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Abstract: One of the inherent characteristics of dynamic networks is the evolutionary nature of their
constituents (i.e., actors and links). As a time-evolving model, the link prediction mechanism in
dynamic networks can successfully capture the underlying growth mechanisms of social networks.
Mining the temporal patterns of dynamic networks has led researchers to utilise dynamic informa-
tion for dynamic link prediction. Despite several methodological improvements in dynamic link
prediction, temporal variations of actor-level network structure and neighbourhood information
have drawn little attention from the network science community. Evolutionary aspects of network
positional changes and associated neighbourhoods, attributed to non-connected actor pairs, may
suitably be used for predicting the possibility of their future associations. In this study, we attempted
to build dynamic similarity metrics by considering temporal similarity and correlation between dif-
ferent actor-level evolutionary information of non-connected actor pairs. These metrics then worked
as dynamic features in the supervised link prediction model, and performances were compared
against static similarity metrics (e.g., AdamicAdar). Improved performance is achieved by the metrics
considered in this study, representing them as prospective candidates for dynamic link prediction
tasks and to help understand the underlying evolutionary mechanism.

Keywords: evolutionary features; dynamic network; dynamic link prediction; social network;
actor dynamicity

1. Introduction

Systems, regardless of being physical or abstract, in many real-world domains, in-
cluding sociology, biology, criminology, informatics, economics and communication, can
be mapped into a network. In these networks, nodes represent the individuals or actors,
and links or edges represent various types of relations or interactions among them. These
systems are inherently dynamic, where evolution occurs due to concurrent arrivals and/or
removals of actors and simultaneously forming, strengthening, weakening, and dissolving
ties among network actors over time. Network science caters to various methods support-
ing the study and modeling of a network evolution process that governs their dynamics [1].
Among them, link prediction is the fundamental computational problem that models the
underlying growth mechanism of evolving networks [2]. The primary objective of link
prediction methods is to estimate the likelihood of the emergence of new links among
network actors utilizing the observed links, actor attributes, network structure, topology,
or nodal properties [3]. This likelihood is measured in regard to similarity or proximity
between non-connected node pairs, predominantly calculated using topological properties
or probabilistic models [4]. The link prediction mechanism in social networks has gained
considerable interest not only for mining and analyzing the network evolution in particular
but also due to its wide variety of applications. These include recommendation systems,
anomaly detection, influence analysis, and community detection [5], predicting linkage
patterns in scientific collaboration networks [6], social security networks [7], disease spread-
ing networks, especially the COVID-19 contact network [8], identifying hidden groups in
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terrorist or criminal networks [9], discovering new protein interactions [10], understanding
connectome patterns (mapping of neural connections in the brain) of organism’s nervous
system [11], improving transportation efficiency by efficient routing strategy [12], predict-
ing users’ ad-clicking actions and recommending interesting web contents for marketing
purpose, and in sensor networks, ensuing information transfer secrecy [13] and optimal
routing [14]. Subsequently, network science communities have proposed a wide range
of similarity metrics and prediction strategies [15]. However, a vast magnitude of them
focuses on static networks. There are two major hindrances to these prediction methods.
Firstly, they depend on feature engineering over actors’ network and non-network-based
attributes by most of the classification and regression methods utilized for supervised and
unsupervised link prediction [16]. Secondly, they do not acknowledge the dynamicity of a
network resulting from changes in its past behaviours over time [17].

Although link prediction is a time-evolving network analysis model that measures
the probability of future links by analyzing the existing links in the network, traditional
similarity metrics-based methods generally overlook taking the evolutionary information of
dynamic networks into account. Dynamic networks evolve through simultaneous arrivals
and/or departure of actors as well as the creation and/or deletion of links among these ac-
tors. These time-varying networks, also known as “temporal” or “longitudinal” networks,
are suitable for describing entities whose dynamics change over time. The combination of
the technical possibility of storing, processing, and representing large-scale datasets and the
increased proliferation and ubiquity of real-world dynamic network datasets has led dy-
namic network analysis to gain considerable research interest to understand the underlying
mechanisms of their evolutionary dynamics better. Recently, researchers have attempted
the issue of dynamic link prediction or link prediction in dynamic networks. Dynamic link
prediction is the process of inferring the possibility of future links among the dynamic
entities or network actors through exploring historical or temporal information [18]. Dif-
ferent dynamic link prediction methods explore a wide range of techniques. Most of the
techniques used a wide variety of structural and network topological features to compute
the likelihood of link formations. For example, Zhang et al. [19] used a node (i.e., actor)
centrality-based temporal link prediction where the authors distinguished the contributions
of common neighbors to connection likelihood by their eigenvector centralities. By consid-
ering the importance of nodes as the probability of attracting other nodes, Wu et al. [20]
used an eigenvector-based node ranking strategy along with a forecasting method called
Adaptive Weighted Moving (AWM) for dynamic link prediction. Chi et al. [21] categorized
the nodes into different levels based on the influence strength of the node compared to
its neighbors that change over time. The authors computed the connection probability
between a pair of nodes using their corresponding levels of influence strength and the
attraction force between them to predict the missing links in dynamic networks. Chen and
Li [22] formulated the link prediction problem in dynamic networks as an optimization
problem that not only collectively leveraged the structural and temporal information to
better infer a low-rank representation for each node but also preserved the deep network
structure via high-order proximity among nodes. The authors also used an efficient block
coordinate gradient descent approach to address the optimization problem.

Among other methods, researchers exploited the collective influence, the community
walk features, and the centrality features [23], subgraph evolution [24], effective influence
mechanism in relation to actors’ degree and strong connectivity across short and long
path among them [25], ‘graphlet’ transitions [26], dynamic latent space representation
of actors and random walk in temporal networks [27], the correlation between different
types of links along with temporal features (e.g., “recency”, temporal activeness) [28],
probabilistic temporal measure [29], probabilistic generative model [30], matrix and tensor
factorization [31] and deep learning techniques [32].

