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Abstract: In this study, the transverse vibration of free–free slender beams with two unequal end
masses attached were studied. The effects of the rotary inertia of the end masses on the free vibration
of the beam were investigated. An exact frequency equation and the boundary conditions were
obtained by using the Euler–Bernoulli beam theory and Hamilton’s principle. Natural frequencies
and mode shapes of the beams in transverse vibrations were calculated for various combinations
of physical and geometrical parameters, such as mass ratios, the distances between the attachment
point and the center of the masses, etc. The effects of an increase in the rotational inertia of the
end masses and different mass ratios on the natural frequencies and mode shapes of the beam are
presented. It is shown that the increase in the rotational inertia of the end masses had a greater
effect at low frequencies of the beam. In addition, experimental tests were performed to validate the
obtained analytical results. A good agreement was obtained between the analytical and experimental
results. The main scope of this study was to reveal the effects of the rotary inertia of the end masses
on the dynamic behavior of the beam. Thus, the aim is to contribute to the understanding of the
properties of the end mass and the effect of rotary inertia on the dynamics of end-mass-attached
structures. Furthermore, the results obtained from this research are helpful for designing end-mass-
attached structures, such as micromechanical sensors, energy harvesters, and Stockbridge-type
dynamic absorbers.

Keywords: transverse vibration; unequal end masses; rotary inertia; free–free beam

1. Introduction

A vibrating beam-mass system can be found both in classic and modern engineering
applications, such as micromechanical systems, atomic force microscope (AFM) probes,
nanosensors, robotic manipulators, turbine blades, Stockbridge dampers, etc. In order
to operate safely for these structures, it is very important to determine their dynamic
characteristics during the design progress. The modeling of these structures is as close as
possible to actual operating conditions; therefore, obtaining the equation of motion, solving
the frequency equation, and determining the change of the natural frequencies depending
on the end mass have great importance.

Many researchers have investigated free transverse vibration of beam-mass systems
and a considerable amount of research outcomes have been brought together in some
reference books [1–6]. The effects of rotary inertia, mass size, mass positions, springs,
beam materials, etc. on the natural frequencies and mode shapes were investigated in
the last decades [7–15]. In one of the earliest studies on beam-mass systems, Boyce and
Handelman [16] studied the free transverse vibration of a Euler–Bernoulli (EB) beam with
an end mass rotating at a constant speed. Craig [17] investigated the effect of the end
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mass on the natural frequencies and mode shapes of the beam using the modified Reissner
variation theorem, by taking the beam from the work of Boyce and Handelman [16]. Öz and
Özkaya [18] studied the natural frequencies of beam-mass systems in transverse vibration.
They considered the Euler–Bernoulli type beam with different boundary conditions and the
masses in their study were concentrated masses. They compared analytical and numerical
results. Hong et al. [19] investigated the transverse vibration of the clamped–pinned–
free beam with the end mass. They used the Euler–Bernoulli beam and considered the
end mass as a point mass. In addition, they presented the results for varying end mass
values. Langer et al. [20] studied the cantilever beam with a large tip mass. They worked
numerically and experimentally and emphasized the importance of including inertia when
the tip mass is large. Du et al. [21] investigated the dynamic analysis of rotating cantilever
beams with a tip mass. They derived the equations of motion for free vibration analysis of
the rotating cantilever beam with a tip mass by using Hamilton’s principle and a Galerkin
method. Many of these studies about beam-mass systems are concerned with cantilevers,
simply supported beams, and pinned beams.

Free–free beams are a special case of beams with no end restrictions. Because of these
properties, they are frequently used in specific engineering applications. For instance, a
free–free beam can be used in the modeling of the mechanical behavior of space structures
and rockets. These engineering structures can be represented as free–free beams with one
end carrying a trigger load [22,23].

