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Abstract: With the development of online educational platforms, numerous research works have
focused on the knowledge tracing task, which relates to the problem of diagnosing the changing
knowledge proficiency of learners. Deep-neural-network-based models are used to explore the inter-
action information between students and their answer logs in the current field of knowledge tracing
studies. However, those models ignore the impact of previous interactions, including the exercise
relation, forget factor, and student behaviors (the slipping factor and the guessing factor). Those
models also do not consider the importance of the Q-matrix, which relates exercises to knowledge
points. In this paper, we propose a novel relational attention knowledge tracing (RAKT) to track the
students’ knowledge proficiency in exercises. Specifically, the RAKT model incorporates the students’
performance data with corresponding interaction information, such as the context of exercises and
the different time intervals between exercises. The RAKT model also takes into account the students’
interaction behaviors, including the slipping factor and the guessing factor. Moreover, consider
the relationship between exercise sets and knowledge sets and the relationship between different
knowledge points in the same exercise. An extension model of RAKT is called the Calibrated Q-matrix
relational attention knowledge tracing model (QRAKT), which was developed using a Q-matrix
calibration method based on the hierarchical knowledge levels. Experiments were conducted on two
public educational datasets, ASSISTment2012 and Eedi. The results of the experiments indicated that
the RAKT model and the QRAKT model outperformed the four baseline models.

Keywords: knowledge tracing; attention mechanism; relation modeling; calibrated Q-matrix

1. Introduction

Currently, the evolution of technology and science brings many conveniences to people
and produces a large amount of user information involving education, health care, and
finance. In the educational field, combining education theory with artificial technology
has become a famous research direction for finding valuable information to promote the
development of education. In recent years, after the improvement of the level of smart
education and the combination of big educational data with educational theories, many
smart educational platforms emerged worldwide, such as Coursera, Udacity, edX, and
massive open online courses (MOOCs). These platforms provide many online courses
and exercises that have attracted the attention of many researchers (e.g., [1]). These online
platforms also provide students with many free, personalized learning materials and online
courses to improve the performance of students during their studies (e.g., [2,3]). Teachers
can utilize those smart educational systems to prepare remedial materials based on the
situation of students [4]. However, recent research indicates that students are prone to
losing their attention and show a high dropout rate regarding online courses (e.g., [5]).
Personalized learning is a solution to this problem and has proven to be an efficient
approach that involves the accurate extraction of learning materials (e.g., [6]).
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Knowledge tracing is the core of personalized exercise and is defined as the task of es-
timating how students master many knowledge points. Specifically, a student selects some
exercises from problem sets (e.g., e1, e2, e3, e4) to learn some knowledge concepts (KCs)
and leaves his/her response logs (e.g., right or wrong); see Figure 1. Knowledge tracing is
then performed using his/her previous practice attempts and exercise–KC interactions to
indicate the student’s own latent knowledge state on each KC [7]. The interactions from
past exercises have a distinctive effect on the target KC and determine the mastery of a
certain KC. Additionally, the impact varies depending on the situation. Generally, the effect
of past interactions is determined by four factors. The first factor is the exercise relation.
The closer the association between past interactions and current practice, the better the
performance in the knowledge tracing task will be. The second factor is the time intervals
between current practice and past interactions (e.g., e1, e2, e3, e4). When considering the
forgetting behavior of learners, the degree of mastery of skills for students decays with time.
Therefore, the shorter the time interval between the past interaction and the current interac-
tion, the greater the probability that the students will answer the current exercise correctly.
The third factor is the students’ interaction behaviors, including the guessing factor and the
slipping factor. When students choose to guess the answer correctly or answer the question
very carelessly, resulting in incorrect answers, the student’s mastery of the knowledge point
will be worse. The last factor is the learning resource modeling. Cross-mapping between
practices and KCs can be characterized as a Q-matrix, whose rows and columns reflect
exercises and KCs, respectively. The Q-matrix is considered as the source of information
about the exercise knowledge concept [5] with binary elements, in which “1” presents
this KC, which is covered by an exercise, and “0” presents a non-association between the
exercise and this KC. The Q-matrix is proven to have implicit semantic information and is
directly helpful in tracking students’ knowledge proficiency.

Exercise Knowledge Concepts

𝑒𝑒1 Intersecting line, Parallel line, Factorization

𝑒𝑒2 Real Number, Rational Number

𝑒𝑒3 Angle, Concepts

𝑒𝑒4 Integral Expression, Triangle

Learning

Exercise 𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒1
Response √ × √ √ ???

TimeStamp

Figure 1. A depiction of the KT task for a student on mathematical exercises. The knowledge tracing
process estimates the number of skills students mastered. A student can choose some exercises
(e.g., e1, e2, e3, e4) containing different knowledge points from problem sets for practicing and leave
his/her response logs. Now, the student wants to answer the exercise e1.
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In order to track the knowledge state evolution of students, a sequential modeling
method called the deep knowledge tracing (DKT) model has been designed based on the
idea of deep learning (e.g., [8]). The relation between KCs incorporated in the design of the
DKT model has been proven to be significant. For example, the dynamic Bayesian network
model is applied to model the pre-requisite relationship between KCs [9]. However, the
relationship between these KCs is often treated as a priori inputs, which require a great
deal of labor. Therefore, some models are created to automatically estimate the relationship
between exercises. For example, Reference [10] utilized the question text of exercises to
simulate the relationship of semantically comparable exercises. However, those knowledge
tracing models do not take into consideration the time elapsed between exercises. Knowl-
edge tracing’s temporal variables were discussed in [11,12]. Those techniques primarily
focus on the time since the last interactions with the same KC or previous interactions.
However, as mentioned, previous interactions and student behaviors are both engaged in
the preceding interactions’ different effects on the knowledge tracing task. These techniques
do not consider previous interactions and student behaviors.

The Q-matrix is used for the modeling of learning resources applied in many
models (e.g., [5,13]). The Q-matrix is designed as a binary matrix, which only reflects
the relationship between knowledge points and exercises. However, the binary Q-matrix
ignores the relationship between knowledge points, such as the hierarchical levels of knowl-
edge points. For example, in the knowledge graph, the rational number is the parent
node of the fraction. However, when marking the Q-matrix, those two knowledge points
are simply marked as “1” when an exercise contains both knowledge points: the rational
number and the fraction.

In this paper, a novel relational attention knowledge tracing (RAKT) model and its
extension model, the calibrated Q-matrix relational attention knowledge tracing model
(QRAKT), are proposed. In the RAKT model, two types of self-attention mechanisms are
applied for the KT task, the positional attention layer and the relational attention layer.
Specifically, the positional attention layer is used to replace traditional absolute position
encoding in the attention mechanism with a positional attention layer. The outputs of
the positional attention layer are used as the inputs of the relational attention layer. The
relational attention layer incorporates text information with relation modeling, including
relation modeling exercises, forgetting behavior modeling, and student behavior modeling.
These two types of attention mechanisms retain the adaptability and clarity of the traditional
attention mechanism; see the works of [14]. When considering the student behaviors and
the guessing factor and slipping factor, the RAKT model can more efficiently track the
students’ knowledge state. Therefore, the online educational system, which applies the
RAKT model, can provide personalized exercises for students based on each student’s
behaviors. In the end, the extension of the RAKT model, QRAKT, was designed based
on a calibrated Q-matrix, which not only indicates the relationship between exercises and
KCs, but also presents the relationship between KCs in the same exercise. According
to this calibrated Q-matrix, the corresponding knowledge vectors will replace the text
representation in the positional attention layer. The smart educational system, which
applies the QRAKT model, can provide more personalized exercises due to the fact that
the QRAKT model further improves the ability to track the students’ knowledge state
by incorporating the Q-matrix in the knowledge tracing process. Our experiments were
carried out on two real-world datasets and indicated that RAKT and QRAKT performed
better than the four baseline models.

