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Abstract: One of the main tasks in kernel methods is the selection of adequate mappings into higher
dimension in order to improve class classification. However, this tends to be time consuming, and
it may not finish with the best separation between classes. Therefore, there is a need for better
methods that are able to extract distance and class separation from data. This work presents a novel
approach for learning such mappings by using locally stationary kernels, spectral representations
and Gaussian mixtures.
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1. Introduction

During the 90’s, the use of kernels [1–5] in Machine Learning received a considerable
attention for their ability to improve the performance of linear classifiers. By using kernels,
Support Vector Machines and other kernel methods [6,7] can classify complex data sets
by mapping them into high dimensional spaces. However, an underlying issue exists,
summarized by a simple question: Which kernel should be used? [8].

Kernel selection is not a small task and would highly depend on the problem to
be solved. A first idea to select the best kernel could be evaluating different kernels
from a small set using leave-one-out cross-validation and selecting the kernel with better
classification properties. Nevertheless, this can become a time-consuming task when the
number of samples range in the thousands. A better idea is to use a combination of
kernels to create kernels with better classification properties. Methods using this type of
techniques are called Multiple Kernel Learning (MKL) [9]. For example, Lanckriet [10] uses
a Semi-Definite Programming (SDP) to find the best conic combination of multiple kernels.
However, these methods still require some pre-selected set of kernels as inputs. A better
plan will be to use the distance information at the class data sets. For example, Hoi [11]
tries to find a kernel Gram matrix by building the Laplacian Graph [12] of the data. Then,
an SDP is applied to find the best combination of kernels.

However, none of these methods are scalable given that their Gram matrix needs to be
built the computational complexity of building a Gram matrix is (O(N2) where N is the
number of samples. As a possible solution, it has been proposed to use Sequential Minimal
Optimization (SMO) [13] to reduce complexity. This allows to move the quadratic program-
ming problem to a quadratic programming sub-problems. For example, Bach [14] uses an
SDP setup and solves the problem by using an SMO algorithm. Other techniques [15] use a
random sample of the training set, and a possible approximation to the Gram Matrix to
reduce complexity (O(m2N + m2 + mN), m sub-problem size). Expanding on this idea,
Rahimi [16] approximates kernel functions using samples of the distribution, but only for
stationary kernels. On the other hand, Ghiasi-Shirazi [17] proposes a method for learning
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m number of stationary kernels in the approach of MKL. The method has a main advantage,
its ability to learn m number of kernels in an unsupervised way by reducing the complexity
of the output function. Furthermore, it reduces the complexity of the classifier output from
O(mxNxNSV) to O(mxN) by using m kernels. Finally, Oliva [18], makes use of Bayesian
methods to learn a stationary kernel in a non-parametric way.

On this work, we propose to learn locally stationary kernel from data, given that
stationary kernels are a subset of the locally stationary kernel, by using a spectral represen-
tation and Gaussian Mixtures [19]. This allows to improve the classification and regression
task by looking at the kernel as the result of a sampling process on a spectral representation.
This paper is structured in the following way: in Section 2, we show the basic theory to
understand the idea of stationary and locally stationary kernels. In Section 3, the proposed
algorithm is developed by using Fourier Basis and sampling. Additionally, a theorem is
given about the performance of the spectral representation. In Section 4, we review the
experiments for classification and regression tasks to test the robustness of the proposed
algorithm. Finally, we present an analysis of the advantages of the proposed algorithm and
possible venues of research in the Section 5.

2. The Concept of Kernels

The main idea of using kernel methods is to obtain the distance between samples on
higher dimensional. Thus, avoid mapping the samples to higher dimensional spaces and
using the inner product for such process. In other words, let X ⊆ RD be the input set,
where D ∈ N, letK be a feature space, and suppose the feature mapping function is defined
as ϕ : X → K. Hence, the kernel function, κ : X ×X → R, has the following property:

κ(xxx, xxx′) ≡ 〈ϕϕϕ(xxx), ϕϕϕ(xxx′)〉,

where xxx, xxx′ ∈ X . Thus, ϕ and the feature space can be implicitly defined. Now, let {xxxi}N
i=1

be the set of samples, κ : X ×X → R be a valid kernel, and 〈·, ·〉 be a well defined inner
product. Then, the elements at the Gram Matrix, K ∈ RN×N , are computed using the κ
mapping, Kij := κ(xxxi, xxxj). Given this definition, Genton [20] makes an in-depth study of
the class of kernel from a statistics perspective, i.e., the kernel functions as a co-variance
function. He pointed out that kernels have a spectral representation which can be used to
represent their Gram matrix. Based on this representation, the proposed algorithm learns
the Gram matrix by using a Gibbs sampler to obtain the structure of such matrix.

2.1. Stationary Kernels

Stationary kernels [20] are defined as κ(xxx, xxx′) = κs(xxx − xxx′). An important factor in
such definition is its dependency on the lag vector which can be interpreted as general-
izations of the Gaussian probability distribution functions which are used to represent
distributions [15]. Additionally, Bochner [21] proved that a symmetric function κs is a
positive definite in RD, if and only if, it has the form:

κs(xxx− xxx′) =
∫
RD

e2πiωωωT(xxx−xxx′)dµ(ωωω), (1)

where µ is a positive finite measure. Equation (1) is called the spectral representation of κs.
Now, suppose µ has a density F(ω) and τττ = xxx− xxx′. Thus, it is possible to obtain:

κ(τττ) =
∫

F(ωωω)e2πiωωωTτττdωωω,

F(ωωω) =
∫

κ(τττ)e−2πiωωωTτττd(τττ).

In other words, the kernel function κs and its spectral density F are Fourier dual of each
other. Furthermore, if κ(000) =

∫
F(ωωω)dωωω and F is a probability measure, the unique
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condition to define a valid Gaussian process is κ(000) = 1. In other words, we need this
condition to ensure that the kernel κ and the function f are correctly correlated.

