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Abstract: Information security in a controller area network (CAN) is becoming more important
as the connections between a vehicle’s internal and external networks increase. Encryption and
authentication techniques can be applied to CAN data frames to enhance security. To authenticate a
data frame, a message authentication code (MAC) needs to be transmitted with the CAN data frame.
Therefore, space for transmitting the MAC is required within the CAN frame. Recently, the Triple ID
algorithm has been proposed to create additional space in the data field of the CAN frame. The Triple
ID algorithm ensures every CAN frame is authenticated by at least 4 bytes of MAC without changing
the original CAN protocol. However, since the Triple ID algorithm uses six header bits, there is a
problem associated with low data compression efficiency. In this paper, we propose an algorithm that
can remove up to 15 bits from frames compressed with the Triple ID algorithm. Through simulation
using CAN signals of a Kia Sorento vehicle and an LS Mtron tractor, we show that the generation of
frames containing compressed messages of 4 bytes or more is reduced by up to 99.57% compared to
the Triple ID method.
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1. Introduction

In recent years, more and more electronic control units (ECUs) have been connected
to controller area networks (CANs) to extend automotive capabilities. As the number of
in-vehicle systems and external network connections increases, the need for information
security becomes even greater.

A comprehensive survey of state-of-the-art attack surfaces of automotive CAN and
corresponding protection mechanisms is presented in [1]. In [1], the attack surfaces are
categorized into three types: (1) physical access-based attacks exploiting the OBD-II port
or USB ports [2,3], (2) wireless access-based attacks requiring initial physical access [4,5],
and (3) wireless access-based attacks without physical access exploiting Bluetooth, WiFi or
cellular channels [6,7].

The countermeasures against CAN attacks are categorized into four types: (1) pre-
ventative protection (fuzzing methods [8] and anti-analysis methods [9]), (2) intrusion
detection [10,11], (3) authentication [12–16], and (4) post-protection (attack identification
methods [17] and secure patch methods [18]).

One way to efficiently improve CAN security is to apply authentication and encryption
methods to CAN frames [12]. Each frame must be encrypted to prevent the leakage of
information. During transmission, a message authentication code (MAC) must be generated
and transmitted to authenticate the transmitted frame. Therefore, additional data space
must be reserved in the CAN frame to transmit the MAC.

The size of the data field in a CAN frame is limited to 8 bytes. The Practical Security
algorithm [12] uses 32-bit MAC for transmission due to the size limitation of the data
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field. Therefore, the 16-bit extended ID field and 16-bit CRC field of CAN 2.0B are used
for MAC transmission. However, variations in the CAN protocol can cause issues such
as compatibility.

In the Mini-MAC algorithm [13], if most ECUs connected to the CAN system send
data smaller than 5 bytes, MAC can be transmitted using the remaining area of the data
field. However, data may not be authenticated if sufficient space is not secured.

The Triple ID algorithm compresses data using a compression algorithm and adds
a MAC of 4 bytes or more to the secured space [14]. Therefore, the Triple ID algorithm
ensures every CAN frame is authenticated without changing the original CAN protocol.
However, if the compressed data length is greater than 4 bytes, one frame cannot contain
both compressed data and MAC since the length of MAC should be at least 4 bytes to
ensure sufficient authentication performance. In this case, the MAC is sent using a separate
frame. Therefore, it is important to ensure that the compressed data length is not larger
than 4 bytes to reduce bus load and latency.

In [15], a selective message authentication method is proposed specifically for safety-
critical CAN packets. Selective message authentication can reduce the communication
overhead on the CAN bus, but the delay stemming from the transmission of additional
data packets is an unavoidable drawback.

The MAuth-CAN algorithm presented in [16] is resistant to masquerading attacks. The
MAuth-CAN algorithm neither uses the full capacity of the network nor requires hardware
modifications to the CAN controller. However, latency in real-time applications still needs
to be considered.

A compression algorithm can be used to overcome the limitations of the short data
field of CAN frames. CAN data compression uses the difference between two frames
for transmission based on the fact that the data fields of successive CAN frames with the
same message ID do not change rapidly. CAN data compression can be divided into two
categories: methods using a predefined maximum difference value (PMDV) [19–23] and
methods using compression area selection (CAS) maps [24–26].

