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Abstract: Telepresence robots are gaining more popularity as a means of remote communication
and human–robot interaction, allowing users to control and operate a physical robot remotely.
However, controlling these robots can be challenging due to the inherent delays and latency in the
communication systems. In this research paper, we propose a novel hybrid algorithm exploiting
deep reinforcement learning (DRL) with a dueling double-deep Q-network (DDQN) and a gated
recurrent unit (GRU) to assist and maneuver the telepresence robot during the delayed operating
signals from the operator. The DDQN is used to learn the optimal control policy for the telepresence
robot in a remote healthcare environment during delayed communication signals. In contrast, the
GRU is employed to model the control signals’ temporal dependencies and handle the variable time
delays in the communication system. The proposed hybrid approach is evaluated analytically and
experimentally. The results demonstrate the approach’s effectiveness in improving telepresence
robots’ tracking accuracy and stability performance. Multiple experiments show that the proposed
technique depicts improved controlling efficiency with no guidance from the teleoperator. It can
control and manage the operations of the telepresence robot during the delayed communication
of 15 seconds by itself, which is 2.4% better than the existing approaches. Overall, the proposed
hybrid approach demonstrates the potential implementation of RL and deep learning techniques in
improving the control and stability of the telepresence robot during delayed operating signals from
the operator.

Keywords: telepresence robot; healthcare environment; remote management

1. Introduction

A telepresence robot empowers a distant commanding user to experience real-time
presence in remote locations [1]. Cameras are mounted on a robot to recognize the remote
environment. A telepresence robot is similar to a mobile robotic system that enables remote
users to experience physical mobility. Telemedicine, tele-doctor, telesurgery, and telere-
habilitation can save time and money in various tasks. The framework for controlling a
telepresence robot combines two-way communication, control signals, and video data, as
shown in Figure 1. The telepresence robot operates effectively through signals received
from the teleoperator. However, in the event of communication delays, the behavior of the
telepresence robot becomes erratic and unpredictable in unfamiliar remote healthcare envi-
ronments, potentially resulting in collisions and causing harm to individuals. During the
period of delayed communication, it may be advantageous to implement an autonomous
strategy that effectively assists the telepresence robot. This strategy would involve learning
from the teleoperator’s operating behavior and adapting to maneuver efficiently in the
remote environment. Simultaneous localization and mapping (SLAM) were one of the com-
pelling algorithms used in mobile robot navigation. The SLAM algorithm uses the input
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data from different sensors, such as the camera, Lidar, and other sensors, to reconstruct
an offline map to understand the surrounding unknown environment [2]. A generalized
algorithm flow of a telepresence robot is shown in Figure 2.

Figure 1. Generalized telepresence robot framework.

Figure 2. Generalized algorithm flow of a remote-controlled telepresence robot.

The primary issue with the SLAM was using multiple robot sensors to calculate the
input data and achieve the estimated environment information to devise the navigation-
controlling signal. Visual SLAM [3] navigates by using images as the primary source, but it
contains enormous and unnecessary data from the unknown environment and can better
recognize the environment. The conventional visual SLAM estimates the camera pose,
processes it, and then reconstructs the map. Achieving inter-frame estimations through
matching between feature points by extracting image features improves visual SLAM,
which has many limitations. Many challenges exist regarding the lack of texture in a single
environment and target motion.

Simultaneously, artificial intelligence has introduced the famous direction in respective
fields of robot autonomous controlling with deep reinforcement learning (DRL) [4]. The
decision-making capability and deep learning control the agent’s actions. The main idea
of deep learning (DL) is similar to a human neural network, which is to merge low-level
features to form abstract to distinguish high-level representations through multilayered
network structures. The primary purpose of reinforcement learning (RL) is to understand
the optimum strategy for achieving the objective by increasing the agent’s accumulative
reward value acquired from the environment. Hence, RL’s method focuses on learning
approaches to resolve complications.

RL is concerned about an agent that discovers how to execute a specific task through
trial and error while interacting with unknown environment parameters, which provides
feedback regarding reward at the end, as shown in Figure 3. The interaction of the agent
and the environment is a continual process. Initially, at time t, an agent receives information
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about its environment from its sensor’s input st, based upon which the agent selects an
action at from the set A of the possible actions, then action at is executed in the environ-
ment [5]. The action at performed in the environment according to the state value st, and its
effect that the agent receives a scalar reward rt+1 and a new state st+1. The main target of
the agent is to maximize the reward it receives from the environment after more trials. Due
to this, the agent calculates an action-value function Q(·, ·) that maps state-action pairs into
the corresponding expected return. DRL has broadly been used for various applications,
including but not limited to computer vision [6,7], robotics [8], natural language processing,
video games [9], education, transportation, finance, and healthcare. Zhang et al. proposed
a novel danger-aware adaptive composition framework method for self-navigation [10]
and a map-less navigation method for robot navigation [11]. Shao, Yan et al. solved a robot
navigation problem with the novel method of DRL with a graph attention network (GAT)
among external autonomous agents [12].