2.2. Locally Stationary Kernels

Extending on the previous concept, Silverman [22] defines the locally stationary
kernels as:

κ(xxx, xxx) := κ1

(
xxx + xxx′

2

)
κs(xxx− xxx′), (2)

where κ1 is a non negative function and κs is a stationary kernel. This type of kernels
increase the power of the representation by introducing a possible variance into the final
calculated similarity through the use of κ1. Furthermore, we can see from Equation (2)
that the Locally Stationary Kernels include all stationary kernels. In order to see this, we
make κ1(·) = c, where c is a positive constant, then κ(xxx, xxx) := cκs(xxx − xxx′), a multiple of
all stationary kernels. Furthermore, the variance of locally stationary kernels is given by
xxx = xxx′, thus, the variance is defined as:

κ(xxx, xxx) = κ(xxx)κ(000) = κ1(xxx),

This means that the variance of the Locally Stationary Kernels relies in the positive definite
function κ1.

The spectral representation of a locally stationary kernel is also given by [22], and it is
defined as:

κ1

(
xxx + xxx′

2

)
κs(xxx− xxx′) =

∫
X

∫
X

exp

(
i
ωωωT

1 xxx−ωωωT
2 xxx′

2

)
f1

(
ωωω1 +ωωω2

2

)
f2(ωωω1 −ωωω2)dωωω1dωωω2.

Furthermore, by setting xxx = xxx′ = 000, we can get:

κ(000,000) =
∫
X

∫
X

f1

(
ωωω1 +ωωω2

2

)
f2(ωωω1 −ωωω2)dωωω1dωωω2.

Consequently, in order to define a locally stationary kernel, f1 and f2 must be integrable
functions. Additionally, an important fact is that the kernel κ has a defined inverse, given by:

f1

(
ωωω1 +ωωω2

2

)
f2(ωωω1 −ωωω2) =

1
(2π)2

∫
X

∫
X

κ1

(
xxx1 + xxx′

2

)
κ2(xxx− xxx′)dxxxdxxx′.

Moreover, f2 is the Fourier transform of κ1 and f1 is the Fourier transform of κ2. Thus, if
we introduce two dummy variables uuu = (xxx + xxx′)/2 and vvv = xxx− xxx′, it is possible to obtain:

f1(ωωω1) =
1

2π

∫
X

exp(−ivvvTωωω1)κ2(vvv)dvvv

f2(ωωω2) =
1

2π

∫
X

exp(−iuuuTωωω2)κ1(uuu)duuu

and

κ1(uuu) =
∫
X

exp(iuuuTωωω2) f2(ωωω2)dωωω2

κ2(vvv) =
∫
X

exp(ivvvTωωω1) f1(ωωω1)dωωω1,

with this in mind, it is possible to use the ideas in [16] to approximate the locally station-
ary kernels.
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3. Approximating Stationary Kernels

Rahimi [16] makes use of (1) to approximate stationary kernels. This is, if we define
ζωωω = exp(iωωωTxxx) ; then, Equation (1) becomes:

κ(xxx− xxx′) =
∫
X

f (ωωω)exp(iωωωT(xxx− xxx′))dωωω = Eωωω [ζωωω(xxx)ζ∗ωωω(xxx
′)]

where ω ∼ f . Now, using Monte Carlo integration and taking ωωω j ∼ f , the kernel can be
approximated as

κ(xxx− xxx′) ≈ 1
M1

M1

∑
j=1

ζωj(xxx)ζ
∗
ωj
(xxx′). (3)

In particular, if the kernel is real-valued; then, Equation (3) becomes

κ(xxx− xxx′) ≈ 1
M1

φφφT(xxx)φφφ(xxx′), (4)

where φφφ(sss) = [cos(ωωωT
1 sss), . . . , cos(ωωωT

M1
sss), sin(ωωωT

1 sss), . . . , sin(ωωωT
M1

sss)]. A side effect of (4) is
that we can compute f (xxx) as f (xxx) = ∑n

i=1 αiκ(xxxi − xxx). This means that function f can be
approximated as

f (xxx) ≈ 1
M

n

∑
i=1

αiφφφ(xxxi)
Tφφφ(xxx) = γγγTφφφ(xxx)

where γγγ = 1
M ∑n

i=1 αiφφφ(xxxi) is a constant. This constant makes possible to avoid some of the
operations to obtain the Gram matrix.

3.1. Approximating Locally Stationary Kernel

As we know, κ2 is a stationary kernel which allows to approximate κ2 as presented in
Section 3. Now, to obtain the locally stationary kernel, we would like to approximate κ1.
For this, we define ζ ′vvv(xxx) = exp(ivvvTxxx/2):

κ1

(
xxx + xxx′

2

)
=
∫
RD

exp
(

ivvvT
(

xxx + xxx′

2

))
f2(vvv)dvvv = Evvv

[
ζ ′vvv(xxx)ζ

′
vvv(xxx)

]
,

where vvv ∼ f2. Using Monte Carlo integration and taking vvvk ∼ f2, for k = 1, 2, . . . , M2, it is
possible to approximate κ1 as:

κ1

(
xxx + xxx′

2

)
≈ 1

M2

M2

∑
k=1

ζ ′vvvk
(xxx)ζ ′vvvk

(
xxx′
)
. (5)

To approximate the output of the locally stationary kernel, we can use Equations (3) and (5)
as follows:

κ(xxx, xxx′) = κ1

(
xxx + xxx′

2

)
κ2(xxx− xxx′)