A beam carrying a mass at both ends is a special class of free–free beam. Because of
their importance in engineering fields, a fundamental issue is to determine the natural
frequencies and mode shapes of the free–free beam with tip masses. Park and Mote [24]
studied free–free beams with a concentrated mass by using the finite element method (FEM)
via the extended Hamilton’s principle and their theory was based on the Euler–Bernoulli
beam theory. Kirk and Wiedemann [25] obtained the natural frequencies and mode shapes
of a free–free beam with large end masses connected to the beam by torsion springs. Yoon
and Kim [26] investigated a spinning unconstrained beam with a concentrated mass. In
their study, the beam was subjected to a thrust. Haener [27] offered an approximative
formula for the first natural frequencies of the free–free beam with identical concentrated tip
masses. Afterward, Erturk and Inman [28] corrected the formula presented by Haener [27],
solved the problem of the free–free beam with identical concentrated end masses by using
the curve fitting technique, and introduced an approximate formula for the first natural
frequencies. However, their results were limited to a free–free beam with two identical tip
masses. Shi et al. [29,30] presented an approximate formula for the fundamental frequency
for Euler–Bernoulli and Timoshenko beams with two unequal end masses by using a
Fredholm integral equation. They considered the end masses as concentrated masses.

As seen from the literature, there is little information on the natural frequencies
of a free–free beam carrying unequal tip masses at both ends. On the other hand, sig-
nificant progress has been made for other types of beams carrying a mass. Some new
research [31–35] can be found on the resonance frequencies of a beam-mass structure. In
most of the previous studies, the end masses were considered concentrated masses and the
rotary inertia of the end masses was neglected. For example, in the study of Shi et al. [29], a
free–free beam with unequal tip masses was studied; however, the masses were consid-
ered concentrated masses, so the rotational inertia of the end masses was not included
in the calculations. In addition, they have proposed a new analytical formula, but there
is no experimental study in their work. For this reason, in this study, in order to guide
future studies, the frequencies and mode shapes of the free–free beam with unequal end
masses were obtained and are presented with the inclusion of the rotary inertia of the end
masses. The exact frequency equation and boundary conditions were obtained by using
the Euler–Bernoulli beam theory and Hamilton’s principle. The natural frequencies of the
beams were calculated, and the non-dimensional frequency parameters and mode shapes
of different beam configurations are presented. In addition, experimental tests were carried



Appl. Sci. 2023, 13, 2518 3 of 14

out to validate the analytical results. Analytical and experimental results were in good
agreement with each other.

2. The Equations of Motion and Boundary Conditions

The free–free beam with unequal end masses considered in this study is shown in
Figure 1a. The masses on the left side and right side of the beam are M1 and M2, respectively.
Ji represents the rotary inertia of the tip masses about the beam end. Gi represents the
center of the masses and di represents the distances between the end of the beam and
the center of the masses. The point B is the connection point between the end mass and
the beam. The beam is homogeneous, prismatic, and has a length of L. The equation
of free transverse vibration of an undamped Euler–Bernoulli beam [36] with a uniform
cross-section is described by the following differential equation for small deflection:

EI
∂4w(x, t)

∂x4 + ρA
∂2w(x, t)

∂t2 = 0, 0 < x < L (1)

where w(x,t) is the transverse deflection of the beam, EI is the bending stiffness of the beam,
and ρA is the mass density per unit length of the beam. In Equation (1), A and I represent
the cross-sectional area and the moment of inertia of the beam cross-section; respectively; x
denotes the axial coordinate along the beam axis, where x = 0 is at the left end of the beam;
and t represents time.
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Figure 1. (a) The free–free beam with unequal end masses; (b) an alternative attachment of the end
mass that has its gravity center point at ξ < 1.

Two unequal end masses, M1 and M2 are attached to the beam at both ends. We can
therefore obtain the following boundary conditions of the beam by the variational method:

at x = 0,

EI
∂2w(0, t)

∂x2 =
(

J1 + M1d2
1

)∂3w(0, t)
∂x∂t2 + M1d1

∂2w(0, t)
∂t2 , (2)
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EI
∂3w(0, t)

∂x3 = −M1
∂2w(0, t)

∂t2 −M1d1
∂3w(0, t)

∂x∂t2 (3)

similarly at x = L,

EI
∂2w(L, t)

∂x2 = −
(

J2 + M2d2
2

)∂3w(L, t)
∂x∂t2 −M2d2

∂2w(L, t)
∂t2 , (4)

EI
∂3w(L, t)

∂x3 = M2
∂2w(L, t)

∂t2 + M2d2
∂3w(L, t)

∂x∂t2 (5)

For a solution of Equation (1), we can take a harmonic function as w = w̆(x) sin(ωt),
and Equation (1) turns into:

EI
∂4w̆(x, t)

∂x4 − ρAω2w̆(x, t) = 0, 0 < x < L (6)