The general solutions of QRAKT can be seen in Figure 2. In Figure 2, there exist four
parts to our paper. The first part is the input part. The student response data include
exercise-related information, the corresponding student’s responses, and the corresponding
knowledge vectors, which will replace the text representation in the positional attention
layer. The second part is relation modeling, including exercise relation modeling, time-order
forgetting behavior modeling, and student behavior modeling. Exercise relation model-
ing is developed according to the contingency table, which is calculated from students’



Appl. Sci. 2023, 13, 2541 4 of 24

performance data and exercise word embedding vectors. Time-order forgetting behavior
modeling is used for estimating the students’ forgetting behavior by calculating different
time intervals between the previous exercises and the current exercise. All time is required
to uniformize the time order, which means t1 < t2 < t3<...<tn. The last modeling is student
behavior modeling, which considers the students’ interaction behavior, including the guess-
ing factor and slipping factor to trace the students’ knowledge state. The third part is two
types of attention mechanisms involving the positional attention and relational attention
layers. In the positional attention layer, the relative distance, which combines edge vectors,
replaces the absolute distance in the traditional attention mechanism to generate the output
of this layer. In the relational attention layer, the results of the positional attention layer are
applied as the inputs of the relational attention layer. The relational attention mechanism
incorporates the relation modeling coefficient, R, with the traditional attention weights
to produce the final relational attention weights. The last part is the output part: three
outputs are specified, the next interaction result prediction, a description of knowledge
state evolution, and a description of the student mastery level. In the next prediction of
the interaction result, the QRAKT model will be applied to predict the performance of
the next exercise en+1 for each student. To illustrate the significance of the QRAKT model
compared with two standard knowledge tracing models, the DKT model and the DKT+
model, the evolution of a student’s knowledge state in these three models is introduced. It
is indicated that the QRAKT model outperformed the other two models. The last output is
an illustration of the student’s mastery level. Three heat maps were used to estimate the
student’s mastery level on Skill 49 and indicate that the QRAKT model also performed
better than the other two models.

The contributions of our paper are as follows:

• The positional attention layer was utilized to replace the position encoding part with
relative distances to capture the connection of each input vector to acquire better
prediction results in the KT task.

• This paper designed three types of relation modeling, exercise relation modeling, time-
order forgetting behavior modeling, and student behavior modeling. Compared with tra-
ditional exercise relation modeling in the EKT model [10], this paper considered the
student behaviors such as the forgetting behavior. When considering the traditional
student behavior modeling in the EKPT model [5], the Q-matrix is calibrated and the
guessing factor and slipping factor are involved in the student behavior modeling to
track the students’ knowledge state.

• The calibrated Q-matrix, which reveals hierarchical knowledge levels, was innovatively
designed to help evaluate students’ overall ability utilizing latent feature values. The
calibrated Q-matrix replaces the one-hot representation vectors in all exercises with
representation vectors based on relevant knowledge points to obtain better explainable
results of the knowledge state of students.

• In-depth experiments on two real-world public datasets were conducted to prove that
the RAKT model and the QRAKT model not only outperformed the four baseline
models, but also describe how the predictions were made.

The rest of the paper is organized as follows. Some related works are reviewed
in Section 2. In Section 3, the general methods of this paper are introduced. Extensive
experiments on two public educational datasets are conducted in Section 4. Finally, the
conclusions and future work of this paper are presented in Section 6.
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Figure 2. The general solutions of the calibrated Q-matrix relational attention knowledge tracing
model (QRAKT). There exist four parts, the input part, the relation modeling part, the attention
mechanism part, and the output part. In the input part, student response data, calibrated Q-matrix,
and the knowledge graph are the inputs of the QRAKT model. In the relation modeling part, three
types of relation modeling are introduced, exercise relation modeling, time-order forgetting behavior
modeling, and student behavior modeling, to obtain the relational coefficient, R. In the attention
mechanisms, positional attention and relational attention are applied to incorporate the relational
attention coefficient, R, with traditional attention weights and generate the final attention weights.
The last part is the output part. The output of the QRAKT model is specified as three aspects: the
next interaction result prediction, the description of knowledge state evolution, and the student
mastery level.

2. Related Works

Our proposed methodology applies to three major aspects of the research literature.
Firstly, some advanced knowledge tracing techniques are compared in detail. Secondly,
some modeling methods are introduced, exercises’ relation modeling, forgetting behavior
relation modeling, and student behavior relation modeling. Lastly, the core idea of the
attention mechanism and its application directions are presented.
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2.1. Knowledge Tracing

According to the student response data, the knowledge tracking task aims to measure
the state of knowledge of the students. Inspired by the great success of deep learning in
the field of speech processing [15,16] and computer vision [17–20], various deep-learning-
based KT models have demonstrated an improvement in tracing the students’ knowledge
state. Regarding the state-of-the-art, the deep knowledge tracing (DKT) model was the
first approach to use a neural network to reflect students’ complex educational process
(e.g., [8]). The extension effect of the DKT model was further verified (e.g., [21]). Existing
studies based on the DKT model are prone to simulating the knowledge state of students
while ignoring the simulation to encode exercises and skills in a one-hot form. The EKT
model uses exercise embedding modules to acquire an exercise model, which is applied to
estimate students’ performance on upcoming exercises (e.g., [10]). Additionally, a memory-
augmented neural network (MANN) model (e.g., [22]) was introduced to obtain higher
explainable results compared with the DKT model in the knowledge tracing field. The
MANN model uses the key and value as two metrics to discover the similarity between
exercises and the student’s knowledge state. To estimate the performance of a target KC,
the self-attentive knowledge tracing (SAKT) model [23] first determines the KCs from
previous actions of students related to the target KC.

Currently, there exist some hybrid models incorporating the relationship between exer-
cises, skills, and student behaviors with the attention mechanism. The attentive knowledge
tracing model (AKT) was proposed to incorporate the monotonic attention mechanism
with the flexible deep neural network to provide more interpretability results [24]. A
context-aware representation was designed in the AKT model to take learners’ history
records into consideration. However, the AKT model does not consider the relationship be-
tween exercises and concepts. The semantic-enhanced questions embeddings pre-training
(SEEP) method was designed to explore the relational information of questions and con-
cepts [25]. The SEEP method combines the student–question–concept interactions with
the two-level attention mechanism to generate the question embeddings. Compared with
the SEEP method, the pre-trained question embedding via Relation map for knowledge
tracing (PERM) model learns the question embedding according to a question–concept
bipartite graph with a two-level attention aggregation mechanism [26]. However, the SEEP
method and PERM method both ignore student behavior modeling such as forgetting
behavior modeling or guessing behavior modeling. Therefore, a graph-based knowledge
tracing model, the SGKT model, was designed to model the forgetting behavior with
a self-attention mechanism and applies graph neural networks to generate the accurate
knowledge tracing results [27]. In the SGKT model, there exist two types of graphs: the
session graph and the relationship graph. The session graph is used to model the response
process of students, and the relationship graph is applied to model the relationship between
exercises and skills. However, the SGKT model ignores the situation in which students can
guess a question or students answer the wrong question because of their carelessness.