≈ 1
M1M2

(
M2

∑
k=1

exp

(
i
vvvT

k xxx
2

)
exp

(
i
vvvT

k xxx′

2

))(
M1

∑
n=1

exp
(

iωωωT
n~x
)

exp
(
−iωωωT

n xxx′
))

=
1

M1M2

M1

∑
n=1

M2

∑
k=1

exp
(

i
(vvvk

2
+ωωωn

)T
xxx
)

exp
(

i
(vvvk

2
−ωωωn

)T
xxx′
)

where ωωωn ∼ f1 and vvvk ∼ f2. In particular, if our kernel is real-valued, then previous
equation becomes

κ1

(
xxx + xxx′

2

)
κ2
(
xxx− xxx′

)
≈ 1

M1M2
ϕϕϕ(xxx)Tϕϕϕ−(xxx′) (6)
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where

ϕϕϕ(sss) =

cos

((
vvv1
2

+ωωω1

)T
sss

)
, . . . , cos

( vvvM2
2

+ωωωM1

)T
sss

, sin

((
vvv1
2

+ωωω1

)T
sss

)
, . . . , sin

( vvvM2
2

+ωωωM1

)T
sss


ϕϕϕ− (sss) =

cos

((
vvv1
2
−ωωω1

)T
sss

)
, . . . , cos

( vvvM2
2
−ωωωM1

)T
sss

,− sin

((
vvv1
2
−ωωω1

)T
sss

)
, . . . ,− sin

( vvvM2
2
−ωωωM1

)T
sss



and ωωωn ∼ f1, vvvk ∼ f2. Thus, the advantage of representing the locally stationary kernel as
Equation (6) is the possibility of computing f (xxx) as:

f (xxx) =
N

∑
j=1

αiκ(xxxj, xxx) ≈ 1
M1M2

N

∑
j=1

αiϕϕϕ
T(xxxj)ϕϕϕ

−(xxx) = ψψψTϕϕϕ−(xxx)

where ψψψ = 1
M1 M2

∑N
j=1 αiϕϕϕ

T(xxxj). Given this representation, we only need to compute ψψψ
once, avoiding the use of total Gram Matrix representation.

Now, it is necessary to remark an interesting property of using this representation. It
is possible to say that |ϕϕϕT(xxx)ϕϕϕ−(xxx′)− κ(xxx, xxx′)| ≤ C (using the Hoeddfing’s inequality [23])
almost everywhere. Given this, it is possible to obtain the following inequality: given any
ε > 0, and taking samples M1 and M2 from κ2 and κ1 respectively; then

P
(
|ϕϕϕT(xxx)ϕϕϕ(xxx′)− κ(xxx, xxx′)| ≥ ε

)
≤ 2 exp

(
− M1M2ε2

2(σ2 + 2ε2/3)

)
.

Therefore, the proposed representation of the kernel allows to obtain a good approxi-
mation to ϕϕϕT(xxx)ϕϕϕ−(xxx′). Furthermore, the following theorem gives a tighter bound mak-
ing possible to say: Given a larger ε, the less likely is the possibility of having a larger∣∣ϕϕϕT(xxx)ϕϕϕ(xxx′)− κ(xxx, xxx′)

∣∣.
Theorem 1. Approximation of a locally stationary kernel.

LetM be a compact subset of RD with diameter Diam(M), and σ2 > ε/2 then the
approximation of the kernel is given by:

P

(
sup
xxx,xxx′

∣∣∣ϕϕϕT(xxx)ϕϕϕ(xxx′)− κ(xxx, xxx′)
∣∣∣ ≥ ε

)
<

2σ2

ε

(
1 + 4Diam(M) exp

(
− M1M2ε2

4D(σ2 + 2ε2/3)

))

Proof of Theorem 1. Define s(xxx, xxx′) ≡ ϕϕϕT(xxx)ϕϕϕ−(xxx′), a locally stationary kernel
κ(xxx, xxx′) ≡ κ1

(
xxx+xxx′

2

)
κ2(xxx − xxx′) and f (xxx, xxx′) = |s(xxx, xxx′) − κ(xxx, xxx′)| ≤ 2. Then, it is possi-

ble to say that E[ f (xxx, xxx′)] = 0. Given that κ2 is shift invariant, it is possible to define
∆− ≡ xxx− xxx′ ∈ M−. Now, given that κ1 can be interpreted as the mean, it is possible to de-
fine ∆+ ≡ xxx+xxx′

2 ∈ M+. Consequently, it is possible to define κ(∆−, ∆+) = κ1(∆+)κ2(∆−).
LetM⊂ RD a compact bounded subset, it is known that Diam(M−) ≤ 2Diam(M) and
Diam(M+) ≤ 2Diam(M). With this in mind, it is possible to define ε-net that covers

M− ×M+ at most T =
(

4Diam(M)
r

)2D
balls of radius r. Let {∆−,i, ∆+,i}T

i=1 denote the
center of these T balls, and let L f be the Lipschitz constant of f . Therefore, we have that
| f (∆−, ∆+)| < ε for all ∆−, ∆+ ∈ M− ×M+. Then, f (∆−,i, ∆+,i) < ε

2 and L f < ε
2r for

all i. Now, L f = ‖∇ f (∆∗+,i, ∆∗−,i)‖, where (∆∗+, ∆∗−) = max∆+ ,∆−∈M−×M+ ‖∇ f (∆+, ∆−)‖.
Additionally, we know E[∇s(∆+, ∆−)] = ∇κ(∆+, ∆−). Thus, it is possible to say:

E[L2
f ] = E[‖∇s(∆∗+, ∆∗−)− κ(∆∗+, ∆∗−)‖2] = E[‖s(∆∗+, ∆∗−)‖2] +E[‖κ(∆∗+, ∆∗−)‖2]