In PMDV-based methods, if the difference does not exceed some predefined maximum
value, only the differences between the current and preceding CAN messages are transmit-
ted. In [19], if the value of the delta (difference) exceeds the length of the assigned delta
field, the current CAN message is transmitted rather than the delta compressed version of
the message. Therefore, two message IDs are used to distinguish between the compressed
data and the uncompressed data. In [20], to use a single ID, the first bit of the data field is
assigned as a data reduction code (DRC) indicating whether data reduction is used or not.
By using data length code (DLC) in CAN frame format, the enhanced data reduction (EDR)
algorithm [21] eliminates the difficulties in the identification of compressed messages, such
as the use of the reserved bit [22]. In the boundary of the fifteen compression (BFC) algo-
rithm, if the current value of a CAN signal has changed within the maximum compression
rage of ±15, then the CAN signal can be compressed [23].

The compression efficiency of PMDV-based methods depends on the accuracy of the
PMDV chosen for the application. The best compression efficiency is achieved when the
PMDV adapts to changes in the vehicle operating environment [24]. However, it is difficult
to continuously maximize compression efficiency since PMDV is difficult to adjust once
determined for an application.

In CAS map-based algorithms, a compression area selection map eliminates the need
to predict the maximum difference value as described in Section 2.3. In [24], the difference
between the previous and the current data field is calculated and each difference value is
represented using a modified sign-magnitude number which denotes the sign by the least
significant bit. In [25], the bit-wise exclusive-OR values between successive data fields are
computed instead of calculating the difference values. Thus, the use of a sign bit is not
necessary. In CAS map-based algorithms, the 64-bit CAN data field is arranged as three
signals having 24, 24, and 16 bits. In [26], a systematic way is presented to place the CAN
data bits using multi-level arrangement maps to obtain the best compression efficiency.



Appl. Sci. 2023, 13, 2654 3 of 15

In CAS map-based algorithms, the size of the CAS map varies according to vehicle
driving conditions. Since the change of the CAS map corresponds to the change in the
PMDV, the compression algorithms based on the CAS map show better compression
efficiency than the PMDV-based algorithms.

Recently, CAN ID shuffling (hopping or obfuscation) techniques have been proposed
to prevent DoS attacks and replay attacks. Abdulmalik et al. proposed a DoS defense
technique using CAN ID hopping [27]. This method proposes a CAN ID hopping technique
using the offset generated by the trusted party when detecting a DoS attack. Martin et al.
proposed a CAN ID obfuscation scheme [28]. In this method, a CAN ID obfuscation
technique is used, which uses a different CAN ID system for each car, even for cars of
the same model. While these methods are effective in not increasing the amount of data
to be transmitted, they have the drawback that they cannot prevent impersonation and
replay attacks.

In this paper, we propose an algorithm that significantly reduces the amount of
transmission data of the Triple ID method by combining CAS map and MAC. By the
proposed method, up to 15 bits can be further reduced from the compressed data obtained
by the Triple ID method. Using the proposed method, we show that the occurrence of
compressed messages exceeding 4 bytes is reduced by up to 99.57% compared to the Triple
ID method.

Section 2 introduces existing data authentication methods for CAN security. A new
compression efficiency improvement method is proposed in Section 3. Simulation results
using vehicles are presented in Section 4. Finally, a brief conclusion is provided in Section 5.

2. Existing CAN Data Authentication Methods
2.1. Practical Security Algorithm

In the Practical Security algorithm, AES-128 and hash-based message authentication
(HMAC) are used for CAN data encryption and authentication, respectively [12]. The
ciphertext C is obtained from the plaintext M as

C = EEKk (CTRECUs)⊕M, (1)

where EEKk (·) is the AES-128 encryption function using the k-th session encryption key EKk,
CTRECUs is the message counter value of the transmitting ECU (ECUs), and ⊕ is the XOR
operation. Each ECU must manage data frame counter values for all relevant incoming
and outgoing data.

AES-128 encryption produces an output of 128 bits, but since the maximum size of the
CAN data field is 64 bits, only the first 64 bits are used to generate the ciphertext in (1).