The RAKT model and the QRAKT model, which is considered the extension of SAKT,
incorporate the relationship of exercises involved in the interaction with the forgetting
behavior of students with the slipping factor and the guessing factor and apply two
attention mechanisms to track students’ knowledge state.

2.2. Relation Modeling
2.2.1. Exercise Relation Modeling

Based on psychological science, the exercise relation has been widely investigated in
many papers to trace the state of students’ knowledge (e.g., [28–30]). In some proposed
methodologies, the Q-matrix is used by researchers to map exercises to knowledge points
to explore the relationship between two exercises. Two exercises show a connection when
they belong to the same knowledge concept. In addition to the Q-matrix-based method,
researchers pay attention to extracting connections between two exercises based on the exer-
cises’ content (e.g., [11,31]). According to the content of the exercises, the semantic similarity
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scores of exercises are calculated as the attention coefficients of the previous interactions to
model the importance of past interactions. In general, combining exercise relation modeling
with the KT task is a tremendous potential area, which has attracted many researchers to
explore it (e.g., [32,33]). The methods in this paper incorporate the content of the exercises
and previous interactions to generate better results for the KT task.

2.2.2. Forgetting Behavior Modeling

According to the forgetting curve theory, the degree of a student’s cognitive ability
influences how quickly his/her memory will decline over time (e.g, [34]). The DKT+Forget
model [11] recently implemented different time step features based on the DKT model. The
DKT+Forget model incorporates recurrence and sequential time gaps with the number of
previous experiments, and this model is regarded as an effective knowledge tracing method
with temporal information. Compared with the DKT+Forget model, the KPT model tracks
and explains the evolution of knowledge proficiency by combining the learning factor and
forgetting factor [5]. This model relates each exercise to a knowledge vector, where each
element employs a Q-matrix to represent a specific knowledge topic.

2.2.3. Student Behavior Modeling

Technically, the item response theory (IRT) [35] is utilized in educational assessment
and measurement and promotes factor analysis models including the slipping factor,
the guessing factor, etc. The core idea is to learn a function, usually a logistic function,
based on various characteristics in a population of students who complete a group of
questions. The Rasch model [36] is regarded as the simplest IRT model that defines a
one-parameter logistic regression (1PL) model. This 1PL model takes into account the
difficulty parameter and the difficulty of an item. There are several logistic regression
models constructed for IRT. For example, the four-parameter logistic (4PL) model originally
contained a discrimination factor, a difficulty factor, a guessing factor, and a slipping factor,
and this logistic regression model was first presented by Barton and Lord [37]. In our
work, the exercise relation, forgetting behavior, and slipping and guessing factor were
incorporated to trace the knowledge state of students.

2.3. Attention Mechanism

The attention mechanism [38] is an effective approach to sequence modeling tasks. The
core idea of this mechanism is to predict the outcome by focusing on important elements of
the input. The attention mechanism calculates the input vectors’ attention weights to focus
on a specific input and make a specific prediction. The attention mechanism is applied
in machine translation tasks, which extract the words from the input sequences in order
to generate the subsequent word in the target sentence. In our tasks, the self-attention
mechanism was developed to learn the attention weights based on relation modeling and
previous response logs for the knowledge tracing task.

3. Preliminaries

There are three parts in this section. The first part defines the task of our paper. Then,
the second part describes some of the terminology of this paper, including the calibrated
Q-matrix, relation modeling, and relational attention mechanism. Next, the goals of this
paper are introduced in detail.

3.1. Problem Definition

Given a question set containing the n exercises (e.g., e0, e1, e2...en−1) for the student
in the smart educational system from Timestamps 1 to t, the online system generates the
answering records of the student. Those interactions are denoted as S = { s1, s2, s3..... sn−1 },
and each interaction si is presented as a tuple: si = (ei,ri,ti), where ei is the exercise that this
student attempted, ri ∈ {0, 1} is the answer of the student, and ti is the time that si occurs.
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Our goal was to predict the probability pt that the students will provide the correct answer
according to their interactions: S.

3.2. Terminologies

Definition 1 (calibrated Q-matrix). The Q-matrix was used for the learning resource modeling
between exercises and skills. However, there exists the problem that different hierarchical knowledge
concepts are treated as the same status in the Q-matrix. Therefore, the calibrated Q-matrix based on
hierarchical knowledge levels was developed to indicate the knowledge levels.

Definition 2 (relation modeling). The relation modeling was designed to model the exercise
relation and student behaviors including the forgetting behavior, the guessing factor, and the
slipping factor.

Definition 3 (relational attention mechanism). The relational attention mechanism was devel-
oped to incorporate relational information compared with the traditional attention mechanism by
combining the relational attention weights, which are generated by the relation modeling.

3.3. Goals

The goals of this paper aimed at providing an excellent knowledge tracing model
that has the best Accuracy and Stability compared with the baseline models for the online
educational system. The knowledge tracing model can dynamically track the knowledge
state of students.

3.3.1. Accuracy

Generally, accurate knowledge tracing models help the intelligent educational system
recommend precise and personalized questions. Therefore, the knowledge tracing models
need to be quantified for their Accuracy. To evaluate the Accuracy of the knowledge tracing
models, providing a set of questions (e.g, e1, e2, e3, e4) to a student, the performance of
the student in the next timestamp needs to be predicted. Accuracy is the probability of
the knowledge tracing model correctly predicting the performance of students at the next
interaction. The Accuracy can be measured by two metrics, AUC and ACC, which will be
discussed in detail in Section 4.

3.3.2. Stability

The Stability is based on the Accuracy metric to evaluate the knowledge tracing model.
Generally, an online educational system, which applies a stable knowledge tracing model,
can provide students with exercises. Those exercises can consistently improve the student
performances because the performance of the model is more stable and the recommendation
of test questions based on the stable knowledge model can more accurately capture the
learning status of the students and recommend more suitable test questions. The Stability
of the knowledge tracing model can be measured by comparing the Accuracy between the
knowledge tracing model and baseline models at each testing batch. The details of the
formulation of the Stability of the knowledge tracing model will be introduced in Section 4.