Now, given that E[‖s(∆∗+, ∆∗−)‖2] and E[‖κ(∆∗+, ∆∗−)‖2] are positive,

E[‖s(∆∗+, ∆∗−)‖2]−E[‖κ(∆∗+, ∆∗−)‖2] ≤ E[‖s(∆∗+, ∆∗−)‖2] = σ2
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with E[L2
f ] = σ2 and E[L f ] = σ, where σ2 is the second momentum of Fourier transform of

κ. Thus, using the Markov’s inequality,

P
(

L f ≥ t
)
≤

E[L f ]

t
,

P
(

L f ≥
ε

2r

)
≤ 2rσ2

ε

Finally, using the Boole’s inequality we have

P
(
∪T

i=1| f (∆∗+,i, ∆∗−,i)| ≥
ε

2

)
≤ 2T exp

(
− M1M2ε2

2(σ2 + 2ε2/3)

)
With this at hand, it is possible to say:

P

(
sup
xxx,xxx′

∣∣∣ϕϕϕT(xxx)ϕϕϕ(xxx′)− κ(xxx, xxx′)
∣∣∣ ≥ ε

)
≤ 1− 2

(
4Diam(M)

r

)2D
exp

(
− M1M2ε2

2(σ2 + 2ε2/3)

)
− 2rσ2

ε

Meaning that we need to solve the following equation

1− k1r−2D − k2r, (7)

where

k1 = 2(4Diam(M))2D exp
(
− M1M2ε2

2(σ + 2ε2/3)

)
,

k2 =
2σ2

ε

The solution of (7) is given by r =
(

k1
k2

) 1
2D . Then, plugging back this result,

1− k1

((
k1

k2

) 1
2D
)−2D

− k2

(
k1

k2

) 1
2D

.

After some development, it is possible to obtain:

k1

((
k1

k2

) 1
2D
)−2D

=
2σ2

ε
, k2

(
k1

k2

) 1
2D

= 2
(

σ2

ε

) 2D−1
2D

4Diam(M) exp
(
− M1M2ε2

4D(σ2 + 2ε2/3)

)
Using this equality, we get (8) and (9).

P

(
sup
xxx,xxx′

∣∣∣ϕϕϕT(xxx)ϕϕϕ(xxx′)− κ(xxx, xxx′)
∣∣∣ ≤ ε

)
≥ 1− 2σ2

ε
− 2
(

σ2

ε

) 2D−1
2D

4Diam(M) exp
(
− M1M2ε2

4D(σ2 + 2ε2/3)

)
(8)

P

(
sup
xxx,xxx′

∣∣∣ϕϕϕT(xxx)ϕϕϕ(xxx′)− κ(xxx, xxx′)
∣∣∣ ≥ ε

)
≤ 2σ2

ε
+ 2
(

σ2

ε

) 2D−1
2D

4Diam(M) exp
(
− M1M2ε2

4D(σ2 + 2ε2/3)

)
(9)

Now, if σ2 > ε/2, then 2σ2

ε + 2σ2

ε

2D−1
2D x < 2σ2

ε (1 + x). Finally:

P

(
sup
xxx,xxx′

∣∣∣ϕϕϕT(xxx)ϕϕϕ(xxx′)− κ(xxx, xxx′)
∣∣∣ ≥ ε

)
<

2σ2

ε

(
1 + 4Diam(M) exp

(
− M1M2ε2

4D(σ2 + 2ε2/3)

))
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3.2. Learning Locally Stationary Kernel, GaBaSR

In this section, we explain how to learn the proposed stationary kernel. This learning
algorithm is based on the work presented in [18], named Bayesian Nonparametric Kernel
(BaNK) algorithm. However, given its greatest representation capabilities, we propose
learning a Gaussin mixture distribution to improve the performance of the algorithm. For
this reason, we name this model as Gaussian Mixture Bayesian Nonparametric Kernel
Learning using Spectral Representation (GaBaSR). Furthermore, to learn the Gaussian
mixture, the proposed algorithm uses ideas proposed in [15], together with a different way
to learn the kernel in the classification task. Additionally, one of its main advantages is the
use of vague/non-informative priors, [15,24], as well as having fewer hyperparameters for
learning the kernels.

3.2.1. GaBaSR Algorithm

Based in the previous ideas, we have the following high level description of the algorithm.

1. Learn all the parameters for the Gaussian mixture ρ(ωωω):

• Let {πk, µµµk, Σk}K
k=1 be the current parameters of the Gaussian Mixture Model

(GMM), where πk is the prior probability of the kth component, µµµk is the mean
and Σk is the covariance matrix of the kth component, then the GMM is given by
ρ(ωωω) = ∑K

k=1 πkN (xxx|µµµk, Σk), here the output will be the new sample parameters
for the GMM ρ(ωωω).

2. Take M samples from ρ(ωωω), i.e., ωωωi ∼ ρ(ωωω), i = 1, 2, ..., M for the spectral representation.

• Here the input are the parameters of the GMM, and the frequencies
ωωωi, i = 1, ..., M, and the output will be the new frequencies sampled.

3. Approximate the kernel as

κ1

(
xxx + xxx′

2

)
κ2
(
xxx− xxx′

)
≈ 1

M1M2
ϕϕϕ(xxx)Tϕϕϕ−(xxx′)

4. Predict the new samples:

(a) If the task is a regression use:

f (xxx) = N (βββTϕϕϕ(xxx), σ2)

(b) If the task is a classification use:

f (xxx) =
1

1 + exp(−βββTϕϕϕ(xxx))

In this work, we use a Markov Chain Monte Carlo (MCMC) algorithm, the Gibbs
sampler [25], to learn and predict new inputs. The final entire process is described in the
following subsections.