The MAC data of the Practical Security algorithm is generated as follows:

MACPS = HAKk (IDs‖C‖CTRECUs), (2)

where HAKk (·) denotes the keyed hash function using the k-th session authentication key
AKk, IDs denotes the ID of the sending ECU, and ‖ denotes a concatenation operation.

In the Practical Security algorithm, 32-bit MAC is used, and the 32-bit MAC provides
sufficient authentication for CAN systems. Since there is no room for MAC in the data
field, the 16-bit extended ID field and 16-bit CRC field of CAN 2.0B are used for MAC
transmission as shown in Figure 1. However, variations in the CAN protocol can cause
issues such as compatibility.
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2.2. Mini-MAC Algorithm

The Mini-MAC algorithm generates a MAC as follows [13]:

MACMini = T[s, Hk(k‖Mn‖CTRECUs‖Mn−λ‖ · · ·Mn−1)], (3)

where T[s, ·] is a function that extracts the first s bits from input, Hk(·) denotes a hash function
using the authentication key k, Mn is the current message to send, and {Mn−λ‖ · · ·Mn−1} is
the concatenation of the most recent λ messages. The hash function used by Mini-MAC is
Message-digest algorithm 5 (MD5) which takes 64-byte input.

For the 64-byte input in (3), the counter and key need 8 and 16 bytes, respectively.
Therefore, for λ = 5, 40 bytes are allocated for 6 messages (Mn · · ·Mn−5), and each message
is expected to consume an average of 6.67 bytes.

If most ECUs use data fields smaller than 5 bytes, the remaining space in the data
field can be used to transmit at least 4 bytes of truncated Mini-MAC data. Otherwise, a
Mini-MAC algorithm does not provide sufficient authentication for CAN systems.

2.3. Modified MAC Algorithm Using ICANDR

In the ICANDR algorithm, the 8-byte CAN data is first divided into three signals: Sig
A (3 bytes), Sig B (3 bytes), and Sig C (2 bytes). Next, the bit-wise XOR values between the
current signal and the previous signal are computed as shown in Table 1. The difference
between two successive CAN signals with the same message ID is usually close to zero.
This is because the rate of generation of CAN signals is much greater than the rate of change
in car driving. If the calculated XOR value is nonzero, the corresponding header bit is set
to one. Otherwise, the corresponding header bit is set to zero.

Table 1. Header bit calculation in the ICANDR algorithm.

Signal Sig A Sig B Sig C

Previous frame
(Fi−1) 1A 2B CA16 9A EC 9616 74 E316

Current frame
(Fi)

1A 2B E116 9A EC 9216 74 E316

XOR
(Fi−1 ⊕ Fi)

00 00 2B16 00 00 0416 00 0016

Header bit 1 1 0

The calculated header bits are arranged in the last column of the CAS map in sequence,
as shown in Table 2. Starting in the next row, the XORed values for Sig A and Sig B are
placed in bits 23 through 0. However, the XORed values for Sig C are placed in bits 15
through 0 because Sig C is a two-byte signal. If a header bit is 0, the corresponding row is
emptied, as shown in Table 2.
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Table 2. CAS map corresponding to Table 1 (shaded area: selection area).

Signal Bit 23—Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Header (HA) 1
Header (HB) 1
Header (HC) 0

SA
(Sig Ai ⊕ Sig Ai−1)

0 · · · 0 1 0 1 0 1 1

SB
(Sig Bi ⊕ Sig Bi−1)

0 · · · 0 0 0 0 1 0 0

SC
(Sig Ci ⊕ Sig Ci−1)

- - - - - - -

Next, starting from the leftmost column, if all elements of a column are zero, that
column is deleted. This process repeats until the first occurrence of a column with a nonzero
element. Then the remaining area is designated as a selection area as shown in Table 2.

Finally, the selection area in Table 2 is arranged using the memory map in Table 3.
Thus, in this example, eight-byte data are compressed into only two bytes.

