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Abstract: The uncertainty of rainflow fatigue damage is evaluated for stationary loadings and
for non-stationary switching loadings with a finite number of stationary states. The approach is
based on confidence intervals constructed after direct analysis of stress-time histories. The accuracy
of confidence intervals is verified first by numerical simulations, and then by experimental data
measured in a mountain bike traveling under various driving and road surface conditions, yielding
stationary and non-stationary switching loadings. Stationarity and non-stationarity of loading records
is checked by a statistical method (run test). In experiments, a small set of records (validation set) is
also collected and used to approximate the expected damage, which serves for verification purposes.
Not only do numerical and experimental results confirm the correctness of the proposed confidence
interval for damage, but they also emphasize its usefulness in real engineering applications.

Keywords: uncertainty; rainflow damage; stationary loading; non-stationary loading; confidence
interval; statistical run test; mountain bike

1. Introduction

The great majority of structural details are subjected, in service, to irregular or random
loadings. It is easy to find examples in a variety of engineering fields: oceanic (offshore
structures and ships exposed to wave loadings) [1], aeronautics and aerospace (airplanes
during a flight) [2], automotive (cars subjected to road-induced loadings) [3,4]. With
such random loadings, the structural integrity assessment is based on the fatigue damage
computed on a stress-time history by rainflow counting and the Palmgren–Miner rule [5].

Often, one or more stress-time histories of finite length are available from measure-
ments. It is unlikely that such histories, no matter how long, can include all the possible
fatigue cycles to which the structural detail will be subjected in its entire service life. Certain
stress cycles may not be observed in a short duration measurement. Fatigue cycles have
in general different amplitudes and mean values, which in turn yield different values of
damage for each stress-time history. Stated another way, the fatigue damage D(T) of a
random stress-time history of length T is a random variable following a certain probability
distribution with expected value E[D(T)] and variance σ2

D. Expected value and variance
represent averages over an infinite population of damage values computed from an infinite
ensemble of records—clearly, an abstraction impossible to be obtained in practice.

Based on this matter of facts, the following question naturally arises: what conclusions
can confidently be drawn from the knowledge of the damage D(T) computed from a few
stress-time histories of finite length, or even from only one? This issue is intimately related
to the statistical uncertainty of the observed damage values.

The problem has been tackled by different approaches in the literature. Since the
1960s, some authors developed analytical formulae that allowed the expected value and
variance of damage—or equivalently the coefficient of variation (CoV) σD/E[D(T)]—to
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be determined from several statistical properties of the random record, or from its
power spectral density function. These approaches are restricted to certain load models
(linear oscillator) [6–9] or to loadings with specific types of power spectral density
(narrowband [10,11], multimodal [12] or wide band [13]). Extension to non-Gaussian
loadings has also been proposed recently [14]. Interesting is the method presented
in [15] in which the CoV of damage is estimated from only one sample record.

The uncertainty in fatigue damage—and its correlation with various sources of
randomness—has been investigated, in more recent articles, in a probabilistic and/or
reliability framework based on different modeling strategies (e.g., machine learning algo-
rithm [16], surrogate model [17]) and methods (e.g., piecewise stochastic rainflow count-
ing [18], Bootstrap error circle [19]), with applications and case studies spanning various
engineering fields (e.g., maritime [20,21], structural [22], automotive [23,24]).

Differently from the previous methods, an approach—also devised in [13]—used
confidence intervals to evaluate the uncertainty of rainflow damage, and specifically to
enclose the expected damage when only few stationary stress-times histories, or only one,
are available. Although in [13] the approach was positively benchmarked against numerical
simulation results, it is only applicable to stationary loadings with time-invariant statistical
properties. This characteristic may not fully represent the actual loading conditions in
certain structural details, in which random loadings have statistical properties that change
over time and, therefore, are non-stationary.

Among the broader class of non-stationary loadings, in many engineering applica-
tions, the non-stationary loadings are formed by a sequence of stationary states—they
are called switching loadings. Examples could be offshore structures and ships exposed
to a sequence of stationary sea states; airplanes during the sequence of taxiing, taking
off, cruising, maneuvering and landing; wind turbines under wind loadings caused by
weather conditions; and cars and bikes subjected to different road surfaces and velocities.
Evaluating the uncertainty of rainflow damage for such types of switching loadings has
therefore a great practical relevance.

Starting from this premise, this paper aims to extend the confidence interval of dam-
age for stationary loadings to the case of non-stationary loadings of the switching type.
The obtained solution is benchmarked against numerically simulated and measured non-
stationary loadings, the latter being recorded in a mountain bike traveling in different
riding conditions and over various tracks.

The paper is organized as follows: after a brief theoretical background (Section 2), the
confidence interval for the stationary case is first reviewed (Section 3) and then extended to
the case of switching loadings (Section 4). The confidence interval for the non-stationary
case is checked by simulated loadings (Section 5), whereas measured loadings are used to
validate the solutions for both stationary and non-stationary cases (Section 6).

2. Expected Fatigue Damage for a Random Loading

Let x(t), 0 < t < T, be a time-varying signal as measured at a critical point in a
structure, whether the signal is load, stress or strain. Throughout the paper, it will be
referred to as a stress-time history (or stress record). The fatigue damage of x(t) under the
Palmgren–Miner linear rule is [5]

D(T) =
NT

∑
i=1

1
N f ,i(si)

(1)

where N f ,i(si) is the number of cycles to failure at stress amplitude si and NT is the
number of rainflow cycles counted in x(t). Equation (1) is very general as it applies to
both stationary and non-stationary loadings, and to any S–N equation. Often, constant
amplitude experimental data are best-fitted by a S–N curve sk

i N f ,i(si) = C, where C is the
fatigue strength coefficient and k the inverse slope.
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Damage D(T) depends on the stress-time history x(t) of duration T from which it
was computed. It has a statistical uncertainty coming from two sources: load (e.g., stress
amplitudes si, number of counted cycles NT) and material strength (coefficient C and
inverse slope k). The latter can be taken into account by means of a characteristic S–N line
defined for a low probability of failure (e.g., 2.3% or less) [25,26]. The focus of this paper
is therefore on the randomness of the load, which is reflected into the randomness of si
and NT . Because of this, damage D(T) is a random variable following a certain probability
distribution with expected value E[D(T)] and variance σ2

D.
Intuitively, E[D(T)] can be thought as an average over an infinite population of

damage values, which are computed from an infinite number of load records. This situation
is purely theoretical. In real engineering applications, the common situation is indeed that
in which only few stress-time histories (if not even only one) with finite time duration T are
available from measurements. In this case, E[D(T)] remains unknown. A statistical method
is needed to draw conclusions on E[D(T)] based on D(T).

3. Confidence Interval of Damage: Stationary Case

This section describes how to construct the confidence interval on E[D(T)] when D(T)
is computed from (i) multiple (two or more) records (Case M) or (ii) a single record (Case S).

3.1. Case M: Multiple Stress-Time Histories

Assume that N stress-time histories xi(t), i = 1, 2, . . . N of same duration T are
available, e.g., from measurements replicated under the same conditions. The damage
values Di(T), i = 1, 2, . . . N of each xi(t) are characterized by the sample mean and sample
variance [27]:

D(T) =
1
N

N

∑
i=1

Di(T) , σ̂2
D =

1
N − 1

N

∑
i=1

[
Di(T)− D(T)

]2 (2)

These sample estimates represent the unbiased estimators of the (unknown) expected
value E[D(T)] and variance of the damage σ2

D, respectively. In the hypothesis of normally
distributed damage, the above sample values allow the 100(1− α)% confidence interval on
the expected damage (with variance unknown) to be constructed as [27]

D(T)− tα/2,N−1
σ̂D√

N
≤ E[D(T)] ≤ D(T) + tα/2,N−1

σ̂D√
N

(3)

in which tα/2,N−1 is the upper α/2 percentage point of t distribution with N − 1 degrees
of freedom. For large N (for example, N > 30), the t distribution approaches a standard
normal distribution, tα/2,N−1

∼= zα/2. In Equation (3), the only unknown is E[D(T)].
Predictably, the confidence interval becomes increasingly narrower if N increases. If

the number of load records N were infinite, no statistical uncertainty would be present;
D(T) would be equal to E[D(T)], and the confidence interval would have a zero width
(zero prediction error).

