA), and showed that
vibration signals are sufficiently rich in information about the machine to enable precision
machining and 100% state classification accuracy to be achieved. Hence, SVM and KNN
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were applied to the extracted features for the classification of the conditions in other phases
to determine which classification model performs optimally for classifying tool classes.

Bias and misclassification error are mostly a challenge when applying ML algorithms
and techniques to classification problems. Therefore, to avoid these, k-fold cross-validation
techniques are applied. This study applied 5-fold and 10-fold cross-validation, and the
models were compared to determine the one with the best performance in terms of the error
loss in classification. For the 5-fold cross-validation technique, the models were developed
and tested by determining the error loss for both SVM and KNN to determine the model
with better performance. Figure 8 illustrates the error loss of each model of the SVM
and KNN methods, with the blue color representing SVM models and red representing
KNN models.
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The result showed that the KNN algorithm performs better than SVM in classifying
the cutting tool classes during the machining operation. To determine the overall error loss
for each of the models, Equation (13) was applied:

E =
1
k

k

∑
i=1

Ei (13)

where k represents the number of folds being considered and E is the error loss. Therefore,
the overall error loss for the five SVM models was 0.5031, while for the KNN model it was
0.0318. This indicates that KNN models performed better than the SVM models for tool
condition classification during the machining process.

For the 10-fold cross-validation technique, both models were also developed to deter-
mine their performance. Figure 9 shows that the KNN models all performed better than
the SVM models. Each SVM model from 1 to 10 had a higher error loss function compared
to the KNN models.
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The overall error loss for the SVM models with 10-fold classification was 0.5009,
whereas the error loss for KNN models was 0.343. The general performance of the two
(2) models shows that the error loss of SVM slightly improved when the 10-fold cross-
validation technique was used, compared to the 5-fold cross-validation technique. Further-
more, the performance of KNN models was better with the 5-fold cross-validation technique
than with the 10-fold cross-validation technique. In Figure 9, the KNN8 model is the best,
with the least error loss, while the SVM5 model is best for the 10-fold cross-validation.
Toledo-Pérez, Rodríguez-Reséndiz [67] reviewed the SVM-based model of EMG signal clas-
sification and reported that a large number of sounds, vibration signals, and images have
been classified using the SVM classification algorithm, achieving more accuracy without
feature selection and 5% less accuracy with feature selection. Therefore, to determine if
the SVM model performs better without feature selection, the models were evaluated with
the 12 features, and the loss function was determined. The performance of both models
for 5-fold cross-validation with all the feature vectors is illustrated in Figure 10, which
shows that, for SVM models, the performance improved greatly compared to when feature
selection was implemented. The overall average error loss when 5-fold cross-validation
was performed on all the features was 0.1668, compared to 0.5031 when feature selection
was performed. However, for KNN models using 5-fold cross-validation with feature
selection, the overall average error loss increased from 0.0318 to 0.2202. These results show
that, although feature selection improves the performance of KNN models in classifying
the conditions of the tool, this is not the case with the accuracy and performance of the
SVM model.

The result shown in Figure 11, for the 10-fold error loss for SVM and KNN classification
models developed without applying feature selection, also indicates that the performance
of SVM models was more accurate without feature selection. The error loss for 10-fold
cross-validation for SVM models when feature selection was applied was 0.5009, while
it reduced to 0.1578 without feature selection. On the other hand, the performance of
KNN models when feature selection was adopted was 0.0343, while it increased to 0.2172
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without feature selection. Therefore, the KNN algorithm performed better in classifying
the condition of the cutting tool during the machining operation.
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4. Conclusions

Diverse approaches have been applied to initiating different measurable conditions
on the cutting tool to generate signals during operation that can be analyzed to deduce
the tool condition. Whereas some studies have artificially created a crack on the tool to
capture signals (vibration, acoustics, etc.) capable of being analyzed to give feedback on the
condition of the tool, some studies have measured the tool chip size to capture the signals
produced by the tool condition and the product quality output. The former approach is
limited by the possible tool damage or weakness caused by the method, whereas the latter
is limited to the minimum size of the chip that can be measured and the dispersion or
number of such chip points on the tool.