3.2.2. Learning the Gaussian Mixture

In order to learn the parameters Zi, µk, and Σk of the Gaussian mixture, we take the
following steps:

1. First sample Zi:
Zi indicates the component of the Gaussian Mixture from which the random frequency
ωωωi is drawn.
For i = 1, 2, ..., M do:

(a) The element ωωωi belongs to class k = 1, 2, ..., K with probability:

p(zi = k|ZZZ−i, α, µµµk, Λk) ∝
N−i,k

N − 1 + α
|Λk|1/2e−1/2(ωωωi−µµµk)

TΛk(ωωωi−µµµk))
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(b) The element ωωωi belongs to an unrepresented class, with probability:

p(zi = k′|α, µµµk′ , Λk′) ∝
α

N − 1 + α
|Λk′ |1/2e−1/2(ωωωi−µµµk′ )

TΛk(ωωωi−µµµk′ )),

where the parameters µµµk′ and Λk′ are sampled from their priors,

µµµk ∼N (λλλ, R−1),

Λk ∼W(β, W−1),

where λλλ, R−1, β and W−1 are vague/non-informative priors.

2. Second sample µµµk and Σk:
For k = 1, 2, ..., K, sample µµµk and Σk from:

µµµk ∼N
(
(Nkw̄wwkΛj +λλλR)(NkΛk + R)−1, (NkΛk + R)−1

)
,

Λk ∼W

β + Nk + D− 1,

(
(βW)−1 +

N

∑
i=1

(
δ(zi = k)(ωωωi −µµµk)(ωωωi −µµµk)

T
))−1

.

3.2.3. Sampling to approximate the kernel

As we established earlier, the kernel can be represented by:

κ(xxx− xxx′) ≈ 1
M

ϕϕϕT(xxx)ϕϕϕ(xxx′),

where ϕϕϕ(sss) = [cos(ωωωT
1 sss), . . . , cos(ωωωT

Msss), sin(ωωωT
1 sss), . . . , sin(ωωωT

Msss)], and ωωωi, i = 1, 2, 3, ..., M is
a sampled from the learned Gaussian Mixture. In order to approximate the kernel, for each
random representation, we take a candidate frequency with probability r = min(1, α), where

α =
P(yyy|X, W−j, ωωω∗j )

P(yyy|X, W)

Now, if the task is a regression, then Equation (10) is used. With classification, Equation (11)
is used. Then, we take a random number u ∼ U(0, 1) and accept ωωω∗j if u < r; otherwise
reject ωωω∗j . For this, it is clear that we need to sample ωωω∗j from:

ωωω∗j ∼ N (ωωω∗j |µµµZj , ΣZj)

In order to compute P(yyy|X, Ω), it is necessary to identify what type of task is being solved,
regression or classification.

1. In the case of a regression:

P(yyy|X, Ω) ∝

√
|VN |
|V0|

ba0
0

baN
N

Γ(aN)

Γ(a0)
, (10)

where

wwwN = VN(V−1
0 www0 + Φ(X)Tyyy)

VN = (V0 + Φ(X)TΦ(X))−1

aN = a0 +
N
2

bN = b0 +
1
2
(wwwT

0 V−1
0 www0 + yyyTyyy−wwwT

NV−1
N wwwN)

Φ(X) = (ϕϕϕ(xxx1)
T , ..., ϕϕϕ(xxxN)

T)T
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2. In the classification task, an approximation of the logistic regression is used,

p(yi = C1|xxx, X, W) ≈ sigm
(

wwwT
Nϕϕϕ(xxx)

)
,

where sigm(a) = 1
1+exp(−a) . Thus, the likelihood is approximated by:

p(yyy|X, W) =
N

∏
i=1

p(yi = C1|xxx, X, W)yi (1− p(yi = C1|xxx, X, W))1−yi

≈
N

∏
i=1

(
sigm

(
wwwT

Nϕϕϕ(xxxi)
))yi

(
1− sigm

(
wwwT

Nϕϕϕ(xxxi)
))1−yi

(11)

where,

wwwN = VN(V−1
0 www0 + Φ(X)Tyyy)

VN = (V0 + Φ(X)TΦ(X))−1

3. Computing α: the following criteria is used to accept a sample ωωω∗j with probability r:

r = min(1, α),

3.2.4. Learning Locally Stationary Kernels

In order to learn locally stationary kernels, we use a similar process, but we compute
ϕϕϕ(x) by using Equation (6) instead of Equation (4). Equation (6) needs the variables
ωωωi, i = 1, 2, ..., M1 (approximating the κ2) and vvvk, k = 1, 2, ..., M2 (approximation for κ1). To
learn the variables in κ2 we use the algorithm showed; however to learn the variables to
approximate κ1, we approximate κ1 as a infinite Gaussian mixture. This means that we
need to learn the variables Z′j, µµµ′k, Σ′k and vvvk that approximate the function κ1. Learning
these variables is very similar on how we learn them from the stationary kernel with a
slight modification:

1. Sample Z′j: Sampling Z′j is analogous to learning the stationary kernel but with vvvk
instead of ωωωk.

2. Sample µµµ′k, Σ′k: This sample is analogous to the previous section but with vvvk instead
of ωωωk.

3. Sample vvvk: To sample vvvk, we sample from

vvv∗k ∼ N (vvv∗k |µµµ
′
Z′j

, Σ′Z′j
).

In order to compute P(yyy|X, W, V), we use ϕϕϕ(x) as a locally stationary kernel instead
of a stationary kernel. This simple change allows to add more learning capabilities
to GaBaSR.

3.2.5. Complexity of GaBaSR

• Complexity of sampling all Zi: The complexity of sampling one Zi is O(KMd). Thus,
the complexity of sampling all Zi for i = 1, 2, ..., M is bounded by O(KM2d), where d
is the dimension of the input vectors, M is the number of samples to approximate the
kernel and K is the number of Gaussian’s found by the algorithm.