Nevertheless, some of them are subject to their inherent limitation. For example,
probabilistic models involve the prior definition of link occurrences’ distribution, which is
problematic for temporal networks. Furthermore, the probabilistic model is only suitable
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for small networks with a few hundred actors. Similarly, matrix or tensor-based methods
are not feasible for real-time link predictions in large networks due to the computational
complexity and time requirements [33]. Supervised link prediction techniques in dynamic
networks [34,35] take advantage of either temporal sequences or temporal variations of
several network topological properties (e.g., Commonneighbors, Jaccard, AdamicAdar),
used to measure similarity/proximity between actor pairs in static networks, to train the
classifier instead of measuring their similarity/proximity by mining actor-level evolu-
tionary aspects including temporal patterns of neighbourhood changes or evolutionary
community-aware information. Some of these techniques [36,37] included a time series
forecasting method to predict the future values of topological changes to training classifiers
for supervised link prediction. This exercise can be counterproductive since the prediction
is performed using predicted and unrealistic values. To address these issues, this study
attempted to define dynamic features by employing temporal similarity and correlation of
actor-level evolution (e.g., temporal structural and neighbourhood changes) experienced
by individual actors in dynamic networks.

Actors in dynamic networks are subject to varying temporal changes (i.e., dynamicity)
within the temporal network snapshots due to variations of different network activities
(e.g., link formation, link deletion) over time. This leads to temporal changes in actors’
positions and neighbourhoods in dynamic networks. Therefore, actor-level dynamicity trig-
gers both micro (e.g., neighbourhood changes) and mesoscopic changes (e.g., community
participation) in dynamic networks. By mining the similarity or correlation between these
diverse actor-level temporal fluctuations (i.e., structural position and neighbourhood), it is
possible to generate dynamic similarity metrics, similar to the topological similarity metrics
computed in traditional link prediction in static networks, for the purpose of dynamic link
prediction in dynamic networks. This study first analyses dynamic networks to develop
such metrics by considering the evolutionary information attributed to actor pairs to define
two different types of actor-level dynamicity. It then identifies the similarity and correlation
between the temporal sequences of dynamicity values. These metrics denote the similarity
and/or proximity between actor pairs regarding their evolving features within temporal
networks. The research question this study attempts to address is whether the likelihood of
future links among non-connected actor pairs in dynamic networks depends on the simi-
larity or correlation of their evolving features regarding actor-level network structure and
neighbourhood. Dynamic similarity metrics built in this study were then applied to both
directed and undirected dynamic networks. A supervised link prediction framework was
set out to successfully predict future links among non-connected actor pairs in dynamic
networks. Performances of dynamic metrics constructed in this study were compared
against the well-known traditional static similarity metric (i.e., AdamicAdar), including
the time series-based link prediction method.

2. Dynamic Similarity Metrics

In the case of link prediction in static networks, there are predominantly three types of
topological similarity indices [3]; (i) local, (ii) global, and (iii) quasi-local. Local similarity
indices are constructed using neighbourhood-related structural information, whereas global
similarity indices use the whole network topological information to compute the similarity
between actor pairs. Notwithstanding, many real-world networks are longitudinal in
nature, involve dynamic processes, and evolve temporally. With this temporal evolution
of networks, actors simultaneously experience altering topological properties that make
these similarity indices incompetent in dynamic link prediction. Researchers have used
time series of these topological similarity indices to emulate the evolutionary aspect of
dynamic networks. A given dynamic network can, therefore, be defined as a time series
of network snapshots where each snapshot represents the corresponding network state
at a particular time, known as a short interval network (SIN). Actors change their link
structure, neighbourhood, and network positions in every SIN over time that, in turn, also
represent ‘actor dynamicity’ [38]. The term actor dynamicity refers to the variability in
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the involvement of individual actors in dynamic social networks over time. Based on the
temporal patterns and evolutionary processes taking place in dynamic networks, firstly, this
study attempts to define two types of actor-dynamicity, namely (i) structural dynamicity,
and (ii) neighbourhood dynamicity. Secondly, temporal similarity and correlation measures
over this actor-level dynamicity are used to measure the similarity and/or proximity
between non-connected actor pairs. In the following sections, different techniques are
described which were used to build dynamic similarity metrics in this study.