Equation (3) relies on the hypothesis of normally distributed damage D(T), which
can be assumed under the validity of the central limit theorem in the limit T → ∞ . Under
this hypothesis, the Palmgren–Miner damage is, in fact, the sum of a countless number of
damage values from individual cycles. The hypothesis of central limit theorem has been
supported by many authors [6–9,28]. In [11], it was concluded that the departure from the
normal distribution for the damage is only marginal, especially for low values of the CoV
of damage, which in turn indicates that in practical situations, T is usually long enough
for the central limit theorem to apply. Recent studies [29] have nevertheless discovered
that, for larger values of both CoV and S–N slope (i.e., less steep S–N line), the damage
distribution tends to be skewed and non-normal, even though this conclusion has been
drawn based on a very small number of cycles (3200) that, while used for accentuating the
skewness of damage distribution, seem unrealistically too small for common engineering
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applications. Even in the case (discussed in Section 3.2) of block subdivision, which yields
a block length TB < T, the number of blocks is small so that TB remains long enough to
assume that DB(TB) is normally distributed.

3.2. Case S: Single Stress-Time History

This is the most common and interesting case in which only a single stress-time history
x(t) of duration T is available, e.g., from only one measurement. In order to construct
the confidence interval on E[D(T)] as in Case M, a sample of damage values needs to be
obtained first. To this end, in a preliminary stage, x(t) is divided into NB ≥ 2 disjoint
blocks of equal time length TB = T/NB. The damage of blocks is DB,j(TB), j = 1, 2, . . . NB.

It is worth emphasizing that since the entire record x(t) is stationary and its subdivid-
ing blocks fully disjoint (not overlapped), the rainflow cycles counted in each block form
independent sets, and their amplitudes have the same statistical distribution. As a result,
the block damages DB,j(TB), j = 1, 2, . . . NB are independent and identically distributed
random variables, with a common value of variance Var[DB,i] = σ2

DB
and zero covariance,

Cov
(

DB,i, DB,j
)
= 0 (i 6= j). The damage of the undivided record x(t) is

D(T) ∼=
NB

∑
j=1

DB,j(TB) = NB·DB(TB) (4)

where DB(TB) denotes the sample mean of block damage:

DB(TB) =
1

NB

NB

∑
j=1

DB,j(TB) , σ̂2
DB

=
1

NB − 1

NB

∑
j=1

[
DB,j(TB)− DB(TB)

]2 (5)

while σ̂2
DB

is the sample variance of block damage, to be used shortly.
The sign∼= in the previous equation signposts a small approximation. In fact, the block

subdivision determines a small fraction of rainflow cycles to be lost, namely, those cycles
formed by peaks and valleys falling in distinct blocks after subdivision. While these cycles
would be counted in the undivided record x(t), after subdivision they are not counted
anymore. Compared to the number of cycles in each block, the amount of lost cycles is
negligible if the block length TB is sufficiently long. This condition on TB, in turn, implies
that the number of blocks NB cannot increase indefinitely. As a rule of thumb, the minimum
value for TB must assure a minimum of 103 cycles in each block; this condition ensures that
the approximation in Equation (4) is perfectly acceptable [13].

As for Case M, the sample values in Equation (5) allow the 100(1− α)% confidence
interval on E[DB(TB)] (for a single block) to be constructed as [27]

DB(TB)− tα/2,NB−1
σ̂DB√

NB
≤ E[DB(TB)] ≤ DB(TB) + tα/2,NB−1

σ̂DB√
NB

(6)

Here, tα/2,NB−1 is the upper α/2 percentage point of the t distribution with NB − 1
degrees of freedom; for NB > 30, it is tα/2,NB−1

∼= zα/2.
The confidence interval in Equation (6) can be further elaborated. As an intermediate

step, take the expected value and variance of Equation (4):

E[D(T)] = E

[
NB
∑

j=1
DB,j(TB)

]
= NB·E[DB(TB)]

σ2
D = Var

[
NB
∑

j=1
DB,j(TB)

]
= NB·σ2

DB

(7)

where σ2
DB

= Var
[
DB,j(TB)

]
is the variance of block damage—note that, likewise the

expected damage E[D(T)], also the variances σ2
D and σ2

DB
refer to an infinite population of
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damage values and then are unknown. In both formulae in Equation (7), the second equal
sign takes advantage of the fact, already mentioned above, that the random variables DB,j
are independent and identically distributed, which implies that E

[
DB,j

]
= E[DB(TB)] and

Var
[
DB,j(TB)

]
= σ2

DB
for any j, and that Cov

(
DB,i, DB,j

)
= 0 for i 6= j.

After multiplying Equation (6) by NB:

NB·
(

DB(TB)− tα/2,NB−1
σ̂DB√

NB

)
≤ NB·E[DB(TB)] ≤ NB·

(
DB(TB) + tα/2,NB−1

σ̂DB√
NB

)
(8)

and substituting the results of Equations (4) and (7), the final expression is

D(T)− tα/2,NB−1·σ̂D ≤ E[D(T)] ≤ D(T) + tα/2,NB−1·σ̂D (9)

where the unknown variance of damage is approximated by the sample variance of block
damage as σ̂2

D
∼= NB·σ̂2

DB
[13].

Equation (9) is the 100(1− α)% confidence interval on the (unknown) expected dam-
age E[D(T)]. Other quantities can easily be computed: D(T) is the damage of the whole
stress-time history x(t), σ̂D ∼=

√
NB·σ̂DB is the sample standard deviation of D(T) derived

from the sample standard deviation of block damage, tα/2,NB−1 is tabulated.
While Equation (9) was checked with simulated stress-time histories in [13], in Section 6

of this paper it will be benchmarked against strain data measured on a mountain bike.

4. Confidence Interval of Damage: Non-Stationary Case

This section extends the result of Section 3.2—which has much greater practical
relevance—to the case of a non-stationary loading z(t) of switching type, formed by a
sequence of stationary states. As a preparatory result, the confidence interval on the sum of
expected values of independent and normally distributed random variables is developed.

4.1. Confidence Interval on the Sum of Independent Normal Random Variables

The following results follow the same reasoning used for the confidence interval on
the difference in expected values [27,30]. As a starting point, and with the purpose of
illustrating the approach, it is useful to discuss first the simplest case of the sum X1 + X2
of two independent and normally distributed random variables X1 and X2 with expected
values µ1, µ2 and variances σ2

1 , σ2
2 .

The goal is to construct a confidence interval on µ1 + µ2 in the hypothesis of different
and unknown variances σ2

1 , σ2
2 . Inference will be based on two random samples of size n1

and n2 from X1 and X2, denoted as X1p, p = 1, . . . , n1 and X2q, q = 1, . . . , n2.
Under the previous hypotheses on Xi’s, it follows that Z = X1 + X2 is normally

distributed with expected value µZ = µ1 + µ2 and variance σ2
Z = σ2

1 + σ2
2 [27]. A log-

ical point estimator of µZ is the sum of sample means X1 + X2, each one defined as

Xi = (1/ni)
ni
∑

j=1
Xij. It is well known that each Xi is normally distributed with expected

value µi and variance σ2
i /ni [27]. Since the sample means X1 and X2 of independent random

variables are also independent, the estimator X1 + X2 has expected value
E
[
X1 + X2

]
= µ1 + µ2 and variance Var

[
X1 + X2

]
= σ2

1 /n1 + σ2
2 /n2.

In order to derive a confidence interval on µZ = µ1 + µ2, and taking advantage of the
above findings, it is useful to consider the statistic:

Tη =
X1 + X2 − (µ1 + µ2)√

S2
1

n1
+

S2
1

n2

(10)
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which has approximately a t distribution with η degrees of freedom [27,30]:

η ∼=

(
s2

1
n1

+
s2

2
n2

)2

(s2
1/n1)

2

n1−1 +
(s2

2/n1)
2

n2−1

(11)

If not integer, η has to be rounded down to the nearest integer [27]. In previous expres-
sions, S2

i is the sample variance of the i-th sample Xij, where (n1 − 1)S2
i = ∑ni

j=1

(
Xij − Xi

)
.

Note that symbol s2
i in Equation (11) denotes the numerical value of S2

i computed from an
observed sample of values xi1, xi2, . . . , xini ; as usual in statistics, lowercase letters indicate
observed values of random variables or estimators, indicated by uppercase letters.