Table 3. Memory map corresponding to Table 2.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 0 SA
[2]

SB
[1]

SA
[1]

SB
[0]

SA
[0] HC HB HA

Byte 1 0 SB
[5]

SA
[5]

SB
[4]

SA
[4]

SB
[3]

SA
[3]

SB
[2]

In the modified MAC algorithm [29], data compression is performed using the
ICANDR algorithm, but the compression ratio is further improved by displaying the
header bits in the last byte of the MAC instead of the compression area. For example, if the
header bits are “101”, the decimal value of the header bits is “5”. Then, the fifth bit from
the LSB of the MAC is inverted as shown in Figure 2. The receiving ECU calculates the
MAC independently, compares it with the last byte of the received MAC, and determines
the header bit value by the inverted bit position.
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The modified MAC algorithm can be applied when the length of compressed data
is 0 to 6 bytes. The length of MACmod, the MAC data of the modified MAC algorithm, is
determined as

L(MACmod) = 7− L(Mc), (4)

where L(x) means the length of x in bytes, and Mc means compressed data. In (4), the
largest value of L(MACmod) is 7. The 8-byte case is not used to avoid confusion with
uncompressed 8-byte data.

Using a modified MAC algorithm, 3 bits can be further reduced compared to the
ICANDR algorithm. If the length of the compressed data is 6 bytes, the length of the MAC
is limited to 1 byte. However, it is difficult to expect sufficient authentication performance
with a 1-byte MAC. In addition, the modified MAC algorithm cannot be applied if the
compressed data length is greater than 6 bytes.

2.4. Triple ID Algorithm

Unlike the Mini-MAC or modified MAC algorithms, the Triple ID algorithm always
transmits a MAC of at least 4 bytes to ensure sufficient authentication performance of CAN
frames [14]. The Triple ID algorithm uses a CAS map-based data compression technique
similar to the ICANDR algorithm.

Figure 3 shows the MAC generation procedure of the Triple ID algorithm. The gener-
ated MAC including the authentication key k is

MACTI = T
[
s, Hk

(
k‖CCn‖CTRECUs‖CCn−1‖ · · ·CCn−λ

)]
, (5)

where CCn is the current encrypted compressed message, and
{

CCn−1 , · · ·CCn−λ

}
are the

previous encrypted compressed messages. Therefore, malicious attackers attempting to
intrude into the CAN system should collect previous valid messages in addition to the
authentication key. (Equations (5) and (6) of [14] may be referred to in order to calculate a
compressed ciphertext and retrieve the compressed data from the compressed ciphertext.)
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In the Triple ID algorithm, when the compressed data length is less than 4 bytes, the
length of the MAC is calculated as

L(MACTI) = 8− L(Mc). (6)
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Then, the compressed data and the MAC are transmitted as one frame using ID i as
shown in Table 4.

Table 4. ID assignment of the Triple ID algorithm.

Compressed Data Length ID Type of Data
L (Mc) ≤ 4 i Compressed data and MAC in the same data field

4 < L (Mc) ≤ 7
i + 1 Compressed data
i + 2 8 bytes of MAC

7 < L (Mc)
i + 1 Uncompressed data
i + 2 8 bytes of MAC

If the compressed data length is greater than 4 bytes, one frame cannot contain both
compressed data and MAC since the length of MAC should be at least 4 bytes. If the
compressed data length is greater than 4 bytes and less than 7 bytes, the compressed data is
transmitted with ID i + 1 and the 8-byte MAC is transmitted with ID i + 2. If the compressed
data length is greater than 7 bytes, the uncompressed CAN data is transmitted using ID
i + 1, and the 8-byte MAC is transmitted using ID i + 2.

The Triple ID algorithm uses 6 header bits. As in the ICANDR algorithm, the 3 header
bits of HA, HB and HC indicate the presence of Sig A, Sig B and Sig C, respectively. The
other three bits LC[2], LC[1], and LC[0] indicate the compressed data length in bytes and
the length of the MAC in the data field can be determined using this information.

The Triple ID algorithm does not require any changes to the CAN protocol to provide
authentication. In addition, the Triple ID algorithm always transmits a MAC of at least
4 bytes to provide sufficient authentication performance for CAN frames. However, two
frames must be transmitted if the compressed data length is larger than 4 bytes. Therefore,
it is important to compress CAN data to 4 bytes or less for communication efficiency such
as low bus load and short latency.