Figure 3. Flow of reinforcement learning.

This paper proposes a complete controlling strategy to assist the teleoperator in an
unknown dynamic healthcare environment during delayed operating signals from the
operator. The proposed model is tested in the gmapping environment using interfaces
based on a robot operating system (ROS), and the outcome shows that the technique is
workable and effective.

The primary purpose of our research is to demonstrate a novel hybrid approach
consisting of gated recurrent units (GRU) integrated with a double deep Q-learning network
(DDQN) algorithm. Then we used it to control differentially driven telepresence robots.
With two different input signals, we define the kinematics of the mobile robot. We consider
the definition of reward as a variable, the kind of control input, and the random exploratory
process to demonstrate the impact on the learning process. This proposed study presents
a new method for controlling a telepresence robot with the ability to make autonomous
decisions by learning from ongoing controlling signals provided by the teleoperator during
delayed communication.

The remaining article is organized as follows: Section 2 discusses the related work and
literature review. An overall system overview is presented in Section 3. Section 4 presents
the proposed model for controlling the telepresence robot. We discuss the experimental
analysis in Section 5, and the Section 6 concludes the article.

2. Related Works

Different approaches discussed in this section have already been used to develop a
system to assist in mobile robot teleoperation. As long as the telepresence robot and its
delay in communication is a concern, we discuss different related approaches in detail. The
telepresence robot’s task is to move around in different dynamic environments ranging
from indoor [13] to outdoor, including static to dynamic obstacles [14].

The sample-based approach discretizes the state space and action to transform the
main problem of controlling a telerobot into a graphical research task [15] by using pre-
computed motion primitives [16]. Additional extensions offer cost functions more suited to
the search algorithm. The state grid planner [17] selects a deterministic grid model with
the state space. Randomness helps reduce generated trajectories that are irrelevant to a
particular search problem. The sampling approach is imperfect but provides probabilistic
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integrity [18]. In other words, the likelihood of finding a solution increases over time.
However, a sample-based system discretizes the state and action space, which requires
many computational resources to explain all potential movements. Generally, a large
number of motion primitives rapidly increases time complexity.

The interpolation-based method uses waypoints to calculate paths with high path
continuity. The more complex approach uses clothoid curves [19], polynomial curves [20],
and Bezier curves [21]. The curvature of the clothoid curve uses the arc length and can
determine trajectory based on the linear change in curvature. The polynomial curves de-
scribe lateral constraints because the constraints of the initial and final segments determine
the coefficients.

Numerical optimization creates trajectories based on differentiated cost functions and
secondary constraints. Based on the convex function of costs and constraints [22], find the
globally optimal trajectory [23]. Optimize the suboptimal orbit [24] or calculate the orbit
with a predefined constraint [25]. Continuous trajectories are generated by optimizing
functions considering planning parameters such as position, speed, acceleration, and thrust.
However, the disadvantage of further optimization steps is the increased complexity of
the time. The subsequent best trajectory calculates quickly, but the optimal solution is less
applicable to critical tasks and is time-consuming.

Minamoto et al. [26] control the remote robot using an eye-tracking device in a gaze
pattern. Compared to manual operation, the time increased to complete the task. In [27]
and [28], tactile feedback on environmental forces was obtained for obstacle avoidance by
defining virtual environmental forces based on the relative distance and speed between the
rover and the obstacle. To better mimic everyday driving, this letter uses the local robot’s
extra Degree of Freedom (DOF) as a throttle to control the acceleration of the remote car,
making the remote car an obstacle in the environment.

In [29], Zhu, Aoyama, and Hasegawa used fuzzy logic in the remote control operation
and obtained good results. The evaluation efficiency of a fuzzy system can effectively
overcome simulation errors and noise in the system. As a result, their systems are robust to
parameter mismatch model errors, delays, impedance failures, and other uncertainties by
adjusting online control parameters in fragile environments.

Spong et al. have suggested a technique of controlling the permanence of the global cir-
cuit and guaranteed idle time in remote control systems based on a master-slave. However,
if the delay in communication is high, passive loop gain can be reduced [30].

In addition, Kunii et al. offer research on the mobile robot by introducing route plans
based on maps of the remote environment along with route adjustments according to the
latest measurements from the side of the remote mobile robot. There is a considerable
communication delay for planetary observations [31].