The following non-dimensional variables are defined for simplicity in calculations:

w̆(x) = W(ξ), β4 = L4ω2 ρA
EI , ξ = x

L , Ω1 = M1
ρAL , Ω2 = M2

ρAL ,

α1 =
(J1+M1d2

1)

ρAL3 , α2 =
(J2+M2d2

2)

ρAL3 , ε1 = d1
L , ε2 = d2

L

(7)

Considering the above terms, Equation (6) is rewritten as:

W IV − β4W = 0, 0 < ξ < 1, (8)

with corresponding boundary conditions
at ξ = 0,

W ′′ (0) = −α1β4W ′(0)−Ω1ε1β4W(0) (9)

W ′′′ (0) = Ω1β4W(0) + Ω1ε1β4W ′(0) (10)

similarly at ξ = 1,
W ′′ (1) = α2β4W ′(1) + Ω2ε2β4W(1) (11)

W ′′′ (1) = −Ω2β4W(1)−Ω2ε2β4W ′(1), (12)

where the prime denotes differentiation with respect to “ξ”.
The ordinary differential Equation (8) is solved by using a standard mathematical

procedure, and its general solution can be acquired as

W = C1 cos βξ + C2 sin βξ + C3 cosh βξ + C4sinhβξ (13)

where β is the nondimensional frequency parameter. The parameter β and three of the four
coefficients can be solved by applying the boundary conditions of the solution [37].

Substituting the boundary conditions in Equation (13), we obtain four algebraic equa-
tions and these equations can be written in the matrix form (Appendix A).

3. Frequency Equation

Since the equation in Appendix A has a nontrivial solution, and Ci are generally
non-zero, the determinant of the coefficients matrix should be equal to zero.

det
[
aij
]
= 0 (14)

Using MATLAB, with its ability to handle symbolic calculations, we obtained the
frequency equation (Appendix B) of the free–free beam with tip masses, including their
rotary inertias.
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At this point, we took into account several cases to validate the obtained frequency
equation:

Case-1: The free–free beam with two unequal concentrated tip masses. For this case,
we obtain α1 = α2 = d1 = d2 = 0. So the obtained frequency equation is reduced to:

1− cos β cosh β + β(Ω1 + Ω2)(cosh β sin β− cos β sinhβ) + 2Ω1Ω2β2 sin β sinhβ = 0 (15)

which is in precise compliance with that obtained by Shi et al. [29].
Case-2: The free–free beam with two equal concentrated tip masses. For this case, we

assume M1 = M2 = M, Ω1 = Ω2 = Ω, α1 = α2 = d1 = d2 = 0. Thus, the obtained frequency
equation is reduced to:

1− cos β cosh β + 2βΩ(cosh β sin β− cos β sinhβ) + 2Ω2β2 sin β sinhβ = 0 (16)

which exactly coincides with the equation obtained by Ertürk and Inman [28].
Case-3: The free–free beam with one concentrated tip mass. For this case, we obtain

Ω1 = M1 = α1 = α2 = d1 = d2 = 0, M2 6= 0. Thus, the obtained frequency equation is reduced to:

1− cos β cosh β + βΩ2(cosh β sin β− cos β sinhβ) = 0 (17)

Case-4: The free–free beam with no tip masses. For this case, we obtain Ω1 = Ω2 =
α1 = α2 = d1 = d2 = 0, so the obtained frequency equation is turned into the well-known
cantilever beam frequency equation:

1− cos β cosh β = 0 (18)

The frequency equation obtained in this study is also valid for cases where the position
of the gravity center of the end mass is ξ < 1, as seen in Figure 1b. This would facilitate
the designer during the positioning of the end mass in the design of a tip-mass-attached
structure, such as an energy harvester or dynamic vibration absorber. In cases where the
gravity center position of the end mass increases such that ξ > 1, namely when the G2 point
is shifted along the +x direction, the end mass will adversely affect the dynamic behavior of
the beam. In this case, the beam may behave as a stepped beam. If the gravity center of the
end mass is shifted to be ξ < 1 as seen in Figure 1b, the end mass will not negatively affect
the beam dynamics and will also offer convenience to the designer in terms of construction.

4. Results

Numerical results are given to show the accuracy of the obtained frequency equation
and the effects of the tip masses and rotary inertias of the masses on the natural frequencies
and mode shapes of the beam.

4.1. Natural Frequencies

Figure 1 shows that a great variety of values for Mi, Ji, and di, are possible. In this
section, we show how we calculated the nondimensional frequency parameter β for the
first five natural frequencies for different end masses and rotary inertias. The acquired
numerical results are listed in Tables 1 and 2.