From the distribution of Tη and the probability statement P
(
−tα/2,η ≤ Tη ≤ tα,η

)
= 1− α,

it is possible to construct the approximate 100(1− α)% confidence interval on the sum of ex-
pected values µ1 + µ2 as

(x1 + x2)− tα/2,η

√
s2

1
n1

+
s2

2
n2
≤ µ1 + µ2 ≤ (x1 + x2) + tα/2,η

√
s2

1
n1

+
s2

2
n2

(12)

where tα/2,η is the upper α/2 percentage point of the t distribution with η degrees of
freedom given in Equation (11). Symbols x1, x2 and s2

1, s2
2 indicate the numerical values,

respectively, of the sample mean and sample variance calculated from the two observed
samples of X1 and X2 (by definition, the sample mean is xi = (1/ni)∑ni

j=1 xij).
It is now straightforward to generalize the result in Equation (12) to the case of

a random variable Z = ∑N
i=1 Xi sum of N independent and normally distributed ran-

dom variables X1, X2, . . . , XN with expected values µ1, µ2, . . . , µN and unequal variances
σ2

1 , σ2
2 , . . . , σ2

N . In this case, the approximate 100(1− α)% confidence interval on the sum
µZ = ∑N

i=1 µi is

(
N

∑
i=1

xi

)
− tα/2,ν

√√√√ N

∑
i=1

s2
i

ni
≤

N

∑
i=1

µi ≤
(

N

∑
i=1

xi

)
+ tα/2,ν

√√√√ N

∑
i=1

s2
i

ni
(13)

where xi and s2
i denote the sample mean and sample variance of the i-th random sample

xij, j = 1, . . . , ni with ni observations for the random variable Xi; tα/2,ν is the upper α/2
percentage point of the t distribution with the following number of degrees of freedom:

ν ∼=

(
∑N

i=1
s2

i
ni

)2

∑N
i=1

(
s2
i

ni

)2

ni−1

(14)

As before, a fractional value of ν must be rounded down to the nearest integer [27].
In the case, analyzed in Section 4.2, of equal sample sizes ni = n (for any i), the previous

expression simplifies as ν ∼= (n− 1)
(

∑N
i=1 s2

i

)2
/ ∑N

i=1
(
s2

i
)2.

The level of accuracy of the approximate confidence interval in Equation (13) was
checked by numerical simulations in which various sets with different numbers of random
variables Xi, each with different expected value µi and variance σ2

i , were examined. The
selected values of µi = 0, 1, 2, 3 and σ2

i = 1, 5, 10, 100 allowed for a total of sixteen
possible combinations

(
µi, σ2

i
)

for the random variables Xi. The first six are listed in Table 1.
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Table 1. Combinations of expected value µi and variance σ2
i of the first six random variables Xi.

Parameters
i-th Random Variable Xi

1 2 3 4 5 6

Expected value, µi 0 0 0 0 1 1
Variance, σ2

i 1 5 10 100 1 5

Not all random variables Xi’s were considered simultaneously; rather, their number
was made to vary as N = 2, 3, . . . , 16, i.e., from only two variables up to all sixteen
variables included. Once N has been selected, a random sample of size n was generated
from the normal distribution of each Xi with parameters µi and σ2

i . Different sample sizes
in the range n = 2, 3, . . . , 100 were considered.

For each combination of N and n, the random sampling yielded N samples of
size n, the values of which were used to construct the 95% confidence interval as per
Equation (13). This confidence interval, by definition, may or may not enclose the expected
value µZ = ∑N

i=1 µi. If the procedure is repeatedly applied, it is expected that 95% of
confidence intervals will enclose µZ. To verify this assertion, the random sampling and
construction of the confidence interval (for given combinations of N and n) were repeated
2·107 times; in this large set, the fraction of confidence intervals enclosing µZ represented
the estimated confidence level 100(1− α̂)% to be compared with the theoretical value 95%.

The outcome for a few selected combinations of
(
µi, σ2

i
)
, which are in fact well repre-

sentative of a general trend, is summarized in Table 2. It is observed that, for N and n being
both very small, Equation (13) gives confidence levels larger than the theoretical value 95%;
for greater values of N and n, the difference almost disappears. Only for the lowest values
of n, the difference may occasionally be large, for example, reaching 98.59% when n = 2
and NS = 16. Nevertheless, this smallest sample size is only included here for comparative
purposes; it being usually not used in practice. Apart from this value, for larger values of n,
the estimated confidence level converges to the theoretical value, for any N. This outcome
confirms the accuracy of the approximated confidence interval in Equation (13).

Table 2. Observed confidence level 100(1− α̂)% as a function of the number of random variables N
and sample size n.

Sample Size, n
Number of Random Variables, N

2 3 4 5 6

2 98.47% 98.24% 95.96% 95.82% 94.90%
10 95.08% 95.05% 95.08% 95.07% 95.11%
100 95.00% 95.01% 95.00% 95.02% 95.00%

4.2. Confidence Interval of Damage for a Switching Loading with Two or More States

Thanks to Equation (13), the results of Section 3.2 are now extended to a non-stationary
stress-time history z(t) of duration T that switches between a finite number NS of stationary
states—an example with three states (1, 2, 3) is depicted in Figure 1.
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Figure 1. Non-stationary switching stress-time history with 3 stationary states and 2 blocks in each state.

Compared to the stationary case, the procedure now requires an additional step in
which the distinct stationary states in z(t) are first identified. This identification can be
performed by checking for abrupt changes, for example, in the root-mean-square (rms)
value in z(t), as it will be demonstrated in Section 6.

Since each stationary state represents a portion of the whole record z(t), the total
time length of z(t) sums the length of individual states as T = ∑NS

i=1 TS,i. In a similar way,
the total damage of z(t) is the summation of the damage of individual loading states as
D(T) ∼= ∑NS

i=1 DS,i(TS,i) [31]. The approximation sign in this equality is due to the fatigue
cycles lost when separating the entire stress-time history z(t) into stationary segments and
omitting the transitions cycles between them (an example is the range between the global
maximum and global minimum if they do not occur within the same segment—typical for
the ground–air–ground cycle in the aviation industry). On the other hand, since the number
of segments or stationary states is generally small, the amount of these lost cycles—and the
damage they contribute—is negligible compared to that of the multitude of other cycles
counted within individual states.

Assume that in the non-stationary stress-time history z(t), a total of NS distinct sta-
tionary states with lengths TS,i, i = 1, 2, . . . NS have been identified. As in the stationary
case, each state is further subdivided into NB blocks of length TB,i = TS,i/NB, see Figure 1.
Since distinct states have different lengths but share a common NB, block lengths in every
state are in general different TB,i, i = 1, 2, . . . NS. It is noted that the choice of a common NB
for all states is not strictly necessary, though it simplifies the following theoretical solution.

State identification and block subdivision give the damage values DB,ij(TB,i), with
i = 1, 2, . . . NS (state index) and j = 1, 2, . . . NB (block index). Damage DB,ij(TB,i) refers to
block j in state i. Note that DB,ij(TB,i), j = 1, 2, . . . NB represent a sample of NB observed
values for the random variable DB,i(TB,i) (block damage of state i), with expected value
E[DB,i(TB,i)].