Studies that have adopted image sensing as the input data source for analysis of the
tool condition have shown this is also a daunting approach due to the obstructive nature of
the cutting region, which allows contamination, hence reducing the viability of the captured
image to accurately and precisely depict the condition of the tool. Besides the mentioned
drawbacks, the variability caused by the different conditions surrounding image/vision
sensing, such as illumination, and variation in pixel senses of different devices, have also
limited the approach in the propagation of signals that can intelligently depict the tool and
workpiece condition.

The approach in this study focused on advanced signal processing and analysis, and
feature extraction, selection, and classification, to determine the condition of the cutting
tool during the machining operation without intermittent stoppage of machining. In
this study, the cutting tool was first classified into four (4) classes using ISO 3685:1993
based on the flank wear (VB) of the cutting tool. The captured vibration signals were first
decomposed using the EMD method to obtain the corresponding IMFs and residuals of the
signals. To derive the feature vectors of the signals with instantaneous properties capable of
classifying the tool classes, the HHT function was applied to the IMFs. It was observed that
12 features were obtained after applying the Hilbert transform to the IMFs. To reduce the
computational burden and time, feature selection was performed with GA. After applying
three (3) ML models to classify the tool conditions, with 5-fold and 10-fold cross-validation,
the following observations were noted:

1. Neural network feed-forward backprop with an SCG ML model was first adopted
to classify the tool classes, with a fair error of 0.102. A better model was observed to
provide better performance.

2. SVM and KNN were applied to feature classification with both 5-fold and 10-fold
cross-validation, and the effectiveness of the models was evaluated by determining
the error loss of both models.

3. The lowest error loss of 0.4752 was observed with the SVM model when 5-fold cross-
validation was implemented, whereas, with the KNN model, the lowest error loss
was observed to be 0.0166 when 5-fold cross-validation was implemented. In this
case, feature selection using GA was implemented before ML classification.

4. The lowest error loss of 0.4881 was observed with the SVM model when 10-fold cross-
validation was implemented, whereas, with the KNN model, the lowest error loss
was observed to be 0.0109 when 10-fold cross-validation was implemented. Similarly,
feature selection using GA was implemented before ML classification.

5. When all the features were used (no feature selection was performed), the lowest error
loss of 0.1170 was observed for the SVM model when 10-fold cross-validation was
implemented, whereas, with the KNN model, the lowest error loss was observed to
be 0.1606 when 10-fold cross-validation was implemented.

6. Moreover, when all the features were used (no feature selection was performed),
the lowest error loss of 0.1021 was observed for the SVM model when 5-fold cross-
validation was implemented, whereas, with the KNN model, the lowest error loss
was observed to be 0.1870 when 5-fold cross-validation was implemented.
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7. Of the two models, KNN performed better in classifying the tool classes during the
machining operation when the decomposition method was applied to the vibration
signals captured during the operation.

8. SVM models performed better when all the features extracted from vibration signals
were considered, compared to when feature selection was implemented, whereas, for
the KNN model, the performance was better when feature selection was implemented.

9. The methodology developed based on tool classification using advanced signal pro-
cessing techniques can be used to classify product quality output based on work
requirements in terms of roughness parameters.

The authors expect that, if varying vibration signals can be captured with different
classes of tool conditions (based on quality requirement) and their corresponding workpiece
roughness parameters, the KNN ML model can be implemented to monitor the tool
condition and the corresponding product quality. The limitation of this study, however, is
that it did not incorporate machine tool malfunctioning in the signal analysis. It will be
useful to accommodate this factor as it may impact the product output and the vibration
signals captured during machining.
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