4. Methods

In this section, the relational attention knowledge tracing model (RAKT) is introduced.
This model includes relation modeling, the position attention mechanism, and the relational
attention mechanism to trace the state of knowledge. Next, the aforementioned calibrated
Q-matrix method is integrated to generate an extension model of RAKT called the calibrated
Q-matrix relational attention model (QRAKT). This calibrated Q-matrix method based on
different hierarchical knowledge levels was designed to explore the relationship between
knowledge concepts. The overall architecture of QRAKT can be seen in the following
Figure 3. Firstly, the calibrated Q-matrix is computed based on the hierarchical knowledge-
level-based Q-matrix calibration method. The students’ performance data were used to
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obtain the corresponding Phi coefficient. After acquiring Qsimi and φij, the exercise relation
matrix, RE, is calculated. Secondly, the relation coefficient, R, is calculated based on time-
order forgetting behavior modeling (41,42...4n), exercise relation modeling, and student
behavior modeling ((s1, g1), (s2, g2)...(sn, gn)). Lastly, the positional attention layer and
relational attention layer incorporate the relation coefficient to generate the final outputs.
The mathematical annotations can be seen in the previous Table 1.
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Figure 3. The overall architecture of the calibrated Q-matrix relational attention knowledge tracing
model. There exist three steps. The first step is to obtain the exercise relation matrix by incorporating
the Phi coefficients and the knowledge vectors to generate the exercise relation matrix, RE. The second
step is aimed at modeling the forgetting behavior and student behaviors and combining these two
types of modeling with the RE to obtain the relational coefficient, R. The last step focuses on the data
processing involving the positional attention mechanism and the relational attention mechanism to
generate the final attention weights after combining the relational coefficient, R.
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Table 1. The important mathematical notations.

Notations Descriptions

n The total number of exercises
d The dimension of latent variables
si ith interaction of a student
e An exercise solved by a student
k The maximum absolute value

kn The total number of knowledge concepts
RE Exercise relation matrix
RF Forget behavior matrix
RS Slip and guess matrix
B Exercise matrix
E Exercise embedding matrix
S Interaction sequence of a student
Q The expert labeled Q-matrix
Q̂ The calibrated Q-matrix
Xs The input exercise sequence

Sta(K) The Stability rate of the model: K

4.1. Relation Attention Knowledge Tracing Model

Following existing works (e.g., [14]), in order to obtain explainable and accurate results,
the relationship of the previous sequence of interactions S = { s1, s2, s3... sn−1 } was explored
to design the knowledge tracing model based on the attention mechanism. Each interaction
was characterized as a tuple si = (ei,ri,ti). In the ith interaction of a student: si, ei is the
exercise that this student attempts, ri ∈ {0, 1} is the answer of the student, and ti is the
time of si occurs. The relative position of the input elements of the attention mechanism
predicts the student’s performance on the next exercise. A two-parameter logistic regression
model that contains a slipping factor and a guessing factor also needs to be incorporated to
consider student interaction behaviors. Based on those ideas, a knowledge tracing method
called the relation attention knowledge tracing model (RAKT) is proposed. This knowledge
tracing model combines relation modeling and the relative position to obtain improved
attention weights and generates the knowledge tracing results in the n+1th interaction.
Binary cross-entropy is used as the learning function in this model. The RAKT model will
be introduced in three parts including the exercise matrix and relation modeling layer, the
attention layer, and the knowledge tracing result prediction layer.

4.1.1. Exercise Matrix and Relation Modeling Layer

• Exercise matrix: In order to obtain better semantic representations of exercises from
the textual information, a word embedding technique was designed to learn the
exercise representation. The word embedding matrix of the exercise i is the input in
this part. Then, each representation of exercise Ei is obtained by taking a weighted
combination of the embedding of all words. The exercise matrix B ∈ Rn×n was
designed to reveal the relationship between different exercises. Bij can be calculated
based on the Phi coefficient: φij and the similarity score of two exercises: Simii,j. In
order to obtain Bij, there exist three steps. The first step is to obtain the Phi coefficient.
A contingency Table 2 needs to be extracted from previous students’ interactions.
Based on Table 2, the Phi coefficient is computed as a measurement for the relationship
between exercise i and exercise j, and the computation of the Phi coefficient can be
seen in the following Formula (1).

φij =
n11n00 − n01n10√

n1∗n0∗n∗1n∗0
(1)

As the formula of the Phi coefficient shows, this coefficient lies between −1 and 1.
The high coefficient parameter indicates that exercises i and exercise j has highly
related knowledge concepts. The second step is to obtain the similarity score: Simii,j
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of exercises i and j. Simii,j is calculated based on the word embedding of exercises i
and j: Ei and Ej, and the formula of Simii,j can be given as follows (2):

Simii,j =
EiEj

‖Ei‖
∥∥Ej

∥∥ (2)

The last step is to compute Bij by the following formula:

Bi,j =

{
φi,j + simii,j φi,j + simii,j > θ

0, otherwise
(3)

• Relation modeling: In this part, the relational coefficient is calculated on the basis
of the results of the relation modeling to predict the performance of the student in
the next interaction. Specifically, exercise relation modeling, time-order forgetting
behavior modeling, and student behavior modeling are described in detail.
Exercise relation modeling: This part involves the relationship between two different
exercises. Given an exercise sequence (e1, e2, e3...en) for a student, the goal is to
predict the performance of the student in the next interaction en+1. To achieve this
goal, the exercise relation matrix is computed as RE = (Ben+1,e1 , Ben+1,e2 ...Ben+1,en ) based
on the previous exercise matrix B. Time-order forgetting behavior modeling: Learning
theory shows that students will forget knowledge points after a while. This theory is
called the forgetting curve theory, which has been applied in many fields of cognitive
diagnosis. If a student forgets some concepts of knowledge after the interaction i, the
relevance of the interaction i should be diminished when predicting the next student’s
interaction performance. According to the forgetting curve theory, a kernel function
was used to model the importance of the interaction concerning the timestamp; see
the works of [14]. The kernel function was designed as an exponentially decaying
curve based on the idea of forget curve theory, specifically when given a timestamp
sequence of the interaction of a student T= (t1, t2, ....tn) that must uniformize the
time order and the time of the student who tries to complete the exercise in the next
interaction denoted as tn+1. The relative time between tn+1 and the ith interaction is
given as 4i = tn+1 − ti. Then, the coefficient RF based on the forgetting factor can
be obtained. RF = [exp(−41 /Si), exp(−42 /Si)....exp(−4n /Si)]. Si refers to the
strength memory of the student i and is a trainable parameter for our network. Student
behavior modeling: This part involves the slipping and guessing factor modeling. This
two-parameter logistic regression model (2PL) was developed on the item response
theory; see the work of [37]. When a student attempts to finish an exercise, the student
may answer this question very carelessly, leading to the wrong answer or the student
may guess an answer for this exercise. In order to model these two situations, the
slipping factor s and the guessing factor g were designed. Specifically, the slipping
factor s and the guessing factor g can be modeled as two trainable parameters in our
network based on two trainable matrices: D and C, and the input element Xs. After
modeling the slipping factor and guessing factor, RS can be obtained by using the
following formula:

g = sigmoid(Xs × D)

s = sigmoid(Xs × C)

RS = g + sigmoid(g− s)

(4)

After combining these three types of modeling, the coefficient of the relation modeling
can be obtained by using the following formula:

R = so f tmax(RE + RF + RS) (5)
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Table 2. The contingency table for exercise i and exercise j. This table is used to calculate the Phi
coefficient between two exercises. In this contingency table, “F” means the student answers the
exercise incorrectly and “T” means the student answers the exercise correctly.