By following the procedure of Section 3.2, the values DB,ij(TB,i) are used to compute
the sample mean DB,i(TB,i) and sample variance σ̂2

DB ,i of block damage in state i:

DB,i(TB,i) =
1

NB

NB

∑
j=1

DB,ij(TB,i) , σ̂2
DB ,i =

1
NB − 1

NB

∑
j=1

[
DB,ij(TB,i)− DB,i(TB,i)

]2 (15)

which are computed for i from 1 to NS, so there are in total NS values of DB,i(TB,i) and
σ̂2

DB ,i. There are also NS values of E[DB,i(TB,i)], i = 1, 2, . . . NS.
At this stage, the goal is to construct a confidence interval on the sum of expected

block damages, namely ∑NS
i=1 E[DB,i(TB,i)]. The similitude with the problem explained in

Section 4.1 is now apparent, provided that the quantities xi, s2
i and µi in Equation (13)
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are replaced by DB,i(TB,i), σ̂2
DB ,i and E[DB,i(TB,i)], respectively. The number of random

variables coincides with the number of states, N = NS; the sample size is the number of
blocks, n = NB. The confidence interval on the sum of expected block damages then is

(
NS

∑
i=1

DB,i(TB,i)

)
− tα/2,νZ

√√√√NS

∑
i=1

σ̂2
DB ,i

NB
≤

NS

∑
i=1

E[DB,i(TB,i)] ≤
(

NS

∑
i=1

DB,i(TB,i)

)
+ tα/2,νZ

√√√√NS

∑
i=1

σ̂2
DB ,i

NB
(16)

where tα/2,νZ is the usual upper α/2 percentage point of a t distribution with degrees of
freedom (case of common NB for any i):

vZ ∼= (NB − 1)

(
∑NS

i=1 σ̂2
DB ,i

)2

∑NS
i=1

(
σ̂2

DB ,i

)2 (17)

Equation (16) can be further elaborated to a simpler form for practical use. After sub-
stituting in Equation (16) the sample mean DB,i(TB,i) in Equation (15) and then multiplying
by NB, the confidence interval expression becomes

NS

∑
i=1

NB

∑
j=1

DB,ij(TB,i)− tα/2,νZ

√√√√NS

∑
i=1

NB·σ̂2
DB ,i ≤

NS

∑
i=1

NB·E[DB,i(TB,i)] ≤
NS

∑
i=1

NB

∑
j=1

DB,ij(TB,i) + tα/2,νZ

√√√√NS

∑
i=1

NB·σ̂2
DB ,i (18)

If Equation (7) is now considered, it is easy to recognize that NB·E[DB,i(TB,i)] =
E[DS,i(TS,i)] represents the expected damage for the i-th state. Furthermore, the single sum-
mation ∑NS

i=1 NB·E[DB,i(TB,i)] = ∑NS
i=1 E[DS,i(TS,i)] = E[D(T)] gives the expected damage of

the entire non-stationary record z(t). The double summation D(T) ∼= ∑NS
i=1 ∑NB

j=1 DB,ij(TB)

corresponds to the total damage of z(t)—the approximation in the equal sign lies in the
small amount of cycles lost after block subdivision, already discussed in previous sections.

Upon substituting the quantities obtained so far, D(T) and E[D(T)], it is possible to
rewrite Equation (18) into the final expression of the confidence interval on E[D(T)] for a
single non-stationary switching stress-time history z(t):

D(T)− tα/2,νZ

√√√√NS

∑
i=1

NB·σ̂2
DB ,i ≤ E[D(T)] ≤ D(T) + tα/2,νZ

√√√√NS

∑
i=1

NB·σ̂2
DB ,i (19)

In this formula, the quantities D(T) and σ̂2
DB ,j are known: D(T) is the fatigue damage

of the entire switching stress-time history z(t), σ̂2
DB ,i is the sample standard deviation of the

block damage for the i-th stationary state. The expected damage E[D(T)] is unknown.
A minimum number of segments NS ≥ 2 is required. Similarly, the number of blocks

should be NB ≥ 2 to allow the sample values of each stationary state to be computed.
Interesting is to note that in the limit case NS = 1 (the switching loading has only one
stationary state), Equation (19) converges to Equation (9), whereas Equation (17) simplifies
into (NB − 1), which is indeed the solution for the stationary case.

It is finally worth emphasizing an important remark on the ordering of stationary
states in the switching loading z(t). The simplified situation depicted in Figure 1, in which
states follow one another in their full length, is in fact not required. More realistically,
and as also observed in practical applications [32], the same stationary state may appear
randomly and repeatedly in z(t).

In order to apply the approach described so far, it is irrelevant in which time sequence
the states come in succession and how many times the same state appears in z(t) initially,
provided that there are limited differences in mean values between states. If one or more
states appear more than once in different time sectors of z(t), it is necessary to reorder
them: sectors belonging to the same state are shifted to adjacent positions so that each state
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appears only once in its full length. An illustrative example is shown in Figure 2. It shows
three states split into sectors of different length. After reordering, sectors 1a and 1b from
the same state 1 are joined to form one single portion 1a + 1b of duration TS,1. The same
reordering joints the sequence 2a + 2b and 3a + 3b. The confidence interval on expected
damage in Equation (19) is to be applied to the reordered stress-time history.
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Figure 2. Example of state reordering: stress-time history (a) before and (b) after reordering.

5. Verification by Simulated Switching Loadings
5.1. Simulation of Load Cases

The stationary case has already been checked in [13]. Therefore, attention here is
focused on the switching case. Three types of switching loadings, which may represent
practical cases, are considered:

• Load A: sequence of three states of equal length TS,i = 100 s but different mean
mi = 0, 1 and standard deviation si = 1, 2 (see Figure 3). This load case was chosen
because of its similarity to the measured loads in Section 6;

• Load B: same mi and si as Load A but with different lengths TS,i with values: TS,1 = 50 s
(state 1), TS,2 = 175 s (state 2), TS,3 = 75 s (state 3);

• Load C: sequence of four states arranged in a random sequence. Since states 1 and
2 appear twice (see Figure 4a), the analysis requires a state reordering (the reordered
sequence, with full state lengths TS,i, is shown in Figure 4b). States have the following
characteristics: TS,1 = 50 s, m1 = 0, s1 = 1 (state 1); TS,2 = 175 s, m2 = 1, s2 = 1
(state 2); TS,3 = 75 s, m3 = 1 and s3 = 2 (state 3); TS,4 = 100 s, m4 = 0, s4 = 2 (state 4).

Each switching load z(t) is obtained by first simulating a sample loading separately
for each stationary state and then by arranging the simulated loadings in the desired order.

The previous simulation procedure was repeated so that a total of N = 2·105 real-
izations zi(t), i = 1, 2, . . . , N were simulated for each load type A, B, C. This sample size
N is comparable to similar studies [11]. Fatigue damage values Di(T), i = 1, 2, . . . , N
were calculated for all realizations by assuming an S–N slope k = 3. A sample mean
damage D(T) is computed as in Equation (2); since N is very large, the approximation
E[D(T)] ∼= D(T) holds true with enough accuracy.
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Figure 3. Load A: three states of same duration TS,i; the values of mi and si are in bottom subplots.
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Figure 4. Load C: (a) with replicated states and (b) after reordering (values of mi and si in
bottom subplots).

Besides the sample of large size N, a smaller set of Nval = 20 realizations—called
the validation set—is also generated for each load type A, B, C. This validation set will
become fundamental with measured loadings, see Section 6. In fact, whereas it is effortless
to numerically simulate large samples of load realizations to be used for approximating
E[D(T)] accurately as above, it is instead almost impossible to collect a huge number
of measured records, and the “small” validation set then becomes the only means to
approximate E[D(T)] ∼= D(T). On the other hand, when the sample size N reduces, it may
be presumed that D(T) can occasionally be less close to E[D(T)] because of the increased
sampling variability. Introducing the validation set also in numerical simulations has
the purpose to assess the accuracy of the approximation E[D(T)] ∼= D(T) when D(T) is
computed over a much smaller sample (20� 2·105).



Appl. Sci. 2023, 13, 2808 12 of 23

The damage values Dval,i(T), i = 2, 3, . . . , Nval from the validation set are used to
compute a sample mean and sample variance:

Dval(T) =
1

Nval

Nval

∑
i=1

Dval,i(T) , σ̂2
Dval

=
1

Nval − 1

Nval

∑
i=1

[
Dval,i(T)− Dval(T)

]2 (20)

Obtained results show that the approximation E[D(T)] ∼= Dval(T) has only a 2%
difference lower than the approximation in which the sample mean damage is computed
on the larger set 2·105. This confirms how a validation set of smaller size Nval = 20
yields sufficiently accurate statistics, at least for the simulated realizations considered
in this study.

As the last step in the simulation procedure, one additional switching load realization
was generated for Load A, B, C and then used to construct the 95% confidence interval on
E[D(T)] according to the procedure of Section 4.2; the number of blocks NB ranged from
2 to 10. The results are presented in the next subsection.

5.2. Simulation Results

Figure 5a displays, for Load A, the confidence intervals (normalized to the expected
damage) as a function of NB. Very similar trends (not shown) are obtained for Load B and
Load C. For any NB, E[D(T)] (approximated by Dval(T)) always falls within the confidence
interval. As NB increases, the interval width diminishes towards a sort of asymptote; this
confirms that the prediction error cannot be decreased by subdividing the load states into
infinitely many blocks. In fact, block subdivision does not add “new information”, such as
new fatigue cycles, to the original undivided load.
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Figure 5. Load A: (a) confidence intervals versus number of blocks NB; (b) sample of 20 confidence
intervals for case NB = 10.