3. Proposed CAN Security Method

The Triple ID algorithm provides good authentication performance by always trans-
mitting a MAC of 4 bytes or more. However, two frames must be transmitted if the
com-pressed data length is greater than 4 bytes. In this section, we propose an algorithm to
reduce the probability of the case where the compressed data length is greater than 4 bytes.

Our proposed security architecture is divided into three phases. Phase 3 (Section 3.3
Session Key Management) uses a well-known security method (Authenticated Key Ex-
change Protocol 2 (AKEP2)) to construct a session key distribution process. In the security
architecture we propose, the main novel contributions lie in Phases 1 (Section 3.1 Bit
Replacement Algorithm) and 2 (Section 3.2 Data Transmission and Reception).

3.1. Bit Replacement Algorithm (BRA)

In the Triple ID algorithm, the CAN data field consists of compressed data and a
truncated MAC of 4 bytes or more. The compressed data is encrypted using the AES-128
algorithm, but MAC is not encrypted. MAC generation of the proposed method uses the
same scheme as the Triple ID method. However, in the proposed algorithm, the length of
the truncated MAC is fixed at 4 bytes. This is because a 4-byte MAC provides sufficient
authentication for CAN systems [12]. Therefore, since the compressed data length can be
determined directly, 3 bits (LC[2], LC[1], LC[0]) can be removed from the 6 header bits of
the Triple ID method.

The Bit Replacement Algorithm is summarized as follows:
1© Let X and Y denote 3-bit and 8-bit data, respectively.
2© If the decimal value of X is i, X can be expressed using Y by inverting the i-th bit from

the LSB of Y.
3© X can be restored from the inverted bit position information of Y.
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• BRA can be applied repeatedly. If Y is (4× 8)-bit data, (4× 3)-bit data can be expressed
using Y as shown in Figure 4. In Figure 4, since the last 3 bits of the compressed data
are ‘010’, the second bit from the LSB of the last byte of the MAC is inverted. In a
similar way, 12 bits of compressed data can be expressed using 4 bytes of MAC.

• Compressed data of the proposed method is obtained in the same way as the Triple
ID method. If the length of the compressed data is 0, the 4-byte MAC is transmitted
without any change. Otherwise, BRA is applied starting from the last 3 bits of the
compressed data. Each application of BRA removes 3 bits from the compressed data.
BRA can be applied up to 4 times, but the application of BRA stops when there is
no compressed data left. By the proposed method, a maximum of 15 bits (12 bits by
BRA and 3 header bits) can be further reduced from the compressed data by the Triple
ID method.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 16 
 

same scheme as the Triple ID method. However, in the proposed algorithm, the length of 
the truncated MAC is fixed at 4 bytes. This is because a 4-byte MAC provides sufficient 
authentication for CAN systems [12]. Therefore, since the compressed data length can be 
determined directly, 3 bits (LC[2], LC[1], LC[0]) can be removed from the 6 header bits of 
the Triple ID method. 

The Bit Replacement Algorithm is summarized as follows: 

① Let X and Y denote 3-bit and 8-bit data, respectively. 
② If the decimal value of X is i, X can be expressed using Y by inverting the i-th bit from 

the LSB of Y. 
③ X can be restored from the inverted bit position information of Y. 
• BRA can be applied repeatedly. If Y is (4 × 8)-bit data, (4 × 3)-bit data can be ex-

pressed using Y as shown in Figure 4. In Figure 4, since the last 3 bits of the com-
pressed data are ‘010’, the second bit from the LSB of the last byte of the MAC is 
inverted. In a similar way, 12 bits of compressed data can be expressed using 4 bytes 
of MAC. 

• Compressed data of the proposed method is obtained in the same way as the Triple 
ID method. If the length of the compressed data is 0, the 4-byte MAC is transmitted 
without any change. Otherwise, BRA is applied starting from the last 3 bits of the 
compressed data. Each application of BRA removes 3 bits from the compressed data. 
BRA can be applied up to 4 times, but the application of BRA stops when there is no 
compressed data left. By the proposed method, a maximum of 15 bits (12 bits by BRA 
and 3 header bits) can be further reduced from the compressed data by the Triple ID 
method. 