Although this method uses a template control to add training data, its effectiveness
has not been evaluated in the real world. Sasaki et al. [32] and Vamvoudakis et al. [33]
proposed a method of learning a matrix of input coefficients. However, RL linear-quadratic
regulator (LQR) inversion has little research on compensating for the undefined behavior
of learning methods during actual robot operation.

Anderson et al. [34] proposed a study on the navigation of mobile robots in an in-
door environment and accomplished it by using Matterport3D for simulation purposes.
Visual input uses to reach the target location. The natural language commands started the
navigation procedure. Typically, learning-based navigation is applied using navigation
visuals along with DRLs, while using the simulated environments. In Zhu et al. [35], agent
navigation was performed using the DRL and visual navigation without a geometric map.
AI2-THOR was used as a simulation environment. An image of a natural scene and an
image of the target scene are input to the agent. Navigation ends with the agent when the
received scene is closely related to the target scene. Yang et al. [36] proposed a technique
that used a GCN to obtain semantic information to improve the calculation of the global
context model and the relationship between the other objects and targets located in the
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environment. Learning-based navigation approach with DRL is used in the simulated
environment to help the agent navigate successfully by the agent.

Wang [37] proposed a multi-robot coordination algorithm that uses DRL to solve the
multi-robot coordination problem. This algorithm resolves source conflicts and avoids
obstacles, whose input is an image generated by each robot’s view and reward. This
algorithm uses a modified neural network structure based on the neural network battle
structure [38]. The dual network structure uses two threads to represent the flag function
and the action setting function that, depending on status, combine the results of both
streams. The proposed method solves one aspect of resource competition and the noise
avoidance problem between static and dynamic multi-robots.

Some 3D scheduling work is performed by using hierarchical control, separating
high-level scheduling from low-level motion control and including each in a different
neural network [39,40]. Early studies on direct modeling of driving behavior using neural
networks [41] focused on studying discrete steering outputs based on layers fully connected
to selective downward image streams in neural networks. It was. This approach has been
extended in recent studies through Convolutional Neural Networks (CNN) [42] and has
significantly scaled to dataset size, task complexity, and performance. [43] proposes real-
time path planning to address uncertain dynamics and similar environments by combining
a probabilistic roadmap (PRM) with RL.

Q-learning or in-depth Numerous self-driving tasks have been extensively used Q-
learning. [44] provided a technique for learning overtaking for simple Q-learning for
essential activities. The Q-learning method is used in [45] to teach more advanced actions,
including overtaking and blocking. The generalization problem, or learning to pass vehicles
that exhibit diverse characteristics, is the focus of surpassing research. When applying
Q-learning to these tasks, it is necessary to discretize the basic actions in continuous space
into a set of constrained fixed values for control signals. On the other hand, driving a
car necessitates more fluid control signals. Planning and control in an ongoing action
environment are preferred from the driver’s perspective.

Policy gradient approaches are thought to be more effective than Q-learning and can
resolve challenging problems in continuous space [46]. The “Vanilla” policy gradient,
likelihood ratio, finite-difference, and natural Actor-Critic approaches are only a few of
the policy gradient techniques used in robotics [47]. In [48], authors suggested a determin-
istic policy gradient algorithm with continuous actions as an alternative to a stochastic
policy gradient. By contrast, the training outcomes of Atari games using the two different
approaches make the case that a deterministic policy gradient can be far more effective
than the conventional stochastic policy gradient. Self-driving cars with simple behaviors
are taught how to avoid obstacles via a deep deterministic policy gradient [49]. There are
several issues if the policy gradient method is utilized in our jobs.

The advantages and disadvantages of the discussed methods are compared in Table 1.

Table 1. Comparison of few above-mentioned referenced approaches.

Reference Approach Advantages Disadvantages

Sample-Based Probabilistic integrity Discretizes state and action space,
high time complexity

Interpolation-Based High path continuity Complex approach

Numerical Optimization Globally optimal trajectory Increased complexity and
time-consuming

Fuzzy Logic Robust to uncertainties Less precise

Master-Slave Guaranteed idle time High delay in communication
reduces passive loop gain

Route Planning Effective in remote
environment Considerable communication delay
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Table 1. Cont.

Reference Approach Advantages Disadvantages

Learning-based
Navigation Improved navigation

Little research on compensating for
undefined behavior during

actual operation

DRL Effective in
multi-robot coordination Computational complex

Proposed Approach More dynamic and
efficient method Large Data requirement

3. System Development

This section discusses the overall system development, comprises mathematical mod-
eling, 3D modeling, and design of our telepresence robot in detail, and is structured into
five sub-sections.