2.1. Actor-Level Evolution in a Dynamic Network

As mentioned earlier, a dynamic network can be defined as a temporal sequence of
small-scale network snapshots where each snapshot is known as a short-interval network
(SIN). Actors experience variances in their link structure, altering neighbourhoods and
subsequently changing network positions over time. The increasing size and complexity
of modern dynamic networks have instigated the mechanism of splitting a large network
into small-scale manageable components that facilitate the visualization and inference
procedure. It simplifies the expedition of different aspects of the network to describe it
succinctly without computational difficulties. Modifications of actors’ network positions
in SINs over time due to the varying nature of performing network activities (i.e., link
formation, link deletion) and changing neighbourhoods are visualized in Figure 1. The top
row in this figure represents a time series of three network snapshots G1, G2, G3, known as
short-interval networks (SIN), where these evolutionary networks are analysed to predict a
future link between actor a1 and a2 at timestamp t = 4 in G4. The bottom row represents
the aggregated networks at timestamps t = 2, 3 where the first network denotes a union
of G1, G2 (i.e.,G1 ∪ G2), and the second one denotes a union of G2, G3 (i.e., G2 ∪ G3). Each
network snapshot is accompanied by three centrality measures (i.e., degree, closeness,
and betweenness) and neighbourhood incident to actor a1 and a2 at different timestamps
both in individual short-interval networks and in aggregated networks. In the top row
of this figure, the link structure and neighbourhoods of two actors (i.e., a1 and a2) are
portrayed in three different SINs at three different timestamps (i.e., t1, t2 and t3). The
numbers on top of each SIN segment denote three different centrality measures (i.e., degree,
closeness, and betweenness) for these two actors, and at the bottom of these three SINs,
the neighbouring actors of these two actors are presented. Three centrality measures were
computed using the networkX [39] package that supports the exploration and analysis
of networks and network algorithms. For example, according to networkX, the degree
centrality of an actor is the fraction of nodes it is connected to, and the closeness of an actor
is the reciprocal of the average shortest path distance to that actor over other n− 1 reachable
nodes by considering n number of actors in the network. It is observable that the varying
network positions of actors in temporal networks can be mapped by the centrality measures
effectively. For example, actor a2 experienced a higher degree and closeness centrality in
comparison to a1 in SIN G1, whereas actor a1 achieved a higher measure value in SIN G2 in
comparison to a2. Conversely, although both achieved a similar degree centrality in SIN
G3, their closeness and betweenness centrality measures vary according to their network
positions. Likewise, actor a1 gained a new neighbourhood in G2 which is different from
what it had in G1. Furthermore, in G3, it regained one of its previous neighbourhoods
(i.e., a6). Simultaneously, despite its retention of previously gained neighbors (i.e., a6)
in G3, it lost one of its neighbors from G2 (i.e., a8). Similar observations are evident in
the case of actor a2. Therefore, it is believed that actors experience variable changes
in their network positions and neighbourhoods due to micro-level network activities.
Incorporating the aforementioned observations, evident from Figure 1, and considering the
network structural changes and altering neighbourhood over time in a series of network
snapshots, this study attempts to define two types of actor-level dynamicity by mining the
evolutionary information incident to individual actors in a dynamic network. These are
namely (i) structural and (ii) neighbourhood dynamicity. In the following sections, this
study describes the dynamicity measures.
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Figure 1. Visualisation of a dynamic link prediction framework considering a series of evolutionary
network snapshots at different discrete timestamps (t = 1, 2, 3, 4) using abstract data.

2.1.1. Structural Dynamicity

The change in link structure and network positions experienced by actors in every SIN
over time can be measured using different network measures utilized in social network
analysis [38]. Therefore, this study used the following composite measure to quantify an
actor’s structural position in a network snapshot:

Ca
t =

{
dega(Gt) + clsa(Gt) + btwna(Gt) a ∈ Vt

0 a /∈ Vt
(1)

where Ca
t denotes network status/position of actor a in a SIN, Gt(Vt, Et) at time t; dega(Gt),

clsa(Gt), and btwna(Gt) denote the degree, closeness and betweenness centrality of actor
a in Gt. The underlying reasons for using a composite measure as a combination of three
centrality measures are, firstly, that these measures are well-defined and can successfully
quantify an actor’s connectivity, position, communication dynamics, influence and broad-
casting capabilities, and importance in a network, and, secondly, that these measures are
correlated. For example, an actor with high betweenness and low closeness centrality can
monopolize links from a small number of actors to many others. Likewise, a high degree
with low closeness centrality denotes that the actor is embedded in a cluster far from the
rest of the network. It is noteworthy that, in the case of a directed network, dega(Gt) can
be either in-degree or out-degree centrality measures of actors, or it can be a combination
of both. This study considered the aggregation of in-degree and out-degree centrality
measures together.

Motivated by the perception of these actor-oriented dynamic changes, the concept
of an actor’s positional dynamicity was developed by Uddin et al. [38] to quantify the
temporal variations considering both dynamic and static social network topology. The
underlying reason is that, according to social network topology, a dynamic network needs
to be analysed in regard to the temporal aggregation of links among its actors [40], and si-
multaneously, different aspects of the dynamicity of dynamic networks can be quantified
using both static and dynamic topology of social network analysis [41]. Furthermore,
Chen et al. [42] used local topological similarity indices (e.g., AdamicAdar, Jaccard Coef-
ficient), and unlike other supervised dynamic link prediction methods ([34,36]), instead
of building time series of these indices, they considered their variations between adjacent
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time steps. To find out the intrinsic relationship between the structural variations and the
formation of links between non-connected actor pairs, the authors also defined a measure to
quantify the rate of change of the structural properties. Following that, this study defined
structural dynamicity as the rate or degree of actor-level structural changes computed at
time t using the following equation:

δa(t) =
Ca

t − Ca
t−1

Ca
t∪t−1

(2)

where δa(t) denotes the rate of structural dynamicity demonstrated by an actor a at times-
tamp t. Ca

t denotes the composite centrality measure, defined in Equation (1), incident
to actor a in a network snapshot Gt at time t, whereas Ca

t−1 denotes the same centrality
measure incident to actor a in a network snapshot at time t− 1 (i.e., previous timestamp)
and finally, Ca

t∪t−1 denotes the same measure of actor a in an aggregated network Gt ∪Gt−1.
This basically quantifies the structural and/or topological changes of every actor that it
experiences at every timestamp in temporal networks. It calculates the rate of changes in
an actor‘s topological importance measured via three centralities at a timestamp as the ratio
between the difference in centralities in consecutive SINs and the centralities measured in
the aggregated network over these SINs. The denominator in the structural dynamicity
normalizes the rate of topological changes of an actor over time. Interested readers can
refer to [38] for further explanation.

In Figure 1, the composite measure, defined in Equation (1), of actor a1 is 0.39 in G1,
whereas in G2, it is 0.91 for the same actor. Similarly, from the bottom row of this figure,
we obtain the composite measure of this actor in the aggregated network (i.e., G1 ∪ G2) at
timestamp t = 2 as 1.06. Therefore, at time t = 2, the degree of structural evolution for actor a1
can be measured as ( |0.91−0.39|

1.06 ) = 0.491. Similarly, at timestamp t = 3, the degree of structural

evolution experienced by the same actor is measured as ( |0.81−0.91|
/ 1.19 = 0.084). Evidently,

from the figure, actor a1 demonstrates a greater rate of dynamicity at the timestamp t2
rather than t3. Thus, the numerator of Equation (2) quantifies the rate of positional changes
of an actor over adjacent SINs, and the denominator normalizes the change using the
composite centrality values of that actor that it was supposed to acquire in an aggregated
network without considering the diminution.