The values of the nondimensional frequency parameter obtained from the frequency
equation for some standard cases in the literature are shown in Table 1, and these values
were the same as the corresponding precise frequency equations of free–free, free–clamped,
free–pinned, pinned–pinned, clamped–clamped, and clamped–pinned beams [6].

The case of Ω1 = Ω2 = α1 = α2 = 0 corresponds to a free–free beam with
no tip mass; the case of Ω1 = Ω2 → ∞ , the beam behavior as a pinned–pinned beam.
Additionally, Ω1 = Ω2 = α1 = α2 → ∞ corresponds to a clamped–clamped beam, while
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Ω1 = α1 → ∞; Ω2 = α2 = 0 or Ω2 = α2 → ∞; Ω1 = α1 = 0 corresponds to a clamped–
free or a free–clamped beam, respectively. Additionally, a vibrating beam-mass system
with Ω2 → ∞; Ω1 = ε1 = ε2 = 0 or Ω1 → ∞; Ω2 = ε1 = ε2 = 0 represents a free–pinned
beam or pinned–free beam. In order to represent infinity, a sufficiently large number should
be chosen. We arrived at 1010 in place of ∞ to represent infinity and to make it possible for
numerical computation.

Table 1. The obtained first five nondimensional frequency parameters for standard cases.

Ω1 α1 Ω2 α2
Nondimensional Frequency Parameters

β1 β2 β3 β4 β5

0 0 0 0
Present study 4.7300 7.8532 10.9956 14.1372 17.2788
Reference [6] 4.730041 7.853205 10.995608 14.137165 –

0 0 ∞ ∞ Present study 1.8751 4.6941 7.8548 10.9955 14.1372
Reference [6] 1.875104 4.694091 7.854757 10.995541 –

∞ 0 ∞ 0
Present study 3.1416 6.2832 9.4248 12.5664 15.7080
Reference [6] 3.141592 6.283185 9.424777 12.566370 –

∞ ∞ ∞ ∞ Present study 4.7300 7.8532 10.9956 14.1372 17.2788
Reference [6] 4.730041 7.853205 10.995608 14.137165 –

∞ 0 0 0
Present study 3.9266 7.0686 10.2102 13.3518 16.4934
Reference [6] 3.926602 7.068583 10.210176 13.351768 –

∞ ∞ ∞ 0
Present study 3.9266 7.0686 10.2102 13.3518 16.4934
Reference [6] 3.926602 7.068583 10.210176 13.351768 –

Table 2. The first five nondimensional frequency parameters for different values of Ω1, α1, Ω2, α2.

Ω1 α1 Ω2 α2
Nondimensional Frequency Parameters

β1 β2 β3 β4 β5

0.5 0.1 0.5
0.01 2.3587 3.9918 5.8927 8.4328 11.3698
0.1 2.0652 3.0312 5.3734 8.2727 11.3075
1 1.6155 2.8248 5.3220 8.2578 11.3016

0.5 1 0.5
0.01 1.8035 3.9030 5.8626 8.4196 11.3640
0.1 1.6155 2.8248 5.3220 8.2578 11.3016
1 1.1863 2.4757 5.2674 8.2428 11.2956

0.5 0.1 1
0.01 2.3046 3.9818 5.8622 8.3642 11.3060
0.1 2.0594 2.9811 5.2816 8.1918 11.2410
1 1.5960 2.7360 5.2241 8.1759 11.2348

0.5 1 1
0.01 1.7069 3.8892 5.8327 8.3506 11.3001
0.1 1.5689 2.7814 5.2273 8.1763 11.2349
1 1.1859 2.3570 5.1659 8.1603 11.2286

The first five nondimensional frequency parameters were computed by solving the
characteristic equation. As can be seen from Table 2, an increase in Ω1 or Ω2 decreased the
frequency values as expected. In addition, while the Ωi value was constant, the increase in
the rotary inertia of tip masses decreased the natural frequency values. Provided that the
mass of the end mass remained constant, an increase in the rotary inertia should result in an
increase in the distance between the end-mass center of gravity and the beam attachment
point. In this case, the thickness of the end mass should decrease. Since the rotational
inertia is directly related to the εi value, this shows that increasing the value of εi decreases
the natural frequencies of the beam.
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As can be seen from Figure 2, the change in the first two dimensionless frequency
parameters was higher than the others. It is seen that the change in the upper frequencies
was much less. It is seen that there was no change in the fourth and fifth frequency
parameters when the α2 value approached 1. As a result, it can be said that the increase in
the rotational inertia of the end masses was more effective, especially at low frequencies of
the structure.
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4.2. Modal Shape Functions

After solving the frequency equation, the nondimensional frequency parameter could
be easily obtained. Using these parameters, we could calculate the corresponding mode
shapes. Setting C1 = 1 in the equation (Appendix A) and obtaining the other coefficients in
terms of C1, we could obtain the mode shape equation (Appendix C).