The outcome in Figure 5a, though very promising, only represents one observation,
and it cannot be used to draw general conclusions on the correctness of the method. In fact,
a confidence interval, by definition, may or may not enclose the expected value E[D(T)]; a
set of 20 confidence intervals (for the case NB = 10) is displayed in Figure 5b to show an
example in which E[D(T)] is not enclosed by the confidence interval.

If the construction of the 95% confidence interval described so far is repeated in a series
of independent analyses, in the long run it is expected that 95% of the computed confidence



Appl. Sci. 2023, 13, 2808 13 of 23

intervals will enclose E[D(T)]. To prove this statement, it is necessary to repeat the above
procedure a multitude of times, and then count how often the confidence interval encloses
E[D(T)]—theoretically, it should be 95 out of 100 times. While the validation set is kept
unchanged, switching loads are iteratively simulated 2·105 times, and for each iteration, the
confidence interval is constructed. The fraction of confidence intervals enclosing E[D(T)]
represents the estimated confidence level 100(1− α̂)%. As an example, for NB = 10, the
obtained values are 94.9% (Load A), 95.6% (Load B) and 95.2% (Load C), which are almost
coincident with the theoretical value of 95%. Only in the limit case NB = 2, the estimated
confidence becomes larger (e.g., 98.1% for Load C), but it rapidly reduces as NB increases;
it is then recommended to divide the stationary states into as many blocks as possible,
compatibly with a minimum number of cycles in each block. In summary, simulations
results have confirmed the accuracy of the proposed approach.

6. Verification by Loadings Measured in a Mountain Bike
6.1. Methods and Data Acquisition

The stress-time histories measured on the mountain bike are aimed at verifying the
correctness of confidence intervals. The mountain bike (see Figure 6) has a frame of
6061 aluminum alloy, and a front fork of steel [31]. Two Rigida Cyber 10 size 700C wheels
are coupled with 700 × 37c S207 semi-slick tires. The bicycle was equipped with an on-
board data acquisition system capable to measure and store the strain-time histories during
the bike ride. The on-board system is formed by a data acquisition system (mounted on the
inclined tube of the bicycle frame), rechargeable battery (allocated on a support behind the
seat), speedometer (with a sensor and a magnet fixed on a spoke) and two half-bridge strain
gages (glued onto the fork). The strain gages, placed symmetrically around the left fork
tube, are aligned in the longitudinal plane so as to measure the axial strains corresponding
to the bending moment in the fork. The sampling frequency was 1000 Hz. After data
acquisition, measured strain signals were converted into stress signals as x(t) = Eε(t),
where E is the elastic modulus of steel. When fully equipped, the mountain bike plus
rider weighed about 77.2 kg. More details on the bicycle and on-board system can be
found in [31].
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Two types of circular off-road tracks were chosen for measurements. The tracks
were plane (or almost plane) and made of different road surfaces. Track types and riding
conditions were selected so that the measured records were (i) stationary or (ii) non-
stationary of switching type. In the stationary case, the mountain bike moved at the
approximately constant speed of 15 km/h over the same road made of gravel, see Figure 7a.
In the non-stationary case, the bike moved over surfaces of different characteristics such as
asphalt, gravel and grass, see Figure 7b, and with a speed varying from 10 to 20 km/h. In
both stationary and non-stationary cases, the mountain bike was ridden by a rider of 65 kg,
who remained seated for the entire duration of each measurement.
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It has to be emphasized that the choice of these riding conditions—which are in fact
not typical of a mountain bike in off-road use—was primarily dictated by the need to obtain
stress-time histories that were stationary or non-stationary of switching type, which are
the requirements for applying the confidence intervals. For the same reason, the measured
records are not used here for evaluating the structural safety of the bicycle.

All measurements, carried out over fourteen consecutive days, gathered an amount of
41 stationary and 21 non-stationary load records, grouped as follows:

• 10 stationary records used as input for Case M in Section 3.1.
• 1 stationary record used as input for Case S in Section 3.2.
• 30 stationary records to form the validation set for the stationary case.
• 1 non-stationary switching record to be analyzed as in Section 4.2.
• 20 non-stationary switching records for the validation set of the non-stationary case.

All measured records are available in the section “Supplementary Materials”.
The two validation sets were used to compute a sample mean damage (validation

damage) with which to approximate the expected damage as E[D(T)] ∼= Dval(T). Indeed,
E[D(T)] cannot be measured exactly as it refers to an infinite collection of load records.
It is not superfluous to emphasize that the validation damage Dval(T) is only used here
for verification purposes, that is, to verify whether the confidence intervals enclose the
expected damage. The validation sets are not required in real practical situations.

Once measured, all stress-time histories (stationary and non-stationary) were scaled so
that all data points from 0 to T had a zero mean and unit variance. This scaling is perfectly
acceptable as the stress-time histories are not used here for a structural integrity assessment
of the bicycle; on the other hand, the scaling does by no means undermine the validity of
the conclusions presented hereafter.

Figure 8 depicts two examples of stationary and non-stationary records after normal-
ization. It is possible to appreciate, at least visually, how the non-stationary record does
show significant variations over time of its mean and, more markedly, its variance, whereas
the stationary record does not.
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6.2. Detecting Stationarity/Non-Stationarity by the Run Test

The Wald–Wolfowitz run test (or simply run test) is a non-parametric hypothesis test
to check whether a load record is stationary or non-stationary. Admittedly, in its original
formulation (two sample version [33–35]), the run test was proposed as a hypothesis testing
to verify whether two random variables X and Y follow the same probability distribution
function. The acceptance or rejection of the hypothesis is based on the statistical distribution
of “runs”. A “run” is a sequence of values from the same random variable xi (or yi) that is
preceded or followed by values from the other variable yi (or xi), or by no observation at
all—the xi’s and yi’s are values randomly sampled from X and Y and then pooled together
to form a single bigger sample.

With a slight modification, the run test can also be used to test whether a single discrete
sequence of values is truly random or contains an underlying deterministic trend. In this
version, the application of the run test requires that a reference value (usually the median
of the sequence of values) is introduced [35]. The median allows the initial sequence to
be divided into two dichotomic categories: values above (+) and values below (−) the
median. The original sequence of discrete values is then converted into a sequence (e.g.,
++−−−++−+−−) of two mutually exclusive sets, exactly as in the original version
with two variables xi and yi. The “runs” are finally identified and counted; for example,
the sequence (++)(−−−)(++)(−)(+)(−)(−) has six runs marked with round brackets.
Based on the definition of median, each category + or − counts an equal number of items
(n+ = n−) if, in the original sequence, the number of elements is even; if the number of
elements is odd, the value equaling the median is ignored.

A further modification is finally required if the run test is to be applied to a random
signal z(t) with continuous time values (here, “continuous” disregards the discrete time
sampling always present in digitalized signals). The modification has the purpose of
converting the signal into a set of discrete sequences of values. It consists in dividing the
signal into a number, say Ns, of consecutive but disjoint segments; then, for the signal
portion within each segment, a statistical parameter—usually the signal root-mean-square
(rms) value—is determined. This signal processing returns a discrete sequence of rms
values ψ1, ψ2, . . . , ψNs , for which the median is then computed. This allows the ψi’s to be
divided into values above (+) and below (−) the median. A discrete sequence of + and −
is again obtained, for which the “runs” are identified and counted.

The number of runs, say r, is a random variable because it depends on the observed
sequence of + and − and, in turn, on the signal analyzed. Let n+ = n− be the number of
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values above/below the median. If this number is large (>10), the distribution of r approaches a
normal distribution with mean value µr = E[r] and variance σ2

r = Var(r) [33,35]:

µr = 1 + n+, σ2
r =

n+(n+ − 1)
2n+ − 1

(21)

The acceptance region for the null hypothesis “the sequence of ψi’s is truly random”,
with a level of significance β, is given by the inequality:

rn+ ,1−β/2 < r < rn+ ,β/2 (22)

where rn+ ,1−β/2 and rn+ ,β/2 are tabulated [36], or they can be approximated (if n+ > 10) by
taking for r a normal distribution with parameters µr, σ2

r in Equation (22) [37].
Based on the value of r (i.e., the number of runs in the sequence of rms values in z(t)),

conclusions can be drawn on the nature of z(t). If r falls inside the acceptance region as in
Equation (22), the sequence of ψi is presumed to be truly random, and accordingly, z(t) is
classified as stationary. Conversely, if r falls outside, z(t) is classified as non-stationary.