• Complexity of sampling all µµµk and Σk:

– Complexity of computing µµµk: To take a sample we need to compute
(Nkw̄wwkΛj +λλλR)(NkΛk + R)−1 which takes O(d + d2). Also, we need to compute
(NkΛk + R)−1 which takes O(d3), so the complexity is bounded by O(d3).
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– Complexity of computing Λk: To take a sample we need to compute (βW)−1

which takes O(d3). After after that we need to compute the inverse of a matrix of
d× d which takes O(d3), so this step is bounded by O(d3).

– Complexity of computing both µµµk and Λk is bounded by O(d3).

We need to take K samples, so sample all µµµk and Σk, k = 1, 2, ..., K is bounded by O(Kd3).
• Complexity of P(yyy|X, W−j, ωωω∗j ): The complexity of computing P(yyy|X, W−j, ωωω∗j ) (doesn’t

matter if it is a regression or classification task) is bounded by O(NdM + M2N + M3).
Since the complexity of computing the matrix Φ(X) is O(NdM); then, the complexity
of computing VN is O(M2N + M3). This means that the complexity of taking M
samples (ωωω1, ωωω2, ..., ωωωM) is bounded by O(NdM2 + M3N + M4).

• Complexity of one swap (loop) of the algorithm: We sum the three complexities and
we have: O(KM2d + Kd3 + NdM2 + M3N + M4) = O(M2d(K + N) + Kd3 + M3N +
M4) = O(M3N) because N >> M.

• Complexity of s swaps (loops) of the algorithm: If we make s swaps, then the com-
plexity of all the GaBaSR is bounded by O(sM3N).

4. Experiments

In this work, the experiments are performed without data cleaning i.e. no normaliza-
tion or removal of outliers is done. Additionally, we use vague/non-informative priors
to test the robustness of GaBaSR. We use the following variables a0 = 0.001, b0 = 0.001,
V0 = 0.000001 ∗ I2M, where I2M is the identity matrix of dimension 2M× 2M.

Using non-informative priors together with the fact that there is no need of prepos-
sessing the data, can be seen as one of the many the advantage of GaBaSR. Finally, the
main idea of the kernel methods is to give more power to linear machines via the kernel
trick. For this reason, we designed the experiments to compare GaBaSR with pure linear
machines. Unfortunately, when trying to collect the original datasets by Oliva et al. [18],
we found that they are no longer available online. Thus, the comparison between GaBaSR
and Oliva’s algorithm could not be performed.

4.1. Classification

The first dataset is the XOR problem in 2D. We set the number of samples to N = 6000.
After five swaps with 300 frequencies (M), the proposal got an AUC of 0.98. The result of
this experiment is shown in Figure 1.

Figure 1. The XOR problem with the probability of belonging to class 1 (orange). If the probability is
more than 0.5, then the sample belongs to class 1 otherwise belongs to class 2.
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All the results of the GaBaSR algorithm uses 500 samples (M) and 5 swaps each one.
For classification problem we use some small datasets, Breast Cancer, Credit-g, Blood
Transfusion, Electricity, Egg-eye-state and Kr vs Kp. The breast cancer dataset it comes
from the UCI repository [26] dataset, this dataset is the breast cancer wisconsin dataset.
The Credit-g dataset comes from the UCI repository [26] and classifies people by a set
of attributes as good or bad credit risk. The Electricity Dataset we downloaded from
openml.org and contains data from the Australian New South Wales. Dataset egg-eye-state
we downloaded from UCI, this describes if the eye is closed (1) or open (0). Kr Vs Kp
dataset was downloaded from UCI, is the King Rook vs King Pawn and it’s from the
King+Rook’s side to move and the classification is see if win or not win.

Tables 1–3 show the results when we try to solve the problem using perceptron, SVM
and GaBaSR, respectively. From those tables, we can see that the in the problems of Kr vs.
Kp and Electricity GaBaSR has "similar" AUC to SVM but it is important to notice that in
blood transfusion GaBaSR performs better than the perceptron and SVM.

In other words, if we compare Table 3 with Table 2, it is possible to observe that
the results, in general, for SVM Classification are better than for GaBaSR Classification.
AUC equal to 0.5 indicates that the classifier is random, so it does not fulfil its function.
Comparing Table 3 with Table 2, we can conclude that SVM Classification works properly
for all tested datasets except Blood Transfusion, and GaBaSR Classification works properly
only for Kr vs. Kp and Electricity. Results for Blood Transfusion obtained by GaBaSR are
better than for SVM but still not satisfactory. A bad result is also a result that has its value.

In general we had a good accuracy, in most of the cases we had an accuracy above
0.8. For example in the dataset for the breast cancer, we had an accuracy of 0.89, which
in general is a good accuracy. In the dataset credit-g we had 0.91 of accuracy using only
500 frequencies in 5 swaps.

Table 1. Results of the Perceptron.

Dataset N M Swaps AUC

Breast Cancer
[26] 569 500 5 0.96480

Credit-g [26] 1000 500 5 0.44576
Blood

Transfusion [27] 748 500 5 0.37572

Electricity [28] 45,312 500 5 0.68576
Egg-eye-state

[26] 14,980 500 5 0.61635

Kr vs Kp [26] 3196 500 5 0.99357

Table 2. Results SVM Classification.

Dataset N M Swaps AUC

Breast Cancer
[26] 569 500 5 0.934656

Credit-g [26] 1000 500 5 0.85282
Blood

Transfusion [27] 748 500 5 0

Electricity [28] 45,312 500 5 0.76076
Egg-eye-state

[26] 14,980 500 5 0.692924

Kr vs Kp [26] 3196 500 5 0.96970
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Table 3. Results of GaBaSR Classification.