3.1. Telepresence Robot Design

This section will describe the telepresence robot used in this article to gather data for
the training of our model, along with the validation of the predictive output. The robot
contains four rubber wheels, with two wheels operated by one geared dc motor, and is
connected to the wheels by angled gears pressed against each other by a spring. Combining
the spring and the angled gears guarantees a constant contact area and, therefore, the
instant response between the wheel and the motor. The initial 3D model was designed in
AutoCAD software, shown in Figure 4.

Figure 4. Three-dimensional Model of Telepresence Robot.

The telepresence robots are designed with a sleek and modern aesthetic, incorporating
sleek lines and a futuristic look that sets them apart from traditional robotics. The design of
a telepresence robot is centered around providing users with an immersive and intuitive
experience, allowing them to easily navigate and control the robot as if they were physically
present. Some of the key features that contribute to the design of telepresence robots include
high-resolution cameras, multiple joints and degrees of freedom, and advanced control
systems that allow for smooth and precise movement. Overall, the design of telepresence
robots is focused on enabling users to experience the world in a whole new way, breaking
down the barriers of distance and bringing people closer together.

The dc geared motors connect to a motor driver, each being controlled by an Arduino,
which in turn receives control signals from a server on a raspberry pi. The same raspberry
has a microphone, a speaker connected for audio communication, and a screen to display a
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commanding user video feed. The raspberry connects to a switch connected to a portable
4G device for internet connectivity to the cloud, and Figure 5 describes the block diagram
of our telepresence robot.

Figure 5. System Block Diagram of Telepresence Robot.

3.2. Telepresence Robot Hardware

The hardware components used in the telepresence robot are affordable and easy to
find online and in the local market. Every part of the telepresence is manufactured from
scratch. Given below is a short description and list of the various components used in it,
and it is also shown in Figure 6.

3.2.1. Raspberry Pi Model 3B

At the core of the system, we have used Raspberry Pi. We have used Raspberry Pi
3 Model B, which has 1 GB of RAM, runs at 700 MHz, has 4 USB ports and 1 Ethernet
port, and has a total of 40 pins. Twenty-six is the input pin, and the standard output is
GPIO and 4 power pins. Two are 5 V, two are 3.3 V, eight are connected to the ground, and
two are DoNotConnnect (DNC), so you can program using these pins. All parameters can
be used to connect to any sensor inputs, and outputs can be provided by these pins, an
HDMI port for screen connection, and power input is a micro USB 5 V 2 A port to load the
operating system.

3.2.2. Arduino Mega 2560

Arduino Mega 2560 is a microcontroller board that is designed to be an affordable,
user-friendly platform for building electronic projects and prototyping. It is based on the
ATmega2560 microcontroller and features a wide range of input/output (I/O) pins, analog
inputs, serial ports, and other hardware resources that make it easy to connect sensors,
actuators, and other components to the board. The Arduino Mega 2560 can be programmed
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using the Arduino Integrated Development Environment (IDE) and is compatible with
various programming languages, such as C++ and Python.

Figure 6. Electronics Component-based Circuit Diagram.

3.2.3. Arduino Pi Camera

The Raspberry pi camera is an official product of Raspberry pi. It presents the technical
specification of a 5 MP camera with a resolution of 2592 × 1944. It uses a camera module
weighing around 3 g with an Omnivision OV5647 sensor that connects this sensor to a
Raspberry Pi. The Python library extracts parameters from the real-time video feed for
image processing.

3.2.4. Motor Driver IBT2-BTS7960

The motor connects to an H-bridge driver module consisting of an Infineon BTS7960
drive chip to protect against overheating and overcurrent. The dual circuitry of the BTS
7960H bridge driver with a powerful drive and braking effect uses the 74HC244 chip to
effectively separate the microcontroller and motor driver from a strong current up to 43 A.

3.2.5. Lidar Sensor-RPLiDAR-A1M8-360

Lidar, which stands for Light Detection and Ranging, is a cutting-edge remote sensing
technology that uses laser light to map the surface of objects and environments. The basic
principle of Lidar is to emit a laser beam toward the target object and measure the time
it takes for the laser to return to the system after reflecting off the target. This allows the
system to calculate the precise distance to the object and create a detailed 3D map of the
environment. Lidar is also increasingly being integrated into telepresence robots, where
it plays a crucial role in improving navigation and control. Telepresence robots can be
controlled remotely, allowing users to operate a physical robot in a remote environment.
Lidar technology provides telepresence robots with the necessary information to navigate
their environment and interact with their surroundings, making telepresence robots more
effective and efficient in various applications.