An important parameter in the run test is the number of segments, as it directly
determines the segment time length Ts. The important role of Ts has been emphasized
in [38]. In that study, it was discovered—though only empirically—that too long a value
of Ts has the effect of smoothing local variations in the rms value, if present, up to the
point of hiding the presence of underlying trends. This effect can be understood quite
intuitively by considering that the rms value of each segment, ψi, is computed as a time
average of the signal in that segment. It is then presumed that the value ψi fully represents
the signal rms value in that segment, regardless of whether the actual rms value is in fact
constant within the segment. Any local fluctuation of the rms value within each segment is
averaged out, indeed. As a direct consequence, the longer the segment length, the greater
the averaging effect in each segment, with the risk of smoothing or even hiding any non-
stationary fluctuation—the run test may classify the signal as stationary though it is not.
Conversely, too short a segment length, while increasing the sensitivity to local temporal
variations, tends also to enhance the presence of irregular fluctuations of rms values across
adjacent segments that, being only due to a sampling variability, may erroneously indicate
a false non-stationarity. Regrettably, the interesting observations made in [38] are not used
to suggest practical recommendations for the optimal choice of Ts.

For this reason, the run test is here applied by choosing two different values: Ts = 5 s
and Ts = 10 s. Figure 9 illustrates the run test applied to one of the measured records
belonging to the presumed “stationary” set. When Ts = 10 s, there are n+ = n− = 15
observations above and below the median; from statistical tables, the upper and lower
limits in Equation (22) are r15,0.975 = 10.7 and r15,0.025 = 21.3; for a 5% significance level,
β = 0.05. Since the observed number of runs is r = 15, and it falls within the acceptance
region of the test (10.7, 21.3), the load record is classified as stationary.

The same conclusion is also confirmed by choosing a shorter window length, for which
in general the verdict of the run test tends to be in favor of non-stationarity. For a window
length Ts = 5 s, there are n+ = n− = 30 observations above and below the median, while
the observed number of runs is r = 27, which again falls within the acceptance region
(23.5, 38.5) defined, for 5% significance, as a function of n+. The load record is again
classified as stationary. When applied to all other records of the “stationary” set, the run
test (with both window lengths) classified them as being truly stationary.

When the run test is applied, instead, to the set of switching measured loading, the
outcome is opposite. For the case of Ts = 5 s (see Figure 10a), the observed number of
runs r = 11 falls outside the acceptance region (23.5, 38.5) defined by the same number of
observations n+ = n− = 30 as above. The stress-time history is classified as non-stationary.
Nothing changes if the window length increases to Ts = 10 s, see Figure 10b. With a
longer window length, the number of runs decreases to r = 7 and again falls outside the
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acceptance region (10.7, 21.3) defined by the same observations n+ = n− = 15 as above.
The same outcome “non-stationary” was obtained for all measured switching records.
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6.3. Experimental Verification of Confidence Intervals: Stationary Case

In this section, the confidence intervals in Equation (3) (Case M) and (9) (Case S) are
applied to the measured stationary records. In Case M, the analysis considered groups of
N records (with N ranging from 2 to 10) selected from the 10 measured initially; in every
group, each of the 10 records appeared only once. The N records have damages Di(T),
i = 1, 2, . . . N, used in Equation (2). In Case S, the individual record was subdivided into NB
disjoint blocks (with NB ranging from 2 to 10). The block damages DB,i(TB), i = 1, 2, . . . NB
are used in Equations (5) and (9). Finally, the validation set is used to approximate the
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expected damage as [D(T)] ∼= Dval(T), where Dval(T) is computed by Equation (20) with
Dval,i from Nval = 30 measured records in the validation set. Equation (20) also provides
the sample variance of validation damage, σ̂2

Dval
. Damage computation considered an S–N

slope k = 3.
The main statistics are summarized in Table 3. The first three columns (Case M) list the

sample mean D(T) and sample standard deviation σ̂D of damage as a function of N. The
last three columns (Case S) list the total damage calculated as D(T) ∼= NB·DB(TB) and the
standard deviation as σ2

D
∼= NB·σ̂2

DB
, as a function of NB. Damage values are normalized to

Dval(T), standard deviations to σ̂Dval .

Table 3. Statistics of fatigue damage calculated from measured stationary load records.

Case M Case S

N
–
D(T)/

–
Dval(T)

^
σD/

^
σDval

NB D(T)/
–
Dval(T)

^
σD/

^
σDval

2 0.912 1.048 2 0.913 0.814
3 0.972 1.727 3 0.911 1.198
4 0.980 1.430 4 0.911 1.342
5 0.983 1.243 5 0.911 1.353
6 0.977 1.138 6 0.909 1.322
7 0.988 1.130 7 0.909 1.059
8 0.992 1.057 8 0.910 1.712
9 0.983 1.062 9 0.909 1.343
10 0.982 1.003 10 0.910 1.582

In Case M, the sample mean damage D(T) varies with N but not significantly. Apart
from two exceptions, the trend of σ̂D is to decrease as N increases, the lowest value being
for the largest sample of records (N = 10). In Case S, this trend is not observed, and σ̂D
remains almost independent of NB. Interestingly, at the largest NB, σ̂D is about 50% greater
than its value for N = 10 in Case M. Compared to Case M, in Case S, the damage D(T)
varies less with NB, a result somehow predictable. In fact, the small variations in the values
of D(T) are caused by the cycles lost after block subdivision, the number of which is indeed
negligible. These findings are in line with those observed in numerical simulations [13].

The values of Dval(T) and σ̂Dval are comparable to those of Case M, especially for the
highest number N = 10 that is the closest to Nval = 30 of the validation set. This similarity
is a further proof that all load records were measured under similar conditions. On the
other hand, the standard deviation σ̂Dval is slightly lower (about 0.3%) than the standard
deviation σ̂D for N = 10 in Case M. This result confirms that an increase in sample size
reduces the statistical variability (variance) of sample mean damage. If the number of load
records were infinite, σ̂Dval would be zero and Dval(T) would approach E[D(T)].

The values in Table 3 are used to compute the 95% confidence intervals (normalized to
the expected damage) displayed in Figure 11 as a function of N (Case M) or NB (Case S). In
each figure, the horizontal continuous line represents the expected damage approximated
as E[D(T)] ∼= Dval(T). In Figure 11a, markers are the sample means D(T). As N increases,
D(T) tends to approach E[D(T)], while the confidence interval becomes narrower—trends
that confirm what was already observed in simulations. The fact that, for all N, the
confidence interval encloses E[D(T)] is evidence in favor of the correctness of the proposed
approach, at least when it is applied to the measured load records of this study. This result
confirms the benefit of using as many measured load records as possible in order to reduce
the variability of damage and make the confidence interval the narrowest.
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Figure 11. Confidence intervals for measured stationary stress-time histories as a function of
(a) number of records (Case M) and (b) number of subdividing blocks (Case S).

In Figure 11b, markers are the values of D(T), which remain practically constant
with NB, see also Table 3. Differently from Case M, now the width of confidence intervals
does not approach zero as NB increases, except for a marked decreasing trend at low NB
values up to 7. This result, also observed in simulations [13], confirms on one hand the
advantage of using as many blocks as possible, but on the other hand, it also emphasizes
that the statistical variability of damage is not reduced to zero by increasing the number of
blocks indefinitely. In the latter case, the confidence interval tends to approach a minimum
width that characterizes the inherent scatter of the damage for the random loading under
investigation. In Figure 11b, the confidence interval encloses E[D(T)] for any NB, which
confirms the correctness of the proposed approach at least for the experimental data
of this study.

As a final general remark, the confidence intervals described so far can be used for
establishing a reference damage value to be used in structural integrity assessment. From a
statistical point of view, it would be desirable to know the expected damage E[D(T)], since
it characterizes an infinite population of load records acting on a structural component.
As, in applications, this is not feasible, the only practical way is to rely on the average
damage computed over few load records, if not even on the damage from only one. On the
other hand, the structural component would be designed unsafely if the obtained average
damage is lower than E[D(T)]. The safe region in the confidence interval is the half portion
above E[D(T)], that is, the portion in which D(T) (for Case M) or D(T) (for Case) are
greater than E[D(T)]. The lower region, which gives damage values less than E[D(T)],
would lead to an unsafe design, and its use is not recommended. By contrast, it is here
recommended to take the upper confidence limit as the reference damage value to be used
in structural design.