Using the obtained nondimensional frequency parameters βi, the mode shapes Wi
could be determined, which are related to Ω1, Ω2, α1, α2. As can be seen from Figure 2,
the increase in the rotational inertia of the end masses affected the first two frequency
parameters more. Increasing the α2 value did not cause a significant change in the third,
fourth, and fifth mode shapes. For this reason, the first and second modes of the beam with
end mass are plotted depending on the change in α2, and the change in the mode shapes of
the beam due to the increase in the rotational inertia of the end mass is shown.

The first and second mode shapes of a free–free beam with tip masses for some
different combinations of Ω1, Ω2, α1, and α2 can be seen in Figures 3 and 4. Figure 3a,b
show the changes in the first and second mode shapes of a clamped–free beam with unequal
end masses depending on the changes of α2. Although there is a significant change in the
first mode shape with the change in α2 values, it is seen that the mode shapes converge
towards other with the increase in α2 values in the second mode shape.
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Figure 4a,b show the changes in the first and second mode shapes of a free–free beam
due to the changes in α2. It is seen that the changes in the mode shapes of the free–free
beam due to the changes in α2 are less than that of the clamped–free beam.
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5. Experimental Verification
5.1. Experimental Setup

In this section, the experimental setup shown in Figure 5a was prepared to verify the
natural frequencies obtained analytically. The beam with different masses at both ends was
suspended from each end by an inextensible rope to ensure the free–free boundary condi-
tion. The physical parameters related to beam and end masses used in the experimental
study are given in Table 3.
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Table 3. The physical properties of beam and tip masses.

Properties Beam Tip Mass (M1) Tip Mass (M2)

Modulus of elasticity, E (GPa) 210 210 210
Density, ρ (kg/m3) 7800 7800 7800
Length, L or LM, (mm) 323.5 25.555 15.35
Width, w (mm) 30 30 30
Thickness, tb or tM, (mm) 1.185 21.185 21.185
Mass, Mb or Mtip, (gr) 87.520 126.660 76.090
Distances, d, (mm) - 12.777 7.675
Rotary inertia (according to the attachment
point), Jz, (kg.m2) - 32.30 × 10−6 8.822 × 10−6

The first five natural frequencies of free–free beams with different end masses were
obtained by using the standard modal analysis method [38]. In this method, the structure
is impacted with an impact hammer and the response of the structure is obtained by
means of an accelerometer. In order to obtain the response of the structure under the
standards, the structure is divided into certain points, and an impact is applied to these
points with the impact hammer. For this reason, in our study, nine points were marked
on the beam. The equipment used in the experimental study is shown in Figure 5c. A
single-axis DYTRAN accelerometer with 101.25 mV/g sensitivity was used to obtain the
acceleration data precisely. The accelerometer was mounted on the heavier mass so that the
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vibration data would not be affected by the weight of the accelerometer. A Brüel & Kjær
impact hammer with a sensitivity of 2.24 mV/N was used to impact the beam with tip
masses. The accelerometer and impact hammer were connected to a Brüel & Kjær Photon+
model data analyzer. The beam was divided into nine points and acceleration data from
the beam-end mass system were obtained by applying an impact to these points on the
beam with the impact hammer. Inappropriate impacts were eliminated using software
and not included in the average. The fast Fourier transform (FFT) analysis of the obtained
vibration data was performed using RT Pro Photon data analysis software. The tests were
similarly repeated 10 times and the natural frequencies of the beam-end mass system were
obtained by taking the average of these tests.