3.3. Current Status of Telepresence Robot

Our telepresence robots are equipped with sensors and a 4G device for internet
connectivity to communicate with the remote commanding user. We can now control and
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maneuver our telepresence robot in an indoor environment. We can move our telepresence
robot forward and backward, turn sharp left, turn sharp right, round angled, turn left, and
round angled turn right. It is equipped with a pi camera for video transmission, and we
can receive the real-time video feed from the telepresence robot to a commanding user
display screen. Figure 7 shows the current working telepresence robot.

Figure 7. Manufactured Working Telepresence Robot Prototype. Our telepresence robot prototype is a
robotic platform designed to facilitate remote communication and control in real-time. The proposed
approach of the hybrid of DDQN and GRU can be implemented and tested on our manufactured
robot to gather data and compare its performance with other approaches. The telepresence robot
typically includes cameras, sensors, and actuators that allow a remote user to view and interact
with the physical environment. The robot’s movement and actions can be controlled through a user
interface, such as a joystick, keyboard, or touch screen.

The purpose of using a telepresence robot prototype for testing and data collection
is to simulate a real-world scenario. The robot can be programmed to perform specific
tasks, such as navigating through an obstacle course or moving to specific locations, and
the results of the proposed approach can be compared with other methods, such as sample-
based approaches, interpolation-based methods, numerical optimization, eye-tracking
device control, tactile feedback, fuzzy logic, control permanence technique, route plan
based on maps, or learning-based navigation. This comparison can help determine the
effectiveness and efficiency of the proposed approach in comparison to other methods and
provide insight into potential improvements and modifications that can be made.

3.4. Design Parameters of Telepresence Robot

The design parameters of our telepresence robot are triggered by a wheeled motion
of a vehicle, such as turning angle, velocity, and angular momentum. The telepresence robot’s
parameters are chosen after an analysis of the kinematic motion of the robot, as shown in Table 2.

Table 2. Telepresence robot parameters.

Technical Specification Unit Min–Max Value

Robot speed m/s 0–3.25
Robot momentum N.m 0–0.93

Robot height ft 5′3′′

Robot width ft 1′5′′

Robot breadth ft 0′6′′

Robot weight kg 14
Robot battery Ah 35
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3.5. Mathematical Modeling of Telepresence Robot

Mathematical models are used to model a system using symbolic computation. This
approach helps analyze the dynamics of robots in real-life situations. During the modeling
phase, four key components are considered: wheels, bodies, vertical joints, and intelligent
devices. Figure 8 shows a schematic representation of the telepresence robot according to
the coordinated reference system. The coordinate system for measuring the robot’s position
relative to the global reference system for each reference uses a Cartesian coordinate
system. Independent coordinates are the vertical displacement x(t) and angular rotation
θ(t) of the wheel, as well as the stresses arising from sliding during horizontal and vertical
displacements. To simplify this, we used a 2D model to look at the vertical displacements
and rotations of the ramp. Lateral displacement is measured as irrelevant here. Overall
lumped gravity central point is chosen in RF0 and RF3 in a side view of the diagram.

Figure 8. Schematic representation of telepresence robot.

Nonholonomic is likely the constraint defined in the system. For our telepresence
robot, we consider that wheels rotate without slipping, which shows that both wheels have
a similar angular rotation, as shown in Equation (1).

ϕ = R
d
dt
θw(t) =

d
dt

x(t) (1)

We know that θw(t) is the wheel rotation angle, ϕ is the steering angle, x(t) is the
longitudinal translation, and R is the wheel’s radius.

The system’s kinetics is based on the Newton–Euler equation. The unknown vari-
ables are solved to derive the grip forces and regular forces. Longitudinal and rotational
velocities with varying parameters are given by Equations (2) and (3), according to the
symbolic equations.

u(t) =
d
dt

x(t) (2)

uθ(t) =
d
dt
θ(t) (3)

To determine the body weight caused by the upright structure causes the entire robotic
platform system to topple concerning the Newton–Euler equations, the Euler equation
for the telepresence robot body structure about RF0 and RF3 along with RF6 and RF9 are
utilized. The modified equation is as follows in Equation (4).

mtrh
d
dt

u(t) +
(2mtrh2)

L
d
dt

uθ(t)−mtrhθ(t)g = 0 (4)
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where mtr is the mass of the telepresence robot structure, h is the center of mass, L is the
length of the telepresence robot platform (y-axis), as shown in Figure 4, uθ(t) is the angular
velocity of the robot wheel, and g is the gravitational force constant.

The actual controlling equation of the telepresence robot system is defined in (5),
where Tc(t) is the torque, and Metr represents the equivalent total mass of the telepresence
robot. The equivalent value of µ and ψ is given by Equations (6) and (7), respectively.