Dataset N M Swaps AUC

Breast Cancer
[26] 569 500 5 0.51348

Credit-g [26] 1000 500 5 0.5142
Blood

Transfusion [27] 748 500 5 0.54063

Electricity [28] 45,312 500 5 0.74991
Egg-eye-state

[26] 14,980 500 5 0.519743

Kr vs Kp [26] 3196 500 5 0.9045

4.2. Regression

For the regression experiments, we use a synthetic data set in our regression attempt.
For this, samples are taken from the Gaussian Mixture distribution shown in Equation (12).
After that, M = 250, and βββ ∼ N (0, I501) are set. In fact, the number 501 is because the
extended vector is used, which takes samples from yi ∼ N (ϕϕϕρ(xi)

Tβββ), where βββρ represents
the random features from ρ, i.e. ωi ∼ ρ(ω), i = 1, 2, ..., M. Furthermore, an instance of this
problem is shown in Figure 2. Also, 250 samples and vague/non-informative prior to learn
the function are used, and the result is shown in Figure 3.

p(ω) = π1 p
(

ω|0,
1
22

)
+ π2 p

(
ω|3π

4
,

1
22

)
+ π3 p

(
ω|11π

8
,

1
42

)
(12)

with π1 = π2 = π3 =
1
3

(13)

All the results of the GaBaSR algorithm uses 500 samples (M) and 5 swaps each
one. For regression problems we use some small datasets, Mauna LOA CO2, California
Houses, Boston house-price, and Diabetes. The Mauna LOA CO2 [29] from the global
monitoring laboratory this collects the information of the monthly mean CO2, as we can
see from Figure 4, this data it is stationary, has some repetitions and increments. The
California Houses is a set of 20,640 rows with 8 columns. The Boston house price dataset
was collected in 1978 from various suburbs in Boston. Diabetes Dataset has ten variables
and the progression of the disease one year after.

In this section we show three tables of results, Table 4 shows the results of our algo-
rithm. Tables 5 and 6 we present the results of the linear regression and the Support Vector
Machine with linear kernel, respectively.

In this subsection, the experiments are performed with simple data and the result of a
simple linear regression are shown. The results are shown in Tables 4 and 5.

As it can be seen, an important result is the given by the Mauna LOA CO2 dataset. This
dataset contains data from the year 1958 to 2001. Thus, for this experiment the algorithm
is trained with M = 250 and performing five swaps. After the model has been trained, to
learn stationary kernels, it is possible to asses the performance of the model. For example,
the achieved MSE is 0.6052 which helps at the estimation ot the CO2 outputs. For example,
at the sample 2002.13, we have prediction 376.873 where the real measure for this value is
373.08. The total results of Mauna LOA CO2 are shown in Figure 4 and Table 4.



Appl. Sci. 2023, 13, 2473 13 of 16

Figure 2. An instance of the samples taken from Equation (12).

Figure 3. The real vs. predicted using GaBaSR.
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Figure 4. Mauna LOA CO2 from 1958 to 2001 and the prediction.

We use the following datasets: (1) Mauna LOA CO2 from [29], (2) California houses
from [30], (3) Boston house-price from [30] and Diabetes from [30]

Table 4. Results GaBaSR Regression.

Dataset M Swaps MSE R2

Mauna LOA
CO2

250 5 0.60522 0.99789

California
houses 250 5 2.91313 −1.16892

Boston
house-price 250 5 3.10931 0.97060

Diabetes 250 5 5918263.63330 −869.13210

Table 5. Results of Linear Regression.

Dataset MSE R2

Mauna LOA CO2 6.86 0.98
California houses 0.55 0.59

Boston house-price 18.92 0.78
Diabetes 3141.62 0.51

Table 6. Results Linear Regression SVM.

Dataset MSE R2

Mauna LOA CO2 758.08513 −1.60705
California houses 2.00777 −0.50784

Boston house-price 47.66904 0.43533
Diabetes 8094.08752 −0.36496

5. Conclusions

Although GaBaSR’s result are promising, there are still quite a lot of work to do. For
example, sampling the ωωω j is quite slow, and there is a need to update the matrix Φ for only
one sample. Oliva et al. [18] states that this can be done using low-rank updates. However,
he does not present any procedure to perform such task, the low-rank updates are being
consider for the next phase of GaBaSR. Thus, it is necessary to research how many samples
M are required in order to obtain a low rank approximation.



Appl. Sci. 2023, 13, 2473 15 of 16

In the experiments, it is possible to observe that GaBaSR is more accurate when
performing a classification task rather than a regression task. This is an opportunity to
improve the regression model. It means that the regression model needs more research
to improve its performance or perhaps that a different model to learn the regression task
is needed.
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SDP Semi-Definite Programming
SMO Sequential Minimal Optimization
BaNK Bayesian Nonparametric Kernel
GaBaSR Gaussian Mixture Bayesian Nonparametric Kernel Learning using Spectral Representation
GMM Gaussian Mixture Model
MCMC Markov Chain Monte Carlo
UCI University of California, Irvine

References
1. Smola, A.J.; Schölkopf, B. Learning with Kernels; Citeseer: Princeton, NJ, USA, 1998; Volume 4.
2. Soentpiet, R. Advances in Kernel Methods: Support Vector Learning; MIT Press: Cambridge, MA, USA, 1999.
3. Anand, S.S.; Scotney, B.W.; Tan, M.G.; McClean, S.I.; Bell, D.A.; Hughes, J.G.; Magill, I.C. Designing a kernel for data mining.