5.2. Experimental Results and Comparison with Analytical Results

The coherence function and the frequency–amplitude graph obtained as a result of
the modal analysis are shown in Figure 6; the graph was obtained by taking the average
of the experimental data. The peaks in the frequency–amplitude graph show the natural
frequency values of the system. The frequency resolution was set to 0.125 Hz to obtain the
acceleration data precisely. The measurements were repeated by applying an impact to the
points on the beam with the impact hammer. Thus, a precise measurement of the natural
frequencies of the beam was performed. A coherence function value of 1 means that there
was no noise in the measurement. The coherence values of the obtained frequency values
were very close to 1, indicating that the measurements were not affected by noise.
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tip masses.

The first five natural frequencies of the beam-end mass system obtained by experi-
mental modal analysis and analytical method are given in Table 4 comparatively. It is seen
that the biggest difference between analytical and experimental natural frequencies was
1.86%. This difference becomes smaller at higher frequencies. Experimental results and
analytical results do not fully agree with each other due to undesirable disruptive effects,
such as air friction, environmental noise, etc. in the experimental study. For this reason, in
scientific studies, this difference can be accepted up to 15% depending on the difficulty of
the experimental study. In this study, the highest difference was 1.86%. This shows that the
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frequency equation obtained analytically represents as well as possible the real operating
conditions of the free–free beam with unequal end masses.

Table 4. The first five natural frequencies of the beam-end mass system.

Natural Frequencies Analytical (Hz) Experimental (Hz) Error (%)

1st 30.086 29.68 1.35
2nd 100.012 98.15 1.86
3rd 191.337 188.6 1.43
4th 293.348 298 −1.59
5th 437.994 442 −0.91

6. Conclusions

In this study, we investigated the transverse vibration of a free–free beam with unequal
end masses and obtained an exact frequency equation. In this equation, the rotary inertia
of the end masses was also taken into account. The first five natural frequencies and
mode shapes of the beam were obtained. The influences of tip masses and rotary inertias
on the natural frequencies and mode shapes were presented by obtaining the analytical
results of the frequency equation. In order to verify the natural frequency values obtained
analytically, an experimental study was carried out and the first five natural frequencies of
the free–free beam with unequal end masses were obtained. Some of the results obtained
from this study and the main novelties and contributions of this paper can be summarized:

• The natural frequencies and mode shapes of the free–free beam with unequal end
masses were obtained by including the rotary inertia of the end masses.

• The first five nondimensional frequency parameters were obtained and presented in a
table for different values of Ω1, α1, Ω2, α2.

• The first and second mode shapes of the free–free beam with unequal end masses
were obtained for different values of α2.

• It was concluded that the increase in the rotational inertia of the end mass was more
effective at low frequencies and mode shapes of the structure.

• The increase in the distance between the gravity center of the end mass and the beam
connection point decreases the beam’s natural frequencies.

• Experimental testing was performed to verify the frequency equation. The results
obtained were in good agreement with analytical results. Due to undesirable interfer-
ence effects in the experimental study, the difference between the experimental results
and the analytical results could be accepted by up to 15%. In our study, the highest
difference was 1.86%. This showed that the frequency equation obtained analytically
represented the real operating conditions as well as possible.

The results obtained from this research are helpful for designing engineering structures,
such as energy harvesters and Stockbridge-type dynamic vibration absorbers. Moreover,
when designing Stockbridge dampers or dynamic vibration absorbers, our results will be
helpful in determining tip masses, the distances between the gravity center of the end mass
and the beam connection point, and tip/beam mass ratios.

Taking advantage of this work, the distance d2 can be increased in the x-axis to obtain
suitable frequency and mode shapes in the dynamic absorber design. However, since this
may cause some difficulties in terms of structural design, the position of G2 can also be
designed in cases when ξ < 1, as shown in Figure 1b. This means that the end mass center
of gravity is also slidable to the left of the attachment point B. This will afford convenience
to the designer in terms of construction.
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Appendix A

The equations in matrix form are obtained by substituting the boundary conditions in
Equation (13): 

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




C1
C2
C3
C4

 = 0 (A1)

where

c = cos β, ch = cosh β, s = sin β, sh = sinhβ
a11 = 1−Ω1ε1β2, a12 = −α1β3, a13 = −1−Ω1ε1β2, a14 = −α1β3,

a21 = Ω1β, a22 = Ω1ε1β2 + 1, a23 = Ω1β, a24 = Ω1ε1β2 − 1,
a31 =

(
c− α2β3s + Ω2ε2β2c

)
, a32 =

(
s + α2β3c + Ω2ε2β2s

)
,

a33 =
(
−ch + α2β3sh + Ω2ε2β2ch

)
, a34 =

(
−sh + α2β3ch + Ω2ε2β2sh

)
,

a41 =
(
−s−Ω2βc + Ω2ε2β2s

)
, a42 =

(
c−Ω2βs−Ω2ε2β2c

)
,

a43 =
(
−sh−Ω2βch−Ω2ε2β2sh

)
, a44 =

(
−ch−Ω2βsh−Ω2ε2β2ch

)
.