Metr
d
dt

u(t) + µ
d
dt

uθ(t)−
Tc(t)

R
+ψθ(t) = 0 (5)

µ =
(2mtr(h2 + hR))

RL
(6)

ψ =

 (mtrhg)
R

−

(
4mtrh[uθ(t)]

2
)

L2

 (7)

The angle of inclinations (θ) is a maximum of 35% of the slope. Similarly, the height
(h) of the robot support is one of the primary tasks affecting system instabilities.

MATLAB simulates the system response and displays it concerning the time interval.
With the initial values, the simulation runs for linearized feedback control. According
to Figure 9, rotating and steering systems stabilize under 4 s when the angular motion
is considered.

Figure 9. Linearized feedback control response with the initial values.

4. The Proposed Framework Approach

The Proposed approach is to control telepresence robots in assisting with human
teleoperators. The primary point of the approach is to design and train a GRU-based
DDQN to estimate the agent’s state-action value function. RL is a target-based learning
algorithm that can learn and execute decisions autonomously to particular problems. It
focuses on agents’ learning by direct interaction with the environment without supervision
signals, which is different from other algorithms. The agent performs a mapping of
the current scenario into actions so that the agent receives the maximum reward. The
agent discovers which actions should be taken to maximize the reward by exploring and
trying different actions. The decision-making process affects the immediate gain, the
following scenario, and the future return of the actions taken. The essential characteristics
of RL are trial and error and delayed gain. The RL system has four significant elements:
policy, reward signal, value function, and environment modeling apart from the agent and
environment. The reward signal value is the reward given to the developed agent in the
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form of a value function by the environment. The policy controls system decisions, and the
strategy function typically establishes the action, as shown in Figure 10.

Figure 10. Proposed approach to control telepresence robot in assistance with human teleoperator.

4.1. Implementation of the Proposed DRL Framework

This section focuses on maneuvering a telepresence robot in an unfamiliar healthcare
environment. This article implements the model of DRL to control the telepresence robot.
It initiates with a common neural network with the cyclic neural network of the GRU
unit. Furthermore, it merged the DDQN [50] model with the real neural network. The real
neural network has enhanced the study by using the GRU [51] unit’s memory ability. The
discount factor function, reward value function, and model loss function are more efficient
for controlling the telepresence robot. DDQN algorithm is explained in Algorithm 1.

Algorithm 1. Double Deep Q-Networks Learning (DDQN)

1: Initialize: online network Qθ and replay bufferR,
target network Qθ, with weights θ′ ← θ

2: for each episode, do
3: ovservation of the current state st
4: for each step in the environment, do
5: select action at ∼ π(Qθ(st)) with respect to the policy π
6: implement action at
7: observation of the next state st+1 and reward rt = R(st, at)
8: store (st, at, st+1, rt in replay bufferR
9: adaptation of the current state st ← st+1

10: end for
11: for each update step, do
12: sample N of experiences with ei = (si, ai, si+1, ri) from replay bufferR
13: calculate expected Q values;

Q∗(si, ai) ≈ ri + YQθ′

(
si+1, argmax

a′
Qθ(si+1, a′)

)
14: calculate loss L = 1/N ∑i (Q

∗(si, ai)−Qθ(si, ai))
2

15: calculate the stochastic gradient step on L
16: updatation of target network parameters:

θ′ ← τθ+ (1− τ)θ′
17: end for
8: end for
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Primarily, we need to generate a replay buffer R and initialize it online along with
target artificial neural networks (ANNs). A duplicate of the online network with identical
weights is found in the target network. The agent’s interaction with the environment is
represented in the first for-loop, as mentioned in lines 4–10. The learning procedure enabled
by the experience replay concept is described in the second for-loop, as mentioned in lines
11–17. The memory storage stores all transactions between the environment and the agent
in the form of tuples (st, at, st+1, rt) is served by the replay buffer R, which allows the
agent to reuse accumulated experience for better data efficiency.

4.2. Agent Model for Telepresence Robot

The implementation in this article is based upon double deep q networks (DDQN),
which further presents a fully connected (FC) layer and a one-to-many gated recurrent unit
(GRU) network layer. The GRU pulls the state’s relevant information to the cell units. The
network is a double net frame containing the primary and target networks, as shown in
Figure 11. The current state data go to the primary network, and the next state data go to
the destination network. Lastly, we use the values acquired from multiple networks, which
behave as input to the loss function, to attain the error value.

Figure 11. Proposed framework based on integration of Gated Recurrent Unit (GRU) with Double
Deep Q-learning Network (DDQN).