 
Figure 4. 12-bit data representation using 4-byte MAC with the proposed method. 

If the compressed data length is still greater than 4 bytes after applying the proposed 
algorithm, the same procedure as the triple ID algorithm (i.e., using 𝐼𝐷  and 𝐼𝐷 ) is 
applied except that the length of MAC is 4 bytes. The receiver compares the independently 
generated MAC with the received MAC. After examining the inverted bit locations, the 
compressed data can be restored. 

Proposed method differs from the modified MAC in that it improves compression 
performance by moving not only header bits but also part of data information to MAC. 

Figure 4. 12-bit data representation using 4-byte MAC with the proposed method.

If the compressed data length is still greater than 4 bytes after applying the proposed
algorithm, the same procedure as the triple ID algorithm (i.e., using IDi+1 and IDi+2) is
applied except that the length of MAC is 4 bytes. The receiver compares the independently
generated MAC with the received MAC. After examining the inverted bit locations, the
compressed data can be restored.

Proposed method differs from the modified MAC in that it improves compression
performance by moving not only header bits but also part of data information to MAC.

3.2. Data Transmission and Reception

Data transmission by the proposed algorithm can be defined by two cases based on
the BRA-compressed data length.

• Case I (0 ≤ BRA-compressed data length ≤ 4): BRA-compressed data and 4-byte MAC
are transmitted in the same data field using IDi.

• Case II (4 < BRA-compressed data length≤ 7): BRA-compressed data and 4-byte MAC
are transmitted using IDi+1 and IDi+2, respectively.
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The maximum length of the BRA-compressed data is 7. Therefore, unlike the Triple ID
method, there is no need to consider an 8-byte uncompressed message. Figures 5 and 6
show the proposed data transmission and reception flow charts, respectively.
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3.3. Session Key Management

After starting a vehicle, every ECU performs a session key derivation process with
a Gateway ECU (GECU) in a fixed order. While GECU derives the session keys for a
particular ECU, other ECUs belonging to the same subnetwork do not communicate, i.e.,
they wait for their turn. We used AKEP2 to construct a secure and efficient key derivation
process in the in-vehicle CAN environment; it provides mutual entity authentication and
implicit key distribution [12,30].

The process of AKEP2 performance consists of a 3-way handshake. The distribution of
the session keys is shown in Figure 7. The output size of HKDFx() is 256 bits. The leftmost
128 bits are used as an authentication key (used for HMAC algorithm) and the rightmost
128 bits as an encryption key (used for AES algorithm).
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4. Simulation

In this section, we present the MATLAB simulation results using CAN data from Kia
Sorento vehicle and an LS Mtron tractor. MATLAB simulations were performed on a com-
puter equipped with an Intel(R) i5-9600KF CPU @3.70Ghz. The transmission and reception
flows shown in Figures 5 and 6 were programmed in MATLAB. The automobile dataset
was used for the AI/ML based driver classification challenge track in ‘2018 Information
Security R&D dataset challenge’ in South Korea and can be downloaded from the site
introduced in [31].

The compression ratio in this simulation is defined as follows:

Comp. ratio =

(
1− bytes of compressed data

bytes of original data

)
× 100%. (7)

Tables 5 and 6 show the length (in bytes) of compressed data using the Triple ID algo-
rithm and the proposed algorithm in a Kia Sorento, respectively. A total of 1,295,920 frames
with 8 CAN IDs were used for the simulation. The simulation results in Tables 5 and 6 are
summarized in Tables 7 and 8.

Table 5. Compressed data length for a KIA SORENTO using Triple ID algorithm.