2.1.2. Neighbourhood Dynamicity

In social network analysis, the neighbourhood is defined as the local regions around
individual actors considering different path lengths [43]. The neighbourhood also includes
all the links among all the actors having a direct connection with egos. Neighborhood-
based analysis within SINs can disclose different aspects of networks, including interesting
features (e.g., local leadership changes, spurious/irregular activities) and structures not
available from the aggregated global network [44]. In this study, we considered the neigh-
bourhood as an individual’s immediate field of interaction (i.e., at a distance). Subsequently,
the neighbourhood dynamicity of an actor is measured in a SIN at timestamp (t > 1) as
the ratio of an actor’s total neighbor count in Gt in comparison to the total neighbor count
in an aggregated network at timestamp t. This ratio is further quantified with the neigh-
bourhood gaining rate at timestamp t in regard to the total number of actors in Gt. Thus,
the neighbourhood dynamicity λa(t) of actor a at timestamp t is defined as:

λa(t) =
|Na(Gt)|

|Na(G1 ∪ G2 ∪ G3 ∪ . . . Gt)|
× 1

Vt − Na(Gt)
(3)

where Na(Gt) denotes the set of neighbors of actor a (i.e., the neighbourhood of a), Gt de-
notes a SIN G, and Vt denotes the total number of actors in the SIN at timestamp t. The
denominator in the first part of the Equation (3) denotes the neighbourhood of actor a
in an aggregated network comprised of all network snapshots before and at timestamp t
(i.e., G1 ∪G2 ∪G3 . . .∪Gt). Similar to structural dynamicity, in the case of directed networks,
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this study considered both in-degree and out-degree neighbors together. From Equation (3),
we can observe that an actor can have a maximum score of one as neighbourhood dynamic-
ity if it forms an association with every other actor in SIN at timestamp t = 1, maintains its
neighbourhood in all the subsequent SINs in the dynamic network, and simultaneously
form an association with every new actor appearing in the subsequent SINs. On the other
hand, if an actor does not participate in any SIN, its neighbourhood dynamicity score will
be counted as zero. From this equation, it is apparent that associations with more new
actors in SINs and maintaining the already gained neighbourhood in subsequent SINs
will boost the actor’s neighbourhood dynamicity score. It is noteworthy that, for the first
SIN, the aggregated network in the denominator of Equation (3) consists of only one and
the first network snapshot. Therefore, for the first SIN where an actor crops up, the first
part of this equation before the multiplication sign assigns a value of one for that actor.
For example, considering Figure 1, in the case of actor a1, the neighbourhood dynamicity
at t = 1 is computed as ( 1

1 ×
1

8−1 = 0.143). Similarly, for t = 2 and 3, the neighbourhood
dynamicity values for a1 are 0.133 and 0.095. On the other hand, for a2, the time series of
neighbourhood dynamicity is [0.2, 0.042, 0.083]. Conversely, considering actor a9, the tem-
poral sequence of neighbourhood dynamicity is [0, 0.167, 0.167], where this actor appears in
G2 for the first time and, therefore, for G1, the dynamicity value is zero (0). As mentioned
earlier, contrary to neighbourhood dynamicity, every actor is assigned a zero value for the
structural dynamicity in the first SIN, irrespective of their appearance in that SIN.

2.2. Dynamic Features

In this section, we describe methods to define dynamic features for the purpose of link
prediction by considering the evolutionary aspects of non-connected actor pairs defined in
the previous section. These features will denote the similarity of proximity between actors
in regard to their structural and neighbourhood evolution. To define the similarity and/or
proximity between actor pairs, we compare the time series information comprised of both
structural and neighbourhood dynamicity, as calculated above, incident to actor pairs. For
example, according to Figure 1, to predict a link between actors a1 and a2 in G4, this study
builds two separate temporal sequences of δa(t) and λa(t) (i.e., actor-level structural and
neighbourhood dynamicity) incident to actor a and calculated using Equations (2) and
(3) over time. For these two actors, the temporal sequences of structural dynamicity are
a1 = [1, 0.491, 0.091] and a2 = [1, 0.437, 0.436]. It is noteworthy that, for the first timestamp,
the structural dynamicity is assigned to one since no variation can be computed using
the first SIN. The proximity between a pair of actors is defined in regard to the temporal
similarity and correlation between two different temporal sequences encompassing their
dynamicity values over time. In the following sections, three different methods are de-
scribed that are used to compute the similarity/proximity between actor-level evolutionary
information for non-connected actor pairs in regard to their aforementioned dynamicity
values. Each method assigns a score simi(a, b) to a pair of actors (a, b) where the ith method
computes the similarity or proximity between actors a and b.

2.2.1. Temporal Similarity

In time series clustering, to measure the similarity between temporal sequences
with varying speeds, existing distance measures (i.e., Euclidean, Manhattan) produce
un-intuitive results and demonstrate incompetency in producing optimal alignment. For
example, the Euclidean technique simply measures the distance between a pair of time
series by summing the squared distances from each point in one-time series to the cor-
responding point in the other. If the pair are identical, with one being shifted along
the time axis, Euclidean distance may consider totally different time sequences. The dy-
namic programming-based method of Dynamic Time Warping (DTW) overcomes the
aforementioned limitation of traditional distance measures to provide intuitive distance
measurements between temporal sequences by ignoring both global and local deviations
in the time dimension [45]. It measures the similarity between two time series by shrinking
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or expanding or simply “warping” the time axis of one (or both) sequences to achieve
better alignment. This warping technique is an example of dynamic programming that
can be used to determine corresponding regions between two time series to measure their
similarity. Let Xa and Yb be the time series of length |m| and |n| considering the chosen
dynamicity measure, described earlier in Section 2.1 (i.e., structural and neighbourhood
dynamicity), for actors a and b, where m, n ≤ N, and N is the total number of SINs. If
d(xi, yj) denotes local distance measure (e.g., Euclidean, Minkowski), defined to com-
pare two different points in Xa and Yb, then the goal of the DTW technique is to find an
optimal alignment between Xa and Yb with minimum overall distance. Details of this
technique can be found in the study by Müller [46]. The notion of this alignment depends
on the definition of an (m, n)-warping path which is a sequence p = p1, p2, p3, . . . , pl with
pl = (ml , nl) ∈ [1 : m]x[1 : n] for l ∈ [1 : L], where L denotes the length of warping path.
The optimal warping path between Xa and Yb is defined as a warping path p∗ with the
minimum distance among all possible warping paths. To accomplish that, it may encounter
that a single point in one time series may be mapped to multiple points of the other. The
optimal warping path is determined by following a dynamic programming method that
recursively measures the following function at every step:

γ(i, j) = d(xi, yi) + min[(γ(i− 1, j− 1), γ(i− 1, j), γ(i, j− 1))] (4)

Here, γ(i, j) represents the optimal warping path defined between the ith and jth
component of two time series. In Figure 2, this study presents a comparable representation
of calculating similarities between two temporal sequences using traditional distance
measures (Figure 2a) (e.g., Euclidean) and the DTW method (Figure 2b). In this figure,
the dashed lines represent the distance between corresponding points in both time series.
The traditional approach aligns the ith point in one time series with the corresponding
jth point of the other, whereas DTW provides nonlinear alignment to produce a more
intuitive similarity measure and allows similar shapes to match (i → j, j + 1) even if it
requires localized stretching along the time axis. In DTW, the difference between these
time series is the warped path distance which is measured by summing the distances
between each pair of points connected by the dashed lines in the figure. Considering
the temporal similarity measures using the DTW technique, this study first computes the
structural and neighbourhood dynamicity of actor pairs at every timestamp of temporal
network snapshots. Secondly, using temporal sequences of these dynamicity values, this
study applied the DTW technique to measure temporal similarity between them. The
temporal similarity between the time series of actors’ dynamicity values will represent
their evolutionary proximity or similarity. Therefore, values of first and second dynamic
similarity metrics, developed in this study for actor pair a and b considering structural and
neighbourhood dynamicity values, are defined as follows:

sim1(a, b) = dp∗ × (δa
i , δb

j ) = min

{
L

∑
l=1

d(δa
ml , δb

nl)

}
(5)

where δa
i and δb

j are ith and jth element of time series of structural dynamicity, and m and
n denote the length of temporal sequences of structural dynamicity values incident to
actor pairs a and b, respectively. Similarly, the temporal similarity between neighbourhood
dynamicity values over time represents this study’s second dynamic similarity metric:

sim2(a, b) = dp∗ × (λa
i , λb

j ) = min

{
L

∑
l=1

d(λa
ml , λb

nl)

}
(6)
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Figure 2. Visualizations of measuring similarity between two temporal sequences (a) traditional
approach; (b) Dynamic Time Warping approach. Dashed lines represent the distance between
corresponding points in both time series.

2.2.2. Correlation-Based Similarity

Correlation analysis is a statistical evaluation method that is used to quantify the
strength and direction of the linear association between two variables. It is widely used
in financial network analysis, asset allocation, portfolio optimisation and risk manage-
ment [47]. This study applied correlation analysis to measure the affinities or similarities
between actor pairs in regard to the temporal sequences of dynamicity values in all SIN.
The assumption here is that two actors are similar if they fluctuate in a similar fashion
considering any dynamicity measurement (i.e., dynamicity values of one actor increase
or decrease with the other at the same time). If δa(t) and δb(t) denote the structural dy-
namicity, and λa(t) and λb(t) denote the temporal neighbourhood dynamicity of actor
a and b at time t, then the evolution similarity between them is computed in regard to
the Pearson correlation coefficient. Therefore, the third and fourth dynamic similarity
metrics to measure the similarity of proximity between actor pairs a and b in this study are
constructed as follows:

sim3(a, b) = ∑t[(δ
a(t)− δa)(δb(t)− δb)]√

∑t(δ
a(t)− δa)2

√
∑t(δ

b(t)− δb)2
(7)

sim4(a, b) = ∑t[(λ
a(t)− λa)(δb(t)− λb)]√

∑t(λ
a(t)− λa)2

√
∑t(λ

b(t)− λb)2
(8)

Here, δa(t) and λa(t) represent the structural and neighbourhood dynamicity, respec-
tively, of actor a at timestamp t. δa represents the average structural dynamicity of actor a
over all SINs. Similarly, λa represents the average neighbourhood dynamicity of actor a
over all SINs.

2.2.3. Bray–Curtis Similarity

Although a significant amount of dynamic link prediction studies have exploited the
static topological similarity metrics (e.g., CommonNeighbors, Jaccard Coefficient, Resource
Allocation) over time to compute the similarity between actor pairs, this study uses an
abundance-based similarity metric which is widely used in biology and ecology domain.
Frequently used by marine ecologists to measure bio-diversity, the Bray–Curtis similarity
measure was initially proposed by Bray and Curtis [48], which is principally employed
in multivariate analysis of biological assemblage data and signifies the ‘relativization’ of
species-wise differences in regard to their total abundance in biological metaphor [49].
However, using the Bray–Curtis method, the distance between two entities X and Y in
regard to n-dimensional feature space can be determined as described by Legendre and
Legendre in [50]:
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BCXY =
∑n

i=1|xi − yi|
∑n

i=1|xi + yi|
(9)

where xi and yi denote the ith feature of X and Y, respectively. The numerator signifies
differences between X and Y in regard to the abundance of feature i, and the denominator
normalizes the differences. In this study, we defined two dynamicity measures (i.e., struc-
tural and neighbourhood) as features. We consider these evolutionary aspects of actors in
T SINs to compute the similarity between them. In this study’s context, the Bray–Curtis
distance between actor a and b using two dynamicity measures is defined as:

BCab =
∑T

t=1[
∣∣∣δa(t)− δb(t)