The revision of each network’s parameter is calculated in the main network, and
its synchronization is based on the error gradient. DDQN, with the integration of GRU,
supplies the efficient results of training to provide the opportunity of lesser value of loss
function and having the idea of better actions. After selecting the final state decision, those
related parameters will collect in memory D. We have collected all the state parameters
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and transmitted the reward value to the loss function. The proposed algorithm is briefly
explained in Algorithm 2.

Algorithm 2. Gated Recurrent Unit (GRU) with Double Deep Q-Networks Learning (DDQN)

1: Initialize: input data and Update associated status information (s, a, r, s′) from memory D,
2: for each episode, do
3: input will be sent to the main and target networks

4:
input data will send to GRU unit, which has eight behavior sets (columns)

A =

[
front, back, left, right, leftfront,

rightfront, leftrear, rightrear

]
.

5: for each step in the GRU unit, do
6: GRU layers are responsible for processing the n = 8 data

middle data will be fed to two layers of the FC layer
7: The FC layer parameter is 8 × 64 and 64 × 8 matrix

the activation function uses the rectified linear in the neural unit in the FC
a dropout structure is set in the GRU and FC layers to prevent overfitting

8: end for
9: for each update step do
10: find the action of argmaxa′Q(s′, a′; θi)

11:
then

find the action in the target network
12: The Qtarget value is calculated by using th Q value
13: The Q value is not certainly the largest in the target network,

so, we can avoid selecting the overestimated suboptimal action
14: Memory pool provides the training data
15: Calculate the loss function:

L = E
{
(r + γ.Qtarget(s′, argmax

a
(Qmain(s′, a)))−Qmain(s, a))2

}
16: end for
17: end for

Our proposed approach algorithm first retrieves the input data and associated status
information from memory module D, which is s, s′ in the fourth state (s, a, r, s′). It expresses
the shorthand as (state, action, reward, and next state). Then input will be sent to the main
and target networks. The main and target networks are in real-time synchronization, and
the network characteristics are identical. The eight-column GRU unit will then receive the
input status data. These eight states represent the behavior set in Equation (8).

A =

front, back, left, right,
leftfront, rightfront,

leftrear, rightrear

 (8)

Three GRU layers are responsible for processing the n = 8 data, after which middle
data are fed to two layers of the FC layer. The FC layer parameter structure is 8 × 64 and
64 × 8 matrix, respectively.

1. The activation function uses the rectified linear in the neural unit in the FC.
2. A dropout structure is set in the GRU and FC layers to prevent overfitting.
3. Initially, we find the action of argmaxa′Q(s′, a′; θi) with the main network and then

find the action in the target network.

a. The Q_target value is calculated by using the Q-value.
b. We can avoid choosing the overstated suboptimal action since the Q value is

not unquestionably the highest in the target network.
c. The memory pool provides the training data.
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This article uses the local batch training method known as stochastic gradient descent
(SGD). The loss function is given in Equation (9),

L = E
{
(r + γ.Qtarget(s

′, argmax
a

(
Qmain

(
s′, a

))
)−Qmain(s, a))2

}
(9)

E =
1
N
×∑(yi − ýi)

2 (10)

where E in Equation (10) is the error value function, N is the total number of samples, yi is
the actual value, and ýi is the predicted value. This equation represents the mean squared
error (MSE) between the actual and predicted values, which is an error value function in
deep reinforcement learning algorithms such as DDQN.

5. Experimental Setup and Results

We conducted multiple physical tests on the specially developed telepresence robot
using ROS to validate the model’s performance in practice. Numerous tests on the telep-
resence robot are conducted to reduce the error. The site is a cardiologist ward in the
Government general hospital, Ghulam Muhammad-Abad, Faisalabad. The distance for
traveling a telepresence robot from the initial point (doctor’s office) to the endpoint (ad-
mitted patient ward) is 10.5 m. We use the Lidar to reconstruct the hospital environment.
The telepresence robot starts its journey from point A in a hospital environment which is
the main entrance of the reception area as shown in Figure 12. It drives through the main
lobby while avoiding different static obstacles and reaches destination point B, which is the
admitted ward of patients.

Figure 12. Lidar-based indoor map of the hospital and path of a telepresence robot.

Table 3 contains the significant parameters for the experiment environment, which
shows the obstacle type: static, and the number of static obstacles is eight and 4 × 4 feet
in size. The total coverage path of the telepresence robot from starting A to endpoint B is
140 m. The teleoperator and assistance from the DRL based autonomous are controlling the
telepresence robot.

Table 3. Experimental significant parameters.