6.4. Experimental Verification of Confidence Intervals: Non-Stationary Case

In this section, the confidence interval on damage in Equation (19) is applied to
the measured non-stationary stress-time history. As the first step, individual stationary
states are identified based on an algorithm [39] that detects abrupt changes of the rms
values previously used in the run test. Based on the algorithm’s output, the non-stationary
stress-time history was divided into NS = 3 stationary segments, see Figure 10. Each
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stationary segment was further subdivided into NB = 2, 3, . . . , 10 blocks. The damage
of blocks, when input in Equation (15), returned the sample mean DB,i(TB) and variance
σ̂2

DB ,i (i = 1, 2, 3), next used to construct the 95% confidence interval on E[D(T)], where
the degrees of freedom vZ are from Equation (17). The validation damage Dval(T) in
Equation (20) (with Nval = 20) allows for the approximation E[D(T)] ∼= Dval(T), while
Equation (20) also provides σ̂2

Dval
to be used below. Damage computation considered an

S–N slope k = 3.
The above statistics, for each NB, are summarized in Table 4. The total damage

D(T) ∼= ∑3
i=1 ∑NB

j=1 DB,ij(TB,i) is computed as the sum of damage of each block. Damage

values are normalized to Dval(T) and the standard deviation to σ̂Dval .

Table 4. Statistics calculated from measured non-stationary stress-time history.

Statistics for Confidence Intervals

NB D(T)/Dval(T) vZ

√
3
∑

i=1
NB·σ̂2

DB ,i/σ̂Dval

2 1.086 1 0.767
3 1.087 2 0.559
4 1.083 3 0.579
5 1.085 5 0.566
6 1.081 7 0.506
7 1.081 7 0.740
8 1.079 8 0.606
9 1.078 10 0.651
10 1.076 12 0.587

The fact that D(T) shows a negligible variation with NB (less than 1%) confirms that
the amount of cycles lost by block subdivisions is, in fact, insignificant. The observed slight
variation of D(T) is a measure of the damage contributed by lost cycles: when NB reduces,
the amount of lost cycles decreases and D(T) increases; for NB = 2, only one cycle can
be missed because of block subdivision, and the value of D(T) almost coincides with the
damage of the whole undivided signal.

Figure 12 illustrates the 95% confidence intervals (normalized to the expected damage)
as a function of NB. Markers identify the values of D(T). The fact that, for any NB,
the confidence interval encloses E[D(T)] is an outcome in favor of the correctness of the
proposed approach, at least when applied to the measured non-stationary loading of this
study. As also observed in similar cases (for simulated switching loadings in Figure 5a,
for measured stationary loadings in Figure 11b), the confidence interval width does not
approach zero by increasing NB.

As in the stationary case, it is suggested also in the non-stationary case to use
the upper limit of the confidence interval as a reference damage value for structural
integrity assessment.
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7. Conclusions

The paper studied the uncertainty of rainflow damage computed in stationary random
loadings and in those non-stationary random loadings formed by a finite number of
stationary states. Uncertainty refers to the statistical variability that characterizes the
damage when it is computed from a limited number of stress-time histories, often from only
one. Uncertainty was evaluated by a confidence interval on expected damage, constructed
after a direct analysis of stress-time histories of finite length (which are subdivided into
states and blocks). In the non-stationary switching case, the proposed confidence interval
is based on an approximate solution derived for the confidence interval on the sum of
normally distributed random variables.

The correctness of the proposed confidence intervals on damage was first verified
by numerical simulations (with three load types) and then by experiments with strain-
time histories measured on a mountain bike. Tracks, road surfaces and riding conditions
were designed to obtain stationary and non-stationary switching measured records. In a
postprocessing phase after measurements, a statistical test (run test) was applied to check
whether the records were in fact stationary or non-stationary. In experiments, a validation
set with few strain-time histories was used for verification purposes.

The obtained results allow the following conclusions to be drawn:

• subdivision into states and blocks determines a negligible loss of fatigue cycles com-
pared to the cycles counted in each state/block, which is especially valid when the
stress-time history has negligible or no variation in its mean value among different
stationary states;

• in numerical simulations, the estimated confidence level was almost coincident with
the theoretical value of 95% for any number of block subdivisions, thus confirming the
accuracy of the proposed method. A slightly larger confidence (98.1%) characterizes
the limit case of two block subdivisions, which is indeed not recommended;

• in both simulations and experiments, the width of the confidence interval decreases as
the number of blocks increases, until it approaches a sort of limit value characterizing
the inherent randomness of the considered random loading. This trend then suggests
the use of the largest possible number of block subdivisions, provided that a sufficient
number of cycles remains within each block;

• the run test proved to be a powerful tool for classifying the measured records as
stationary or non-stationary, regardless of the window length chosen in the analysis;

• the upper value of the confidence interval may be used as a reference damage value in
a structural durability assessment.
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Supplementary Materials: A Matlab binary file is provided with the strain-time histories measured
in the mountain bike (file: Measurements_mountain_bike_SuppMat.mat). The file has 63 columns in
total. The first column is the vector of time (in seconds) common to all records; the other columns from
2 to 63 represent the stationary and non-stationary record values measured on the bike, normalized
to zero mean and unit variance. Data comply with the acquisition described in Section 6.1. Columns
from 2 to 11 group the records for Case M, column 12 is the single record for Case S and columns from
13 to 42 collect the validation set for the stationary case. The single non-stationary record is placed in
column 43, and the remaining columns from 44 to 63 refer to the validation set for the non-stationary
case. The data can be downloaded at https://www.pragtic.com/dataApplSci2023.php.

Author Contributions: Conceptualization, J.M.E.M. and D.B.; experiments, J.M.E.M.; data analysis,
J.M.E.M. and D.B.; writing—original draft preparation, J.M.E.M.; writing—review and editing,
D.B., J.P. and M.R.; supervision, D.B. All authors have read and agreed to the published version of
the manuscript.

Funding: The research activity of one co-author (J.M.E.M.) was partially funded by the CTU Global
Postdoc Fellowship Program and Institutional Resources of CTU in Prague for Research (RVO12000).
The contribution of “Fondo di Ateneo per la Ricerca (FAR)—Anno 2022” from the University of
Ferrara is also acknowledged.

Data Availability Statement: The measured stress-time histories discussed in Section 6 can be shared
on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schütz, W.; Klätschke, H.; Hück, M.; Sonsino, C.M. Standardized load sequence for offshore structures—WASH 1. Fatigue Fract.

Eng. Mater Struct. 1990, 13, 15–29. [CrossRef]
2. Buch, A. Prediction of the comparative fatigue performance for realistic loading distributions. Prog. Aeosp. Sci. 1997, 33, 391–430.

[CrossRef]
3. Leser, C.; Thangjitham, S.; Dowling, N.E. Modelling of random vehicle loading histories for fatigue analysis. Int. J. Vehicle Design

1994, 15, 467–483. [CrossRef]
4. Bel Knani, K.; Benasciutti, D.; Signorini, A.; Tovo, R. Fatigue damage assessment of a car body-in-white using a frequency-domain

approach. Int. J. Mater. Prod. Technol. 2007, 30, 172–198. [CrossRef]
5. Schijve, J. Fatigue of Structures and Materials, 2nd ed.; Springer: Berlin, Germany, 2009.
6. Mark, W.D. The Inherent Variation in Fatigue Damage Resulting from Random Vibration. Ph.D. Thesis, Department of Mechanical

Engineering, M.I.T., Cambridge, MA, USA, 1961.
7. Crandall, S.H.; Mark, W.D.; Khabbaz, G.R. The variance in Palmgren-Miner damage due to random vibration. In Proceedings

of the 4th US National Congress of Applied Mechanics, Berkeley, CA, USA, 18–21 June 1962; Rosenberg, R.M., Ed.; American
Society of Mechanical Engineers (ASME): New York, NY, USA; Volume 1, pp. 119–126.