exercise i

F T total

exercise j F n00 n01 n0∗
T n10 n11 n1∗

total n∗0 n∗1 n

4.1.2. Attention Layer

This layer consists of two sublayers, including the positional attention layer and the
relational attention layer, and combines the relation modeling coefficient, R, to generate the
final attention weights:

• Positional attention layer: The positional attention layer can be applied to consider
the relative position of each word in an exercise in order to obtain a higher inter-
pretation ability than the absolute position in the traditional attention mechanism.
Specifically, positional attention has h attention heads, and each attention head has
two input sequences Xs

i and Xs
j = (x1, x2..xn), where xi ∈ Rd. The edges between Xs

i

and Xs
j are represented by vectors av

i,j, aK
i,j ∈ Rd. In this positional attention layer, the

maximum relative position of the input sequences is clipped to a value k. This process
enables the model to generalize to sequence lengths that are not seen during the train-
ing process. av

ij and aK
ij are calculated based on the maximum distance clipping using

the following formula, and the relative position representations are PK = (Pk
−k...PK

k )

and PV = (PV
−k...PV

k ).

ak
i,j = Pk

clip(j− i, k)

aV
i,j = PV

clip(j− i, k)

clip(pos, k) = max(−k, min(k, x))

(6)

Then, ei,j is calculated based on a compatibility function that compares two input
elements, xi and xj. WQ and WK are the parameter matrices. dz is the dimension of
the new sequence of Z.

ei,j =
xiWQ(xjWk)T + xiWQ(aK

i,j)
T

√
dz

(7)

Next, a weight coefficient ai,j is calculated based on ei,j by applying the softmax function.

ai,j =
exp(ei,j)

∑n
i=1 exp(ei,k)

(8)

Lastly, the final output of the positional attention layer, Zi, is computed as follows:

Zi =
n

∑
j=1

aij(xjWV) (9)

• Relational attention layer: In this layer, the output of the positional attention layer
using Formula (9) is used as the input, and the relation coefficient R is incorporated
into the relation attention mechanism, which pays more attention to some relevant
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interactions of students. α is the attention weight of this relation attention mechanism
using the following formula.

αi =
exp(ei)

∑n−1
k=0 exp(ek)

ei =
Een WQ(ZjWK)T

√
d

(10)

where Een represents the word embedding of exercise en, Zj represents the input
element of this layer using Formula (9), and WQ ∈ Rd×d and WK ∈ Rd×d are thequery
matrix and key matrix for this relational attention layer. Next, the traditional attention
weight αi and relation coefficient weight R is incorporated as the relational attention
weight γi:

γi = δαi + (1− δ)Ri (11)

Finally, the output of this layer O ∈ Rd is obtained by the following formula:

O =
n−1

∑
i=1

γiZiWv (12)

where WV is the value matrix of the attention mechanism.

4.1.3. Knowledge Tracing Result Prediction Layer

In this layer, the pointwise feed-forward (FFN) and prediction layers are involved in
obtaining the output of the RAKT model. In the FFN, a nonlinear ReLU activation function is
used to incorporate the nonlinearity property of RAKT and to take into account the interaction
between different latent dimensions. The output of the FFN is F = ReLU(OW1 + b1)W2 + b2,
where W1 and W2 are weight matrices and b1 and b2 are used as bias vectors for this model.
In the prediction layer, the sigmoid function σ is applied to predict the performance of the
students in the next interaction.

P = σ(FWp + bp) (13)

where p is the probability that the student can answer the next interaction exercise en+1
correctly, Wp is the weighted matrix, and bp is the bias vector.

4.2. Calibrated Q-Matrix Relational Attention Knowledge Tracing Model

According to the work of [39], the relevant KCs are more important than other content
in an exercise to obtain more explainable KT results. A binary Q-matrix, Q ∈ Rn×Kn , was
designed to further model KCs in exercises. This section introduces two parts, Q-matrix
generation and validation, and incorporating the Q-matrix with the RAKT model generates
its extension model called the calibrated Q-matrix relational attention knowledge tracing
model (QRAKT).

4.2.1. Q-Matrix Generation and Validation

If an exercise i contains a KC k, then Qik = 1; Qik = 0 otherwise. Each row of the
Q-matrix presents a vector of knowledge points that can relate an exercise to the corre-
sponding KCs. However, when considering that an exercise often relates several numbers
of KCs and a KC is also contained in several exercises, a binary skill mastery vector cannot
take the relationship between exercises and KCs into account and cannot reveal the hierar-
chical knowledge levels of KCs based on the knowledge graph. Therefore, a hierarchical
knowledge-level-based Q-matrix calibration method (HKLQC) was designed to solve those
problems using the following algorithm in Algorithm 1. A partial order >+

i is defined as:

alevel:0 >+
i blevel:1 >+

i clevel:2 (14)
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Algorithm 1 Hierarchical knowledge-level-based calibration method.

Input: Q-matrix: Q; Corresponding knowledge map G;
Output: Regularization factor in model γ ; Learning rate α; Hyper-parameter λ; A cali-

brated Q-matrix Q̂;
1: Initialize learning rate α and hyper-parameter λ;
2: for all element in G do
3: Extract hierarchical knowledge level ι of each element from G;
4: end for;
5: Set Q̂ equal to Q;
6: while a calibrated Q-matrix Q̂ is not converged do
7: for all each row in Q̂ do
8: Calculate calibrated element for each row based on partial order;
9: Replace the element in Q̂ with a calibrated element;

10: end for;
11: Generate a calibrated Q-matrix Q̂;
12: Update α and λ.
13: end while

This means that KC: a has more knowledge importance than KC: b in exercise ei
and KC: b is a more significant knowledge concept than KC: c in exercise ei. alevel:0,
blevel:1, and clevel:2 imply that KC: a, KC: b, and KC: c belong to hierarchical knowledge
Levels 0, 1, and 2,respectively. For example, the real number is regarded as the parent
node of the rational number, and the parent node of the fraction is the rational number.
Therefore, in the knowledge map, the hierarchical knowledge level of the real number
is 0, the hierarchical knowledge level of the rational number is 1, and the hierarchical
knowledge level of the fraction is 2. The partial order set is defined as

DHKLQC = {(i, a, b)|a >+
i b, i = 1, 2, 3...Kn} (15)

Based on traditional Bayesian treatment, the calibrated Q-matrix, Q̂, follows a zero mean
Gaussian prior with the standard deviation. To give the Q-matrix labels greater confidence,
we define p(a >+

i b|Q̂) with a pairwise logistic-like function:

p(a >+
i b) =

1
1 + eλ(alevel−blevel)

(16)

where λ, which is the hyper-parameter, controls the discrimination between different
hierarchical knowledge levels. As a result, the posterior log probability over DKHLQC on Q̂
can be calculated as:

lnp(Q̂|DKHLQC) = ln ∏
(i,a,b)KHLQC

p(a >+
i b|Q̂i)p(Q̂i)

=
E

∑
i=1

kn

∑
a=1

kn

∑
b=1

I(a >+
i b)ln

1
1 + eλ(alevel−blevel)