∣∣∣+ ∣∣∣λa(t)− λb(t)
∣∣∣]

∑T
t=1[

∣∣δa(t) + δb(t)
∣∣+ ∣∣λa(t) + λb(t)

∣∣] (10)

Since the distance represents dissimilarity, 1− BCab was used to represent similarity.
Thus, the last dynamic similarity metric in this study is defined as follows:

sim5(a, b) = 1−
∑T

t=1[
∣∣∣δa(t)− δb(t)

∣∣∣+ ∣∣∣λa(t)− λb(t)
∣∣∣]

∑T
t=1[

∣∣δa(t) + δb(t)
∣∣+ ∣∣λa(t) + λb(t)

∣∣] (11)

3. Network Datasets and Experimental Settings

Considering two different time intervals (t1, t′), (t′, t′1) where t1 < t′ < t′1 and a
finite set of discrete time points within the range [t1 − t′] as T = t1, (t1 + τ), (t1 + 2τ), . . . ,
(t1 + nτ), . . . , (t′ − τ), t′, where τ denotes the temporal sampling interval, a dynamic social
network GT = (V, ET) consists of a set of uniquely labeled actors V = {v1, v2, v3, . . . , vn},
and ET = {et(vi, vj, t)|vi, vj ∈ V; t ∈ T}, where t represents the timestamp of a link e
between a pair of actors (vi, vj). In addition, dynamic networks can be undirected, where
e = (vi, vj) and e = (vj, vi) denote identical or directed links where these two links are not
the same. Thus, the dynamic network is composed of an evolutionary sequence of net-
work snapshots GT = {Gt1 , Gt1+τ , Gt1+2τ . . . Gt1+nτ . . . Gt′−τ , Gt′} known as short-interval
networks (SIN). Fluctuations in the total number of actors are taken into consideration
across the time series of network snapshots. Any link may appear in multiple network
snapshots at different timestamp(s). Considering this temporal sequence of network snap-
shots GT = {Gt1 , Gt1+τ , Gt1+2τ . . . Gt1+nτ . . . Gt′−τ , Gt′}, for a given pair of actors (vi, vj),
dynamic link prediction attempts to predict the link probability between them during the
interval (t′, t′1) in GT+1 by analyzing the link formation and the temporal information in
GT at timestamps [t1 − t′] as T = t1, (t1 + τ), (t1 + 2τ), . . . , (t1 + nτ), . . . , (t′ − τ), t′. Here,
GT [t1, t′] and GT [t′, t′1] are considered as the networks in the training and testing phase,
respectively. Traditional link prediction in the static network generally emphasizes the
presence or absence of the links and simultaneously considers topological information to
construe the similarity between actors. It does not consider the temporal information or the
evolutionary dynamicity associated with all actors that vary in existence across network
snapshots as well as in their associated links. A key aspect in dynamic link prediction is to
generate dynamic similarity metrics (i.e., dynamic features) considering the evolutionary
changes incident to actors. Therefore, this study attempts to develop such dynamic similar-
ity metrics where the ith metric will assign a score simi(vi, vj) to non-connected actor pairs
(vi, vj) considering the similarity/proximity of their evolutionary information in GT . These
scores will measure the likelihood of future links that emerge in GT+1. In (Table 1), we
summarized five dynamic similarity metrics/dynamic features constructed in this study to
measure the similarity/proximity between non-connected actor pairs.

3.1. Datasets

For the dynamic network datasets collection, the ‘KONECT Network Dataset’ [51]
(i.e., the Koblenz Network Collection) and ‘Network Repository’ [52] were used. KONECT
project is run by the Institute of Web Science and Technologies at the University of Koblenz
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as part of collecting large network datasets to facilitate research in network science and
related fields. This study extracted different dynamic network datasets including directed
and undirected networks where links between actors are timestamped.

Table 1. Five different values of simi(a, b) computed by using five different dynamic similarity
metrics. Each metric computes the similarity/proximity between non-connected actor pair (a, b) by
considering their structural (i.e., δa, δb) and neighbourhood (i.e., λa, λb) dynamicity computed in
dynamic networks comprised of T SINs.

Metric Equation Description

sim1(a, b) min(∑L
l=1 d(δa

nl , δb
ml))

Temporal similarity of structural dynamicity measured using Dynamic Time
Warping (DTW) Technique

sim2(a, b) min(∑L
l=1 d(δa

nl , δb
ml))

Temporal similarity of neighbourhood dynamicity
measured using Dynamic Time Warping (DTW) Technique

sim3(a, b) ∑t [(δ
a(t)−δa)(δb(t)−δb)]√

∑t(δ
a(t)−δa)2 ∑t(δ

b(t)−δb)2

Correlation between structural dynamicity of two
non-connected actors computed using Pearson correlation

sim4(a, b) ∑t [(λ
a(t)−λa)(λb(t)−λb)]√

∑t(λ
a(t)−λa)2 ∑t(λ

b(t)−λb)2

Correlation between neighbourhood dynamicity of two non-connected actors
computed using Pearson correlation

sim5(a, b) 1− ∑T
t=1[|δa(t)−δb(t)|+|λa(t)−λb(t)|]

∑T
t=1[|δa(t)+δb(t)|+|λa(t)+λb(t)|]

Similarity by the abundance of structural and neighbourhood dynamicity between
two non-connected actors computed using Bray–Curtis dissimilarity measure

3.1.1. Undirected Networks

The first undirected network dataset comes from a reality mining project at the Mas-
sachusetts Institute of Technology (MIT) in 2004, where the actors were tracked with the
help of their personal smartphones to study interpersonal interaction. It contains human
contact and interaction data among 100 students over nine months. In this undirected
network, an actor in the network represents a person, and a link indicates physical contact
between two persons. The second dataset comes from internal email communications
among employees of a mid-sized manufacturing company where actors represent em-
ployees and links represent individual emails between two employees. This dataset was
collected from Network Repository as an undirected dynamic network. The next dataset
in this category contains undirected network data from a Facebook-like social network
originating from an online community for students at the University of California, Irvine,
where actors represent students within the community and links represent messages com-
municated among them. The last undirected network dataset is a very small subset of
the total ‘Facebook’ friendship graph where an actor represents a Facebook user, and a
link represents a friendship between two users. For the sake of brevity, we name these
four networks as GMIT , GEmail , GUCI , and GFF to denote the network originated from the
MIT reality project, a small manufacturing company, University of California Irvine and
real Facebook Friendship, respectively, in the rest of the study. In these network datasets,
links are date stamped with individual dates, and the smallest temporal granularity of
these networks is a day. Therefore, three different sliding window sizes (i.e., τ = 1, 7 and
30 days) were considered for sampling the longitudinal networks. This will help this study
to emulate daily, weekly and monthly dynamic networks.