IEEE Expert 1997, 12, 65–74. [CrossRef]
4. Schölkopf, B.; Smola, A.; Müller, K.R. Kernel principal component analysis. In Proceedings of the International Conference on

Artificial Neural Networks, Lausanne, Switzerland, 8–10 October 1997; pp. 583–588.
5. Zien, A.; Rätsch, G.; Mika, S.; Schölkopf, B.; Lengauer, T.; Müller, K.R. Engineering support vector machine kernels that recognize

translation initiation sites. Bioinformatics 2000, 16, 799–807. [CrossRef] [PubMed]
6. Tipping, M.E. The relevance vector machine. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA,

USA, 2000; pp. 652–658.
7. Junli, C.; Licheng, J. Classification mechanism of support vector machines. In Proceedings of the WCC 2000-ICSP 5th International

Conference on Signal Processing Proceedings 16th World Computer Congress, Beijing, China, 21–25 August 2000; Volume 3,
pp. 1556–1559.

8. Bennett, K.P.; Campbell, C. Support vector machines: Hype or hallelujah? Acm Sigkdd Explor. Newsl. 2000, 2, 1–13. [CrossRef]
9. Gönen, M.; Alpaydın, E. Multiple kernel learning algorithms. J. Mach. Learn. Res. 2011, 12, 2211–2268.
10. Lanckriet, G.R.; Cristianini, N.; Bartlett, P.; Ghaoui, L.E.; Jordan, M.I. Learning the Kernel Matrix with Semidefinite Programming.

J. Mach. Learn. Res. 2004, 5, 27–72.
11. Hoi, S.C.; Jin, R.; Lyu, M.R. Learning Nonparametric Kernel Matrices from Pairwise Constraints. In Proceedings of the 24th

International Conference on Machine Learning ACM, Corvallis, OR, USA, 20–24 June 2007; pp. 361–368.

http://doi.org/10.1109/64.585106
http://dx.doi.org/10.1093/bioinformatics/16.9.799
http://www.ncbi.nlm.nih.gov/pubmed/11108702
http://dx.doi.org/10.1145/380995.380999


Appl. Sci. 2023, 13, 2473 16 of 16

12. Cvetkovic, D.M.; Doob, M.; Sachs, H. Spectra of Graphs; Academic Press, New York, NY, USA, 1980; Volume 10.
13. Platt, J. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines; Microsoft: Redmond, WA, USA,

1998.
14. Bach, F.R.; Lanckriet, G.R.; Jordan, M.I. Multiple Kernel Learning, Conic Duality, and the SMO Algorithm. In Proceedings of the

Twenty-First international Conference on Machine Learning ACM, Banff, AB, Canada, 4–8 July 2004; p. 6.
15. Williams, C.K.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006.
16. Rahimi, A.; Recht, B. Random features for large-scale kernel machines. In Proceedings of the Advances in Neural Information

Processing Systems, Vancouver, BC, Canada, 3–5 December 2007, pp. 1177–1184.
17. Ghiasi-Shirazi, K.; Safabakhsh, R.; Shamsi, M. Learning translation invariant kernels for classification. J. Mach. Learn. Res. 2010,

11, 1353–1390.
18. Oliva, J.B.; Dubey, A.; Wilson, A.G.; Póczos, B.; Schneider, J.; Xing, E.P. Bayesian Nonparametric Kernel-Learning. In Proceedings

of the Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 1078–1086.
19. Rasmussen, C. The infinite Gaussian mixture model. In Advances in Neural Information Processing Systems; MIT Press: Cambridge,

MA, USA, 2000, pp. 554–560.
20. Genton, M. Classes of kernels for machine learning: A statistics perspective. J. Mach. Learn. Res. 2001, 2, 299–312.
21. Bochner, S. Harmonic Analysis and the Theory of Probability; California University Press: Berkeley, CA, USA, 1955.
22. Silverman, R. Locally stationary random processes. IRE Trans. Inf. Theory 1957, 3, 182–187. [CrossRef]
23. Hoeffding, W. Probability inequalities for sums of bounded random variables. In The Collected Works of Wassily Hoeffding; Springer:

Berlin, Germany, 1994; pp. 409–426.
24. Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; Chapman and Hall/CRC: Boca

Raton, FL, USA, 2013.
25. Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal.

Mach. Intell. 1984, 6, 721–741. [CrossRef] [PubMed]
26. Dua, D.; Graff, C. UCI Machine Learning Repository. Open J. Stat. 2017, 10.
27. Yeh, I.C.; Yang, K.J.; Ting, T.M. Knowledge discovery on RFM model using Bernoulli sequence. Expert Syst. Appl. 2009,

36, 5866–5871. [CrossRef]
28. Gama, J. Electricity Dataset. 2004. Available online: http://www.inescporto.pt/~{}jgama/ales/ales_5.html. (accessed on 6

August 2019).
29. Carbon, D. Mauna LOA CO2. 2004. Available online: https://cdiac.ess-dive.lbl.gov/ftp/trends/CO2/sio-keel-flask/maunaloa_

c.dat. (accessed on 6 August 2019).
30. Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.;

et al. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, Prague, Czech Republic, 23–27 September 2013; pp. 108–122.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIT.1957.1057413
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://www.ncbi.nlm.nih.gov/pubmed/22499653
http://dx.doi.org/10.1016/j.eswa.2008.07.018
http://www.inescporto.pt/~{}jgama/ales/ales_5.html
https://cdiac.ess-dive.lbl.gov/ftp/trends/CO2/sio-keel-flask/maunaloa_c.dat
https://cdiac.ess-dive.lbl.gov/ftp/trends/CO2/sio-keel-flask/maunaloa_c.dat

	Introduction
	The Concept of Kernels
	Stationary Kernels
	Locally Stationary Kernels

	Approximating Stationary Kernels
	Approximating Locally Stationary Kernel
	Learning Locally Stationary Kernel, GaBaSR
	GaBaSR Algorithm
	Learning the Gaussian Mixture
	Sampling to approximate the kernel
	Learning Locally Stationary Kernels
	Complexity of GaBaSR


	Experiments
	Classification
	Regression

	Conclusions
	References