+ C−
E

∑
i=1

kn

∑
j=1

Q̂2
ij

2σ2

(17)

where C is a constant and I(*) is used as an indicator that equals 1 when the condition
* is met. Finally, a calibrated Q-matrix Q̂, which is estimated by the KHLQC approach,
is obtained.
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4.2.2. Incorporating Q-Matrix with Relational Attention Knowledge Tracing Model

After obtaining a calibrated Q-matrix:Q̂, each row of Q̂ was used as the raw exercise
embedding qt, instead of using the word embedding of an exercise. Then, the similarity of
different exercises Qsimi was computed based on qt and the following formula:

Qsimi =
qi × qi
|qi||qj|

(18)

Then, the modified exercise relation matrix RE is defined as follows:

Bi,j =

{
φi,j + Qsimii,j φi,j + Qsimii,j > θ

0, otherwise
(19)

5. Experimental Results and Discussion

In this section, extensive experiments were conducted to evaluate the RAKT model
and its extension model: QRAKT. Specifically, two datasets were introduced, and the
steps of experiments were set up. The experiments were conducted from three aspects
to validate the performance of the RAKT model and the QRAKT model in terms of the
research goals given in Section 3. The first part compared the performance of the QRAKT
model and the RAKT model with baseline models in terms of the AUC, ACC, and Stability
rate. The second part focused on figuring out the impact of various key components based
on the ablation experiments to validate the importance of those key components. The
last part aimed at indicating the performance of the QRAKT model in terms of tracing
the knowledge state of a student. The last part also proved the QRAKT model to be
beneficial to improving student performance according to the results of the knowledge state
evolution description.

In order to validate the performance of the knowledge tracing model in the big dataset
and the small dataset, ASSIST2012 was used to evaluate the performance of the knowledge
tracing models on a big dataset. The Eedi dataset was applied to measure the performance
of the knowledge tracing models on a small dataset. The datasets details are as follows.:

1. Assistment2012(ASSIST2012): This dataset is an open dataset collected by the Assist-
ment Online tutoring system. This dataset is often used by researchers for knowledge
tracing or cognitive diagnosis. The problem bodies of ASSIST2012 were used to
conduct our experiments.

2. Eedi: This dataset is an open dataset, which was released by The NeuralPS 2020
Education Challenge with four tasks. In this paper, the datasets of Task 3 and Task 4
were used for the knowledge tracing task.

Table 3 presents some statistical information on the Assistment2012 dataset and the
Eedi dataset.

Table 3. The statistics of ASSIST2012 and Eedi.

Statistic ASSIST2012 Eedi

Number of records 4,193,631 233,767
Number of students 39,364 2064
Number of questions 59,761 948

Avg exercise record/student 107 113

5.1. Framework Setting

In this section, the network initializations are specified as given in the following Table 4.
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Table 4. The framework setting for the relational attention knowledge tracing model and the cali-
brated Q-matrix relational attention knowledge tracing model.

ASSIST2012 Eedi

Attention embed size 256 256
Number of heads 8 8

Training batch size 200 200
Drop out rate 1 × 10−3 1 × 10−3

Threshold θ of exercise matrix 0.8 0.8
λ 1 1

To evaluate the performances of the RAKT model and its extension model, QRAKT,
previous approaches are compared in the following part. The details of those approaches
are as follows:

1. DKT [8]: DKT was used as an implementation of LSTM, which incorporates a set of
one-hot representations of exercises to predict the performance of students on the
next interaction on certain exercises.

2. DKT+ [40]: DKT+ is an extension of DKT and addresses two problems in DKT,
including the failure of the model to reconstruct the observed input and the lack of
consistency in the performance of students across time steps.

3. DKVMN [41]: This model is based on a memory-augmented recurrent neural network,
which combines the relationship between different KCs presented by the key matrix
with the learner mastery matrix presented by the value matrix.

4. SAKT [23]: This model applies the self-attention mechanism [38], which assigns
different attention weights for different exercises to predict the performance of learners
on certain exercises.

5. EKT [10]: This model explores both student’s exercise records and the textual informa-
tion of corresponding exercises. This model also applies the knowledge state matrix
to incorporate knowledge concept information.

6. EKPT [5]: This model applies the Q-matrix to associate the exercises with the knowl-
edge concepts. The EKPT model uses two classical educational theories, the learning
curve and the forgetting curve, to track the students’ knowledge state.

5.2. Results and Discussion

The prediction of student performance was a binary value. The value of 1 represents
the students answering the next question correctly. The value of 0 represents the students
who did not choose the appropriate options. The area under the curve (AUC) and the
Accuracy (ACC) were used to evaluate all baseline models, the RAKT model, and the
QRAKT model. The model was trained during the training phase and the testing phase.
Generally, a value 0.5 of the AUC or ACC represents that the result is randomly guessed.
The larger the value of the AUC or ACC, the better the knowledge tracing performance is.

The Stability metric is designed based on the AUC metric. Intuitively, if a knowledge
tracing model can produce a better AUC in most cases compared with the other baseline
models, the performance of the knowledge tracing model K is stable. According to this
idea, a Stability rate (Sta(K)) was developed to measure the Stability of the knowledge
tracing model. The formulation of the Sta(i) can be shown as follows. rank(K, i) means
the performance rank parameter of the knowledge tracing model k in batch i. n0 refers
to the number of baseline models that perform worse than the knowledge tracing model
k in terms of the AUC metric, and n indicates the number of knowledge tracing models.
Nbatch is the number of batches used in the testing phase. For example, if there exist
100 testing batches and three models, the QRAKT model, the DKT model, and the DKT+
model, the QRAKT model performed better than the DKT model and the DKT+ model on
94 testing batches. However, on the remaining six testing batches, the QRAKT model only
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outperformed the DKT model. Therefore, n was three, and Nbatch was 100. n0 was 2 on
94 testing batches and 1 on 6 testing batches. Under these conditions, Sta(QRAKT) = 98%.

rank(K, i) =
n0 + 1

n
(20)

Sta(K) =
∑Nbatch

i=0 rank(K, i)
Nbatch

(21)

As stated in Section 3, this paper aimed at providing a knowledge tracing model
that has a good Accuracy and Stability for the online educational system to recommend
personalized exercises. The Accuracy was measured by the AUC metric, and the knowledge
tracing model K was better when this model had a higher value of the AUC. The Stability
was evaluated by the Stability rate Sta(K). The larger the value of Sta(K), the better the
knowledge tracing model performance is.

5.2.1. Students Performance Predictions (RQ1)

Table 5 presents the performance of all baseline models, the RAKT model, and the
QRAKT model. According to Table 5, our QRAKT model outperformed all the baseline
models with a noticeable gap. DKT+ performed better than DKT due to the fact that
the inputs were reconstructed and making the student performance consistent in each
timestamp on the two datasets. SAKT further improved the model performance to some
extent on ASSIST2012, indicating the significance of the relevance between past interactions
and the next exercise. DKVMN had high performance compared with the DKT+ model,
the DKT model, and the SRAKT model on the Eedi dataset because this model can learn
representations based on nonlinear d high performance compared with the DKT+ model,
the DKT model, and the SRAKT model on the Eedi dataset because this model can learn
representations based on nonlinear transformations. Compared with SAKT, EKT considers
the knowledge concepts’ information and exercise relation and obtained better results
in terms of the AUC, ACC, and Stability rate (Sta). However, the EKT model ignored
the student behaviors when tracking the knowledge state of students. The EKPT model
considered the student behaviors including the learning behavior and the forgetting be-
havior and applied the traditional Q-matrix to model the relationship between exercises
and knowledge concepts to improve the performance on student performance prediction.
However, the EKPT model still has some drawbacks. The first is that the Q-matrix does
not consider the hierarchical knowledge levels in knowledge concepts. The second is that
two situations were ignored: the student may guess an answer to a question or provide the
wrong answer for the questions because of his/her carelessness. In order to solve these
problems, the RAKT model incorporates the relation modeling of exercises, the forgetting
theory, and student behaviors with two types of attention mechanisms to improve the
performance in terms of the AUC, ACC, and Stability rate (Sta).