8. Crandall, S.H.; Mark, W.D. Random Vibration in Mechanical Systems; Academic Press: New York, NY, USA, 1963.
9. Bendat, J.S. Probability Functions for Random Responses: Prediction of Peaks, Fatigue Damage, and Catastrophic Failures; NASA CR-33;

Measurement Analysis Corporation: Torrance, CA, USA, 1964.
10. Madsen, H.O.; Krenk, S.; Lind, N.C. Methods of Structural Safety; Prentice-Hall: Hoboken, NJ, USA, 1986.
11. Low, Y.M. Variance of the fatigue damage due to a Gaussian narrowband process. Struct. Saf. 2012, 34, 381–389. [CrossRef]
12. Low, Y.M. Uncertainty of the fatigue damage arising from a stochastic process with multiple frequency modes. Probab. Eng. Mech.

2014, 36, 8–18. [CrossRef]
13. Marques, J.M.E.; Benasciutti, D.; Tovo, R. Variability of the fatigue damage due to the randomness of a stationary vibration load.

Int. J. Fatigue 2020, 141, 105891. [CrossRef]
14. Marques, J.M.E.; Benasciutti, D. Variance of the fatigue damage in non-Gaussian stochastic processes with narrow-band power

spectrum. Struct. Saf. 2021, 93, 102131. [CrossRef]
15. Bengtsson, A.; Bogsjö, K.; Rychlik, I. Uncertainty of estimated rainflow damage for random loads. Mar. Struct. 2009, 22, 261–274.

[CrossRef]
16. Farid, M. Data-driven method for real-time prediction and uncertainty quantification of fatigue failure under stochastic loading

using artificial neural networks and Gaussian process regression. Int. J. Fatigue 2022, 155, 106415. [CrossRef]
17. Lim, H.; Lance, M.; Low, Y.M.; Srinil, N. A surrogate model for estimating uncertainty in marine riser fatigue damage resulting

from vortex-induced vibration. Eng. Struct. 2022, 254, 113796. [CrossRef]
18. Chen, J.; Imanian, A.; Wei, H.; Iyyer, N.; Liu, Y. Piecewise stochastic rainflow counting for probabilistic linear and nonlinear

damage accumulation considering loading and material uncertainties. Int. J. Fatigue 2020, 140, 105842. [CrossRef]

https://www.pragtic.com/dataApplSci2023.php
http://doi.org/10.1111/j.1460-2695.1990.tb00573.x
http://doi.org/10.1016/S0376-0421(96)00010-3
http://doi.org/10.1504/IJVD.1994.061876
http://doi.org/10.1504/IJMPT.2007.013113
http://doi.org/10.1016/j.strusafe.2011.09.001
http://doi.org/10.1016/j.probengmech.2014.02.001
http://doi.org/10.1016/j.ijfatigue.2020.105891
http://doi.org/10.1016/j.strusafe.2021.102131
http://doi.org/10.1016/j.marstruc.2008.05.001
http://doi.org/10.1016/j.ijfatigue.2021.106415
http://doi.org/10.1016/j.engstruct.2021.113796
http://doi.org/10.1016/j.ijfatigue.2020.105842


Appl. Sci. 2023, 13, 2808 23 of 23

19. Liu, X.; Wang, H.; Wu, Q.; Wang, Y. Uncertainty-based analysis of random load signal and fatigue life for mechanical structures.
Arch. Computat. Methods Eng. 2022, 29, 375–395. [CrossRef]

20. Dong, Y.; Garbatov, Y.; Guedes Soares, C. Review on uncertainties in fatigue loads and fatigue life of ships and offshore structures.
Ocean Eng. 2022, 264, 112514. [CrossRef]

21. Wang, S.; Moan, T.; Jiang, Z. Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind
turbine drivetrain. Renew. Energy 2022, 181, 870–897. [CrossRef]

22. Alduse, B.P.; Jung, S.; Vanli, O.A.; Kwon, S.-D. Effect of uncertainties in wind speed and direction on the fatigue damage of
long-span bridges. Eng. Struct. 2015, 100, 468–478. [CrossRef]

23. Abdullah, L.; Singh, S.S.K.; Abdullah, S.; Azman, A.H.; Ariffin, A.K. Fatigue reliability and hazard assessment of road load strain
data for determining the fatigue life characteristics. Eng. Fail. Anal. 2021, 123, 105314. [CrossRef]

24. Zhang, Y.; Liu, X.; Yu, X.; Wang, X.; Wang, X. Reliability analysis of excavator boom considering mixed uncertain variables. Qual.
Reliab. Eng. Int. 2021, 37, 1468–1483. [CrossRef]

25. Wirsching, P.H. Statistical summaries of fatigue data for design purposes. In NASA Technical Report CR-3697; NASA: Washington,
DC, USA, 2013.

26. Shen, C.L.; Wirsching, P.H.; Cashman, G.T. Design curve to characterize fatigue strength. J. Eng. Mater. Technol. Trans. ASME 1996,
118, 535–541. [CrossRef]

27. Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014.
28. Desmond, A.F. On the distribution of the time to fatigue failure for the simple linear oscillator. Probab. Eng. Mech. 1987, 2, 214–218.

[CrossRef]
29. Low, Y.M. An analytical formulation for the fatigue damage skewness relating to a narrowband process. Struct. Saf. 2012, 35,

18–28. [CrossRef]
30. Welch, B.L. The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 1947,

34, 28–35. [CrossRef] [PubMed]
31. Marques, J.M.E. Confidence intervals for the expected damage in random loadings: Application to measured time-history records

from a Mountain-bike. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1038, 012025. [CrossRef]
32. Johannesson, P. Rainflow cycles for switching processes with Markov structure. Probab. Eng. Inform. Sc. 1998, 12, 143–175.

[CrossRef]
33. Wald, A.; Wolfowitz, J. On a test whether two samples are from the same population. Ann. Math. Stat. 1940, 11, 147–162.

[CrossRef]
34. Mood, A.M. The distribution theory of runs. Ann. Math. Stat. 1940, 11, 367–392. [CrossRef]
35. Hald, A. Statistical Theory with Engineering Applications; John Wiley & Sons: Hoboken, NJ, USA, 1955.
36. Swed, F.S.; Eisenhart, C. Tables for testing randomness of grouping in a sequence of alternatives. Ann. Math. Stat. 1943, 14, 66–87.

[CrossRef]
37. Brownlee, K.A. Statistical Theory and Methodology in Science and Engineering, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1965.
38. Rouillard, V. Quantifying the non-stationarity of vehicle vibrations with the run test. Packag. Technol. Sci. 2014, 27, 203–219.

[CrossRef]
39. Killick, R.; Fearnhead, P.; Eckley, I.A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 2012,

107, 1590–1598. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11831-021-09579-6
http://doi.org/10.1016/j.oceaneng.2022.112514
http://doi.org/10.1016/j.renene.2021.09.090
http://doi.org/10.1016/j.engstruct.2015.06.031
http://doi.org/10.1016/j.engfailanal.2021.105314
http://doi.org/10.1002/qre.2808
http://doi.org/10.1115/1.2805953
http://doi.org/10.1016/0266-8920(87)90011-7
http://doi.org/10.1016/j.strusafe.2011.12.002
http://doi.org/10.2307/2332510
http://www.ncbi.nlm.nih.gov/pubmed/20287819
http://doi.org/10.1088/1757-899X/1038/1/012025
http://doi.org/10.1017/S026996480000512X
http://doi.org/10.1214/aoms/1177731909
http://doi.org/10.1214/aoms/1177731825
http://doi.org/10.1214/aoms/1177731494
http://doi.org/10.1002/pts.2024
http://doi.org/10.1080/01621459.2012.737745

	Introduction 
	Expected Fatigue Damage for a Random Loading 
	Confidence Interval of Damage: Stationary Case 
	Case M: Multiple Stress-Time Histories 
	Case S: Single Stress-Time History 

	Confidence Interval of Damage: Non-Stationary Case 
	Confidence Interval on the Sum of Independent Normal Random Variables 
	Confidence Interval of Damage for a Switching Loading with Two or More States 

	Verification by Simulated Switching Loadings 
	Simulation of Load Cases 
	Simulation Results 

	Verification by Loadings Measured in a Mountain Bike 
	Methods and Data Acquisition 
	Detecting Stationarity/Non-Stationarity by the Run Test 
	Experimental Verification of Confidence Intervals: Stationary Case 
	Experimental Verification of Confidence Intervals: Non-Stationary Case 

	Conclusions 
	References