ID No. of Frames
No. of Occurrences by Compressed Data Length

0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte
260 163,078 132,141 0 30,601 336 0 0 0 0 0
2A0 163,078 162,433 0 645 0 0 0 0 0 0
316 163,078 55,299 0 64,884 30,078 5989 3433 1640 1690 65
329 163,078 130,940 0 23,671 8307 156 4 0 0 0
43F 199,531 110,188 0 87,408 1891 20 24 0 0 0
440 199,531 26,161 0 155,111 17,362 855 42 0 0 0
545 163,078 34,328 0 51,314 77,426 10 0 0 0 0
580 81,468 56,799 0 16,050 5471 1809 1001 338 0 0

Total 1,295,920 708,289
(54.66%)

0
(0.00%)

429,684
(33.16%)

140,871
(10.87%)

8839
(0.68%)

4504
(0.35%)

1978
(0.15%)

1690
(0.13%)

65
(0.00%)

Table 6. Compressed data length for a KIA SORENTO using the proposed algorithm.

ID No. of Frames
No. of Occurrences by Compressed Data Length

0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte
260 163,078 162,380 698 0 0 0 0 0 0 0
2A0 163,078 163,078 0 0 0 0 0 0 0 0
316 163,078 111,928 34,911 10,410 3607 1047 1115 60 0 0
329 163,078 140,279 22,545 252 2 0 0 0 0 0
43F 199,531 196,204 3122 198 7 0 0 0 0 0
440 199,531 175,780 22,410 1330 11 0 0 0 0 0
545 163,078 62,068 101,002 8 0 0 0 0 0 0
580 81,468 69,972 8020 2446 419 611 0 0 0 0

Total 1,295,920 1,081,689
(83.47%)

192,708
(14.87%)

14,644
(1.13%)

4046
(0.31%)

1658
(0.13%)

1115
(0.09%)

60
(0.00%)

0
(0.00%)

0
(0.00%)

Table 7 shows the difference in compression ratios between the Triple ID algorithm
and the proposed algorithm for each ID. It can be seen that a higher compression ratio can
be obtained by the proposed algorithm, ranging from a maximum of 17.94% to a minimum
of 0.10% (average 8.07%).

In the case of the Triple ID algorithm, a total of 10,367,360 bytes in the data field are
compressed into 1,335,718 bytes, showing a compression ratio of 89.54%. On the other hand,
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in the case of the proposed algorithm, the same CAN data is compressed into 247,399 bytes,
showing a compression ratio of 97.61%. Therefore, an additional compression ratio of 8.07%
can be obtained by the proposed algorithm.

Table 7. Comparison of compression ratios for a Kia Sorento.

ID No. of Original Bytes
Compressed Bytes

(Compression Ratio) Difference
Triple ID Proposed

260 1,304,624 62,210 (95.23%) 1396 (99.89%) 4.66%
2A0 1,304,624 1290 (99.90%) 0 (100%) 0.10%
316 1,304,624 283,313 (78.28%) 76,675 (94.12%) 15.84%
329 1,304,624 72,907 (94.41%) 23,055 (98.23%) 3.82%
43F 1,596,248 180,689 (88.68%) 3539 (99.78%) 11.10%
440 1,596,248 86,738 (94.57%) 25,103 (98.42%) 3.85%
545 1,304,624 334,946 (74.32%) 101,018 (92.26%) 17.94%
580 651,744 62,782 (90.37%) 16,613 (97.45%) 7.08%

Average 1,295,920 135,609 (89.54%) 30,925 (97.61%) 8.07%

Table 8. Comparison based on compressed data length greater than 4 bytes for a Kia Sorento.

ID
Compressed Data Length Greater than 4 Bytes

Triple ID Proposed
316 6828 2222
329 4 0
43F 24 0
440 42 0
580 1339 0

Total 8237 (100%) 2222 (26.98%)

As explained in Section 2.4, it is important to compress CAN data to 4 bytes or less
for communication efficiency. Table 8 summarizes the number of occurrences where the
compressed data length exceeds 4 bytes. It can be seen that the proposed algorithm reduces
the occurrences of compressed data exceeding 4 bytes by 73.02%, compared to the Triple
ID algorithm.

A simulation using an LS Mtron tractor was performed to show that the proposed
algorithm can be applied to various industrial machines. Table 9 shows that the proposed
algorithm can achieve higher compression ratios compared to the Triple ID algorithm,
ranging from a maximum of 22.76% to a minimum of 12.50% (average 17.44%).