3.1.2. Directed Networks

The first directed network is constructed from the retweeting functionality of Twitter.
There are predominantly two types of dynamic social networks that can be developed
using the Twitter social network platform by considering its retweeting and mentioning
mechanism. The first considers the fact that a Twitter user is reposting another user’s
tweet, and the latter considers one user mentioning the other in his/her tweet by using
@username. Both types of networks built upon the Twitter information diffusion mechanism
are directed networks. The Twitter network dataset in this study, collected from Network
Repository, is a retweet network. Actors in this network are Twitter users, and a link
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between them denotes whether the users retweeted each other. Since all links in the retweet
network are time-stamped, this study used three different sliding window sizes (i.e., τ = 6,
12 and 24 h) to sample the longitudinal networks considering the temporal granularity of
hours. For the sake of brevity, this study used Gretwt to denote the retweet network in the
rest of the study.

3.1.3. Co-Authorship Networks

This study also considered two collaboration networks of authors of scientific papers
in arXiv. Two sections were considered to build dynamic networks, namely, (i) high energy
physics–phenomenology (Hep-ph) and (ii) high energy physics–theory (Hep-th). In these
networks, a link between two authors represents a common publication that both authors
have co-authored. Gph and Gth are two symbols used to denote these two networks. Since
the temporal granularity of these networks is a year, this study sampled dynamic networks
considering yearly duration (i.e., τ = 365 days) as the window size. In Gph, yearly networks
for the duration 1992–1998 were analysed in the training phase to predict the links in the
year 1999 and, likewise, in Gth, the training phase was the duration 1993–1998, and the test
phase was the year 1999. Table 2 sets out the basic and different temporal statistics for each
type of network dataset. In this table, we explicitly describe the training and test duration
for each dataset where the link prediction mechanism explores the link structure to predict
the possibility of links during the test phase. In this study’s context, the network within the
training interval is split into smaller network snapshots known as short-interval networks
(SIN) using three different sampling window sizes for each network but the co-authorship
networks. In the latter case, we only used yearly window size. In the case of the undirected
networks, we emulate daily, weekly and monthly networks by considering one-, seven-,
and thirty-day sliding window sizes to sample dynamic networks and generate temporal
network snapshots. On the other hand, in the case of the directed retweet network, we
consider the hourly window as a sampling granularity. In the table, we observe that the
cut-off time for this directed network is 4:00 a.m. Considering the timestamps, we selected
6, 12 and 24 h sampling window sizes to split this network and generate SINs. Considering
this different sampling window size to aggregate links, each network dataset had different
numbers of SINs in each dataset.

3.2. Supervised Link Prediction

The primary objective of the link prediction mechanism is to analyse the intrinsic
characteristics of the network in regard to topological information or attributes related
to actors or links among them in the training phase [t1, t′] to predict the likelihood of
future links in the test phase [t′, t′1]. Since the purpose of this study is to predict links
in dynamic networks in longitudinal settings, we therefore split the network GT [t1, t′]
in the training phase into smaller temporal subnetworks considering different sliding
window sizes to generate a time series or evolutionary sequence of network snapshots
or SIN. Depending on the number of SINs in each dataset, the objective of this study
is to build time series of two different dynamicity measures incident to actor pairs and
generate dynamic features by considering the temporal similarity and correlation measures
between two temporal sequences for the purpose of supervised link prediction. Supervised
methods for link prediction problems need to predict possible future links by successfully
discriminating between the links with positive and negative labels within a classification
dataset. Thus, supervised link prediction turns into a binary classification task that involves
learning positive and negative labels by exploiting interesting features describing each
instance. Supervised link prediction setup starts with building classification datasets
consisting of positive and negative instances. In this study’s context, instances are the
non-connected actor pairs from the network in the test phase GT+1[t1, t′]. Instances are
labelled as positive depending on their true appearances during the test phase, and links
with negative labels were randomly selected from links that do not appear both in the
training and test phases. This study considered a workload ratio of links with positive and
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negative labels to 1:10. Thus, the number of negatively labelled links is ten times higher
than those with positive labels in each classification dataset. However, in the case of the
co-authorship networks, the workload ratio is 1:2. For the sake of simplicity in the link
prediction problem, loops (i.e., links where source and destination are the same actors)
were ignored and links that are unique in GT+1 are considered (i.e., links not present in GT .
Choosing the appropriate feature set to describe instances in the classification dataset is one
of the most important tasks in supervised link prediction. In each classification dataset of
this study, both positively and negatively labelled actor–pair instances were described using
features simi(vi, vj) (i.e., metrics summarized in Table 1) those were developed considering
the similarity of the evolutionary information associated with each actor of a pair. This
study constructed different classification datasets consisting of instances and dynamic
features describing those instances. Depending on the number of sampling window sizes,
for both directed and undirected networks, each network dataset had three classification
datasets and altogether 15 classification datasets. In the case of the co-authorship network
datasets, since there was only one sampling window size (i.e., one year), both datasets had
one classification dataset defined for this study’s purpose.