(A2)

Appendix B

Frequency equation for a free–free beam with unequal tip masses including their
rotary inertias:

D =
(
Ω1

2 Ω2
2 ε1

2 ε2
2 −Ω1 Ω2

2 α1 ε2
2 −Ω1

2 Ω2 α2 ε1
2 + Ω1 Ω2 α1 α2 + Ω1 Ω2

2 α1 ε2
2 c ch + Ω1

2 Ω2 α2 ε1
2 c ch

−Ω1 Ω2 α1 α2 c ch−Ω1
2 Ω2

2 ε1
2 ε2

2 c ch
)

β8

+
(
Ω1

2 α2 ε1
2c sh−Ω1 α1 α2 ch s−Ω2 α1 α2 c sh−Ω2 α1 α2 chs−Ω1 α1 α2 csh

+Ω1
2 α2 ε1

2chs + Ω2
2 α1 ε2

2 csh + Ω2
2 α1 ε2

2chs
)

β7

+
(
2ssh Ω1

2 Ω2 ε1
2 ε2 − 2ssh Ω1 Ω2

2 ε1 ε2
2 + 2 α2ssh Ω1 Ω2 ε1 − 2 α1ssh Ω1 Ω2 ε2

− 2 α1 α2ssh) β6

+
(
2 Ω1 α2 ε1chs− 2 Ω1 α2 ε1 csh + 2 Ω2 α1 ε2 csh− 2 Ω2 α1 ε2chs−Ω1

2 Ω2 ε1
2 csh

+Ω1
2 Ω2 ε1

2chs−Ω1 Ω2
2 ε2

2 csh + Ω1 Ω2
2 ε2

2chs + Ω1 Ω2 α1 csh−Ω1 Ω2 α1chs
+Ω1 Ω2 α2 csh−Ω1 Ω2 α2chs) β5

+
(
Ω1 α1 + Ω2 α2 −Ω1

2 ε1
2 −Ω2

2 ε2
2 −Ω1

2 ε1
2 c ch−Ω2

2 ε2
2 cch + Ω1 α1 c ch + 2 Ω1 α2 c ch

+ 2 Ω2 α1 c ch + Ω2 α2 c ch− 4 Ω1 Ω2 ε1 ε2 c ch) β4

+ (α1 csh + α1chs + α2 csh + α2chs− 2 Ω1 Ω2 ε1 csh− 2 Ω1 Ω2 ε1chs + 2 Ω1 Ω2 ε2 csh
+ 2 Ω1 Ω2 ε2chs) β3 + (2 Ω1 Ω2ssh− 2 Ω1 ε1ssh + 2 Ω2 ε2ssh) β2

+ (Ω1chs−Ω1 csh−Ω2 csh + Ω2chs) β + 1− cch

(A3)

Appendix C

Modal shape function of the free–free beam with tip masses:

Wi = cos(β x) + sin(β x)
(

Ω1 β λ9 −Ω1 β λ8 +
λ5 λ2

λ1

)
− sinh(β x) λ2

λ1
−

cosh(β x)
(

λ9 λ8 +
λ3 λ2

λ1
−Ω1 α1 β4

)
λ4

(A4)

where
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λ1 = λ3 λ6 + λ4
(
α2 β3ch− sh + Ω2 β2 ε2sh

)
− λ4 λ5 λ7

λ2 = λ4
(
c− α2 β3s + Ω2 β2 ε2 c

)
− λ5 λ6 + λ4 (Ω1 β λ9 −Ω1 β λ8) λ7

λ3 = α1 β3 λ9 − α1 β3 λ8
λ4 = λ8

2 −Ω1 α1 β4

λ5 = λ9 λ8 −Ω1 α1 β4

λ6 = α2 β3sh− ch + Ω2 β2 ε2ch
λ7 = sin+α2 β3 c + Ω2 β2 ε2s

λ8 = Ω1 ε1 β2 + 1
λ9 = Ω1 β2 ε1 − 1

(A5)
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