DKVMN had high performance compared with the DKT+ model, the DKT model, and
the SRAKT model on the Eedi dataset because this model can learn representations based
on nonlinear transformations. Furthermore, the relative position and relation modeling of
exercises are used in RAKT to trace the knowledge state of students and obtain a better
performance than all baseline models on the two datasets. This demonstrated that the
relation modeling of exercises and forgetting theory and student behaviors also need
to be considered in knowledge tracing. The extension of RAKT, QRAKT, had the best
performance compared to the other models on the two educational datasets. The QRAKT
model used the knowledge vector matrix, the Q-matrix, to generate the embedding of the
raw exercise and considered different hierarchical levels of knowledge on the knowledge
graph to validate the Q-matrix compared to RAKT. Therefore, the results of the QRAKT
model were more interpretable and accurate than simply using the word2vector method in
the RAKT model.
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Table 5. Comparison of the results of the baseline models with the relational attention knowledge
tracing model (RAKT) and the calibrated Q-matrix relational attention knowledge tracing model
(QRAKT). The best model is boldfaced. The RAKT model performed better than the six baseline
models, including the DKT model, the DKT+ model, the DKVMN model, and the SAKT model. The
QRAKT model further improved the AUC and ACC to some extent compared to the RAKT model
and had the best performance in terms of the AUC and ACC.

ASSIST2012 Eedi

AUC ACC Sta AUC ACC Sta
DKT 0.712 0.679 0.125 0.489 0.489 0.125

DKT+ 0.722 0.685 0.257 0.584 0.566 0.358
DKVMN 0.701 0.686 0.255 0.698 0.640 0.683

SAKT 0.736 0.692 0.492 0.495 0.493 0.266
EKT 0.748 0.690 0.668 0.694 0.648 0.695

EKPT 0.752 0.693 0.706 0.698 0.651 0.704
RAKT 0.754 0.695 0.793 0.702 0.652 0.791

QRAKT 0.771 0.702 0.967 0.707 0.670 0.961

As shown in Figure 4, the different performance of these models on the two datasets
was due to the ASSIST2012 dataset having more student response data than the Eedi dataset.
Therefore, those models that are suitable for processing an extensive dataset will lead to
better performance on the AUC and ACC on the ASSIST2012 dataset, such as the SAKT
model. Those models that are appropriate for handling a small dataset will perform better
on the Eedi dataset, such as the DKVMN model.

0
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DKT DKT+ DKVMN SART EKT EKPT RAKT QRAKT

AUC comparison on the two datasets

Assistment2012 Eedi

Figure 4. The comparison of the AUC on the ASSIST2012 dataset and the Eedi dataset. The calibrated
Q-matrix relational attention model presented the best results of the AUC compared to the other
seven models on the two datasets of 0.771% and 0.707%, respectively.

5.2.2. Ablation Experiments (RQ2)

This section aims at detecting the influence of the key components proposed in this
section. An ablation experiment was conducted in this section to see how those key
components affected the final results of the QRAKT model. There are seven variations of
QAKT, each of which takes one or more methods out of the QAKT model. Specifically, PA,
CQ, and RM indicate that the positional attention layer, calibrated Q-matrix, and relation
modeling are removed from QRAKT, respectively. PA+CQ, PA+RM, and CQ+RM mean
that two components are removed concurrently in QRAKT, i.e., the positional attention
layer and the calibrated Q-matrix, the positional attention layer and relation modeling, and
the calibrated Q-matrix and relation modeling. PA+CQ+RM indicates that the calibrated
Q-matrix, positional attention layer, and relation modeling are removed from QRAKT
concurrently. Tables 6–8 provide some essential conclusions.
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Table 6. Comparison of the results when the positional attention layer (PA) is removed. The best
model is boldfaced. After removing the PA, the AUC of the model on the two datasets decreased by
about 1.8% and 19.2%.

ASSIST2012 Eedi

AUC ACC AUC ACC
PA 0.753 0.689 0.515 0.541

PA+CQ 0.748 0.676 0.505 0.528
PA+RM 0.732 0.668 0.500 0.530

PA+CQ+RM 0.731 0.665 0.489 0.525
QRAKT 0.771 0.702 0.707 0.670

Table 7. Comparison of the results when the calibrated Q-matrix (CQ) is removed. The best model is
boldfaced. After removing the CQ, the AUC of the model on the two datasets decreased by about
1.7% and 2.6%.

ASSIST2012 Eedi

AUC ACC AUC ACC
CQ 0.754 0.695 0.681 0.633

PA+CQ 0.748 0.676 0.505 0.528
CQ+RM 0.735 0.670 0.684 0.632

PA+CQ+RM 0.731 0.665 0.489 0.525
QRAKT 0.771 0.702 0.707 0.670

Table 8. Comparison of the results when removing relation modeling (RM). The best model is bold-
faced. After removing the RM, the AUC of the model on the two datasets decreased by approximately
3.1% and 2.3%.

ASSIST2012 Eedi

AUC ACC AUC ACC
RM 0.740 0.678 0.684 0.637

PA+RM 0.732 0.668 0.500 0.530
CQ+RM 0.735 0.670 0.684 0.632

PA+CQ+RM 0.731 0.665 0.489 0.525
QRAKT 0.771 0.702 0.707 0.670

Firstly, the performance improved when more components were involved, which
met our expectations. Secondly, on the Eedi dataset, when the positional attention layer
was removed, the performance of the QRAKT model was significantly worse than when
removing the other two factors. The effect of the model dropped by about 19.2%, as seen in
Table 6. Therefore, the positional attention layer is a necessary part of the QRAKT model.
On the ASSIST2012 datasets, relation modeling deletion leads to the most outstanding
performance decline, which drops about 3.1%, as seen in Table 8. According to the results of
Table 8, the relation model is an integral part of the QRAKT model. The different removal
results of the two datasets are due to the fact that the number of student records on the Eedi
dataset is much smaller than on the ASSIST2012 dataset. Therefore, relational modeling
had relatively little impact on the results of the Eedi dataset. Lastly, the calibrated Q-matrix
significantly improved the performance of the RAKT model, as seen in Table 7, which
indicates that the calibrated Q-matrix is also a key component in the QRAKT model.