Table 10 shows a comparison based on the compressed data length greater than 4 bytes
for an LS Mtron tractor. It can be seen that the proposed algorithm reduces the occurrences
of compressed data exceeding 4 bytes by 99.57%, compared to the Triple ID algorithm.

The bus load is defined as

Busload(%) =
used capacity
maxcapacity

=
# bits sent

speed
. (8)

Peak load is defined as the maximum bus load. In this paper, CANoe is used to
calculate the peak load of the CAN bus using Kia Sorento CAN data at the speed of
500 kbps.

Figure 8 shows the peak load test environment. In Figure 7, VN1630 (Vector CAN/
CANFD IP Core) is used as TX HW and VH6501 (Vector CAN/CANFD IP Core) is used
as RX HW. A Pico Scope 5444D is used for CAN waveform monitoring. Table 11 shows
the peak load of the CAN system with the proposed algorithm is only 64.8% of that of the
CAN system with the Triple ID algorithm.
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Table 9. Comparison of compression ratios for an LS MTRON tractor.

ID No. of Original Bytes
Compressed Bytes

(Compression Ratio) Difference
Triple ID Proposed

CF00400 164,704 66,346 (59.71%) 28,872 (82.47%) 22.76%
CFE4523 32,904 4163 (87.34%) 4 (99.99%) 12.65%
18FE5600 3288 421 (87.19%) 0 (100.00%) 12.81%
18FF2100 65,872 8238 (87.49%) 0 (100.00%) 12.51%
18FF6121 65,448 8181 (87.50%) 0 (100.00%) 12.50%
18FEF200 32,936 10,781 (67.26%) 4321 (86.88%) 18.02%
18FF9E21 65,456 8497 (87.02%) 13 (99.98%) 12.96%
19FFA010 65,648 14,191 (78.38%) 32 (99.95%) 21.57%
19FFA030 32,736 5153 (84.26%) 530 (98.38%) 14.12%
Average 58,777 13,997 (76.18%) 3752 (93.62%) 17.44%

Table 10. Comparison based on compressed data length greater than 4 bytes for an LS Mtron tractor.

ID
Compressed Data Length Greater than 4 Bytes

No. of FramesTriple ID Proposed
CF00300 1007 0 8234
CF00400 1469 12 19,119
CFE4523 50 0 4113
18FE4321 6 0 4090
18FEDF00 107 0 8127
18FEF200 137 0 4036
19FFA030 12 0 4092

Total 2788 (100%) 12 (0.43%) 51,811
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Table 11. Comparison of the peak loads.

Triple ID Proposed

Peak load 29.27%
(1)

18.99%
(0.648)

The transmission part of the proposed algorithm inverts 4 bits in 4 bytes according to
the 12-bit value after performing the Triple ID algorithm, and the receiving part performs
the opposite process. Therefore, the calculation cost of the proposed algorithm is slightly
higher than that of the Triple ID algorithm. However, compared to the entire process
of the Triple ID algorithm, the cost of the additional computational process required by
the proposed algorithm is almost negligible, so the computational cost of the proposed
algorithm is almost the same as that of the Triple ID algorithm.

5. Conclusions

We proposed a bit replacement algorithm that further increases the compression
efficiency of the Triple ID method by combining CAS map and MAC. In the Triple ID
algorithm, it is very important to compress CAN data to 4 bytes or less for communication
efficiency. The proposed method reduced the occurrence of compressed messages exceeding
4 bytes by up to 99.57% compared to the Triple ID method. Simulation using a CANoe
system shows that the peak load of the CAN system with the proposed algorithm is only
64.8% of that of the CAN system with the Triple ID algorithm.

The Triple ID algorithm provides sufficient authentication performance without chang-
ing the CAN protocol. In addition to the authentication performance, the proposed algo-
rithm further improves the communication efficiency of the Triple ID algorithm. Therefore,
the proposed algorithm is expected to be usefully applied to CAN systems, including recent
connected cars, where security vulnerabilities are of great concern.

The proposed method differs from the modified MAC method in that it improves com-
pression performance by moving not only header bits but also part of the data information
to MAC. This is an important step forward, as the proposed method is applicable to other
compression algorithms as well.

Future research should focus on applying the proposed method to other communica-
tion systems such as FlexRay.
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