Parameters Unit Value

Static obstacles 4 × 4 feet 8
Dynamic Obstacle - -

Path Curved 1
Starting Point - A (Main entrance)

End Point - B (Patient Ward)
Coverage meters 140
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We modify the scanning function to automatic in the gmapping package of ROS to
gather the data from the scanner while traveling the telepresence robot from the initial point
to the endpoint in the hospital. We performed parameter training based on the hospital
environment at the initial stage. Other algorithms have been trained for a certain period
except for A*. After receiving all the data, the trained model is fed into the package ROS
in the telepresence robot. Then we conducted four verification trips, and each trip was
restarted after completing the previous trip. Each trip consists of three different trials, and
the mean is established on those trips’ trial data, as discussed in Table 3. By comparing the
mean column of the three different trials, the result obtained from the proposed framework-
based experiments is good than the other two algorithms’ experiments in the context of
trip length and time consumption.

The telepresence robot controlled by the teleoperator makes multiple trips with differ-
ent measured distance trials from Point A to point B consisting of varying time durations.
After learning from the teleoperator-based generated data, and in the scenario of delayed
controlling signal, the telepresence robot turns its autonomous mode to move to the desired
path by itself. We implement this with three different algorithms, A*, DDQN, and our
proposed GRU-integrated DDQN algorithm. We note the cumulative distance covered in a
particular time duration, as written in Table 4.

Table 4. Experimental data of A*, DDQN and the proposed framework algorithm.

Algorithm Examples
Trial 1 Trial 2 Trial 3 Mean

Distance
(m)/time (s)

Distance
(m)/time (s)

Distance
(m)/time (s)

Distance
(m)/time (s)

A*

First trip 8.7 m/91 s 9.9 m/99 s 9.1 m/95 s 9.2 m/95 s
Second trip 9.9 m/90 s 9.1 m/87 s 8.1 m/88 s 9.0 m/88 s
Third trip 9.1 m/98 s 9.0 m/89 s 9.0 m/75 s 9.0 m/87 s

Fourth trip 8.4 m/87 s 9.8 m/72 s 9.9 m/61 s 9.3 m/73 s

DDQN

First trip 8.8 m/84 s 9.6 m/76 s 8.9 m/95 s 9.1 m/85 s
Second trip 8.4 m/86 s 7.8 m/87 s 7.9 m/88 s 8.0 m/87 s
Third trip 9.1 m/80 s 8.4 m/79 s 8.3 m/75 s 8.6 m/78 s

Fourth trip 9.0 m/77 s 7.9 m/61 s 7.8 m/58 s 8.2 m/65 s

Proposed
Framework

First trip 8.1 m/84 s 8.8 m/89 s 7.7 m/85 s 8.2 m/86 s
Second trip 7.8 m/86 s 7.5 m/87 s 8.1 m/88 s 7.8 m/87 s
Third trip 8.5 m/85 s 8.4 m/79 s 7.7 m/75 s 8.2 m/79 s

Fourth trip 7.9 m/73 s 8.1 m/69 s 7.3 m/71 s 7.7 m/71 s

According to this equation, the maximum discounted reward by adhering to that
optimal policy for the future state-action pair (s′, a′) will be equal to the predicted reward
Rt+1 after executing that action in addition to the optimal Q value function for the given
state-activity pair (s, a). The ideal Q value is approximated in a complicated environment
using a non-linear function approximator, such as a neural network.

A value-based reinforcement learning technique is called Q-learning. To find the best
course of action, Q-learning modifies the Q value of each action-state combination using
the Bellman Equation. Furthermore, a dual network structure can lessen the correlation
between the present and target Q values and increase the method’s stability. The input
value is the state in which each intelligence is present, and the goal function is the Q value
corresponding to each action to train the neural network. As shown in Figure 13, the
proposed framework has a quicker intersection in the Q value graph after iterations of
4500 training trips compared to the DDQN.

However, it changed abundantly after 1400 tries of training. The proposed framework
uses a loop memory network and multiple reward mechanisms compared to DDQN, as
shown in Figure 14. In the end, the greater reward value of the proposed framework
denotes fewer repeated error-controlling commands.
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Figure 13. Q value comparison of different approaches.

Figure 14. Reward comparison of different approaches.

6. Conclusions

The article implements a DRL-based framework that combines DDQN with the recur-
rent neural network to control a telepresence robot in unknown environments. The rewards
and discount factors are re-designed to improve the controlling method’s feasibility. Exper-
iments show that the different method performs well and makes controlling more efficient.
The results after multiple experiments show that the proposed method helps reduce the
controlling parameters traveling by 6% compared to other algorithms. In the meantime, the
average telepresence robot controlling assistance time duration length is increased by 2.4%
as compared to other approaches. Regarding future work, we will implement the other
hybrid RL algorithm in telepresence robots to analyze the efficacy of those algorithms in
dynamic and complicated environments with active obstacles.
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