5.2.3. Knowledge State Evolution Description (RQ3)

This section aimed at validating the performance of the QRAKT model, the DKT
model, and the DKT+ model in tracking a student’s knowledge state. The impacts of the
QRAKT model on improving student performance are also illustrated in this section. Heat
maps were applied to describe the evolution of the student’s knowledge state.
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Figures 5–7 present the heat maps of a learner whose knowledge state constantly
changes on skill sets on the Eedi dataset. These figures present the difference of the heat
maps based on different knowledge tracing models, including QRAKT, DKT, and DKT+, to
predict student performance on three skills, 32, 49, and 71. Figure 8 shows the evolution of
student’s learning process on these three knowledge points.
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Figure 5. The knowledge tracing results were based on the calibrated Q-matrix relational attention
knowledge tracing model (QRAKT). (71, 1) is a input tuple, and 71 is the skill ID and 1 indicates the
student answered the question correctly. The overall prediction results of the skill sets in the QRAKT
model fluctuated around 65% for the Accuracy. After the 30th exercise, the student almost mastered
those three skills: 32, 49, and 71, with a 68% Accuracy in answering the next exercise correctly.
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Figure 6. The knowledge tracing results were based on the DKT model. (71, 1) is a input tuple, and
71 is the skill ID and 1 indicates the student answered the question correctly. The overall prediction
results of the skill sets in the DKT model fluctuated around 51% for the Accuracy, where the effect
was the same as randomly guessing an answer. The student failed to master these three skills: 32, 49,
and 71.
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Figure 7. The knowledge tracing results were based on DKT+. (71, 1) is a input tuple, and 71 is the
skill ID and 1 indicates the student answered the question correctly. The overall prediction results of
the skill sets in the DKT+ model fluctuated around 55% for the Accuracy. The student mastered these
three skills: 32, 49, and 71, at a relatively low mastery level.

In Figures 5–7, the vertical dimension label corresponds to three skill IDs (32, 49,
and 71). The horizontal dimension shows a sequence of KCs labeled and related student
responses (“1” indicates that the student answered the questions with appropriate knowl-
edge concepts; otherwise, it is “0“). Those labels of the KCs, such as (71, 1 ) refer to the
knowledge concept input into the model at each time step from the testing set. The color of
the heat map indicates the probability that the student mastered this skill correctly. The
brighter the color of the heat map, the better the effect of knowledge tracing was. As
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Figure 6 illustrates, the DKT model performed worse than the other models in tracing the
student knowledge state. The student failed to master Skills 32, 49, and 71 because of the
low-level mastery level of the skills. Compared with the DKT model, the DKT+ model as
the extension of the DKT model solved the reconstruction problem and the wavy transition
problem in the DKT model to track the student’s mastery level. The performance of DKT+
in tracking the student knowledge state was better than the DKT model and improved the
student knowledge state performance, as seen in Figure 7. Compared with the non-hybrid
methods, the DKT model and the DKT+ model, the hybrid model, QRAKT, further im-
proved the knowledge state performance by incorporating the student behaviors and the
attention mechanism to obtain more accurate results of the knowledge state prediction, as
seen in Figure 7.

ID: 49

ID: 71ID: 32

0.8

0.6

0.4

The maximum state

The last state

The first state

Figure 8. The radar diagram of the QRAKT model. In the first interaction, the student’s knowledge
state was minimum. After a period of study, the performance of the student on Skills 32, 47, and 71
reached the maximum. However, because of the forgetting behaviors and the impact of the guessing
factor and the slipping factor, the knowledge state presented some reduction, but it still performed
better than the first interaction.

Figures 5–7 only illustrate the difference in the knowledge state prediction Stability
of QRAKT, DKT, and DKT+. In order to more specifically present the model performance
differences in tracking the student knowledge state, the overall performance was further
compared at each time step through the line chart given in Figure 9. Figure 9 shows that
the QRAKT model outperformed the DKT model and the DKT+ model in the performance
in tracking student knowledge state. After applying the QRAKT model to the online
educational system, the student mastery level for Skills 32, 49, and 71 was stable and
higher than the DKT model and the DKT+ model. The Stability rate of the QRAKT
model, the DKT+ model, and the DKT model could be obtained: Sta(QRAKT) = 0.961%,
Sta(DKT+) = 0.727%, and Sta(DKT) = 0.125%, respectively. The results of the Stability
rate indicated that the QRAKT model had much higher Stability than the DKT+ and the
DKT models.

The impact of the knowledge tracing model, QRAKT, can be discussed from three
aspects, including the student-related aspects, the teacher-related aspects, and the online-
educational-system-related aspects. For the student-related aspects, after tracking the
knowledge state of a student with the form of a heat map and a radar diagram, as given in
Figure 5 and Figure 8 respectively, the student’s strengths and weaknesses for each skill
were intuitively observed. Therefore, the student was more motivated to address these
shortcomings efficiently. For the online-educational-system-related aspects, the smart edu-
cational system, which applied the QRAKT model, could accurately track the knowledge
state of students and recommend exercises related to the students’ weak knowledge to
improve the students’ overall cognitive level. Additionally, from the perspective of the
educators, teachers can use the recommendation system to prepare practice questions and
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make corresponding adjustments based on his/her own teaching experience to improve
the students’ mastery of the knowledge points.

0.45

0.5

0.55

0.6

0.65

0.7

0.75

QRAKT DKT+ DKT

Figure 9. The comparison of the knowledge tracing result for Skill 49 based on the calibrated Q-
matrix relational attention knowledge tracing model (QRAKT), the DKT model, and the DKT+
model. The QRAKT model outperformed the other two models with around a 65% Accuracy on Skill
49. Compared with the performance of the QRAKT model, the DKT model and the DKT+ model
performed poorly with around a 48% and a 53% Accuracy on Skill 49.

6. Conclusions and Future Work

This paper proposed the novel frameworks, the RAKT model and the QRAKT model.
First, relation modeling, including exercise relation modeling, time-order forgetting behav-
ior modeling, and student behavior modeling, was designed to incorporate the relationship
of exercises, temporal features, and student behaviors. Second, the positional attention
layer and the relational attention layer included relation modeling and exercise content for
the KT task. Thirdly, the extension of RAKT, QRAKT, was based on a calibrated Q-matrix
generated by a novel hierarchical knowledge-level-based Q-matrix calibration method.
Lastly, the effect of the QRAKT model was validated on two public educational datasets,
ASSIST2012 and Eedi, in terms of the ACC and AUC. The knowledge state evolution
description of a student was conducted to track the student’s knowledge state, and an
ablation experiment was designed to find the influence of crucial components.

A significant issue in research in the field of data mining for education is knowledge
tracing. Traditional knowledge tracing methods do not take the relation modeling and
hierarchical knowledge levels of KCs into consideration. This work improved the perfor-
mance of the traditional knowledge tracing model in terms of the Accuracy and Stability.
The online educational system, which applies the QRAKT model, can more accurately track
the students’ knowledge state and recommend a more personalized and targeted practice.
However, the QRAKT model and the RAKT model still have some limitations. The first
limitation is that the QRAKT model and the RAKT model only consider the relationship
between exercises and knowledge concepts. However, the relationship between students,
exercise, and skills is ignored. The second limitation is that this work only considered
the hierarchical levels of knowledge concepts. The deeper relationship of knowledge con-
cepts such as relevance or belonging was not considered. Therefore, more work on those
problems needs to be performed in the future.
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