Table 2. Basic statistics of network datasets used in this study. The training duration represents the
interval used to generate temporal short-interval networks and the sampling interval denotes the
sliding window sizes used to sample dynamic networks. SINs represent the number of short-interval
networks or network snapshots generated using the corresponding window size.

Dataset Actors Links
Training Duration Testing Duration Sampling Interval SINs

Start End Start End τ

GMIT 96 1,086,404 14 September 2004 31 January 2005 1 February 2005 5 May 2005

1 day 140

7 days 20

30 days 5

GEmail 167 82,927 2 January 2010 31 July 2010 1 August 2010 30 September 2010

1 day 186

7 days 31

30 days 8

GUCI 1899 61,734 24 March 2004 31 May 2004 1 June 2004 26 October 2004

1 day 45

7 days 7

30 days 3

GFF 11,715 42,698 1 January 2007 31 March 2007 1 April 2007 30 April 2007

1 day 90

7 days 13

30 days 3

Gretwt 14,370 39,124 14 September 2010
4 a.m.

14 October 2010
4 a.m.

14 October 2010
4 a.m.

15 October 2010
4 a.m.

6 h 121

12 h 61

24 h 31

Gth 6798 290,597 1 October 1993 31 December
1998 1 January 1999 10 December

1999 1 year 6

Gph 16,959 2,322,259 15 March 1992 31 December
1998 1 January 1999 31 December

1999 1 year 7

3.3. Performance Evaluation

As mentioned earlier, this study utilized dynamic features, computing similarity or
correlation between two actors by considering network dynamics and using their evolu-
tionary information, as described in Section 2, to describe both positively and negatively
labeled instances in the classification datasets. Dynamic feature values were normalized
such that the distribution has zero mean and one standard deviation. In regard to classifiers,
this study used simple logistic regression, Random Forest, and Bagging algorithms. The
latter two algorithms use ensemble-based methods. The well-known machine learning
library WEKA [53] was used for classification purposes using the default parameters. For
validation purposes, this study considered 10-fold cross-validation, and the mean scores



Appl. Sci. 2023, 13, 2913 14 of 22

were used to determine the accuracy of the results. In addition to accuracy measures, AU-
CROC (Area Under Receiver Operating Characteristics Curve) and AUCPR (Area Under
Precision-Recall Curve) were also used to measure the classification performance. While
the AUCROC measure is the de facto standard for measuring supervised learning-based
classification, AUCPR is reported for a more differentiated view regarding the learning
task in the imbalanced dataset. Despite its criticism [54], AUCROC is a popular metric
(after accuracy) used in binary classification. Accuracy only classifies the class label as
right or wrong; however, AUCROC quantifies the uncertainty associated with classifiers by
introducing a probability value. It is essentially equivalent to average precision, which is
another common measure for ranking results (Manning et al. 2008) [55] , and it relates the
true positive rate against the true negative rate of a classifier. As an important traditional
measure, it is also used in imbalanced classification problems. AUCROC score interprets
the probability that a randomly chosen missing link in the test phase belongs to GT+1 is
given higher probability score than a randomly chosen non-existent link, which is absent
both in the training GT and test network GT+1. The calculation of AUCROC is given as
defined by the formula AUCROC= (n′′+0.5n′′)

n , where n denotes the number of indepen-
dent comparisons, n′ denotes the times where a missing link in the test network has been
given a higher score, and n′′ denotes the times when a non-existent link has been given a
higher score. AUCROC curve demonstrates how the number of correctly classified positive
examples varies with the number of incorrectly classified negative examples and shows
an overly optimistic view of an algorithm’s performance in the presence of large skew in
the class distribution where the precision–recall curve was proposed as an alternative to
ROC in such cases. This is because a large change in the number of false positives can
make a small change in the false positive rate (i.e., FP

FP+TN ) that is used in constructing the
ROC curve. Precision compares false positives to true positives instead of true negatives
and captures the effect of many negative examples impacting the algorithm’s performance.
Furthermore, for a given ROC curve, the corresponding P–R (precision–recall) curve varies
with skewness in the class distribution. Therefore, Boyd et al. [56] recommended that the
area under the precision–recall curve (AUCPR) often serves as a summary statistic while
comparing the performances of several different algorithms. The authors also proposed a
method to determine the minimum value of AUCPR as AUCPRmin = 1+ (1−π)ln(1−π)

π with
skew π = #positivesamples

n , where n = total number of samples in the classification dataset.
According to this equation, considering the ratio of positive and negative samples as 1:10
(i.e., the ratio of positive and negative samples is 1:10 in this study) in the classification
datasets of the directed and undirected networks and the value of the skew π = 0.091,
the minimum value of AUCPR in these datasets should be 0.04. However, for the rest of
the three networks (i.e., Gph and Gth), since the skew π = 0.33 (i.e., ratio 1:2), the minimum
value of AUCPR should be 0.189. For sake of comparison, this study compared the perfor-
mances of dynamic features with a well-known metric, ‘ResourceAllocation’ [57], which is
widely used for link prediction purposes in static networks and demonstrated improved
performance. We also implemented the link prediction strategy in dynamic networks
proposed by Soares and Prudêncio [34], where the authors built a time series of traditional
topological metrics (e.g., Commonneighbours) for non-connected actor pairs for each SIN in
the training phase. The authors also used the time series forecasting method (e.g., ARIMA)
to predict the final score of the topological metrics and used those forecasted values to train
the classifier. Different variations of this method are also extensively followed by other
authors to support link prediction in dynamic networks [36,58]. For the sake of brevity,
in the rest of the study, we used simRA and simSoares to denote the values computed for
the positively and negatively labeled actor pairs considering ResourceAllocation metric and
dynamic link prediction strategy proposed by Soares and Prudêncio [34]. It is noteworthy
that, to compute simSoares, we have considered the well-known Jaccard Coefficient measure
as the topological similarity metric and used the ARIMA forecasting method to predict the
future values of the common neighbours incident to actor pairs.
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4. Results

In this section, we describe the performance of the constructed dynamic similarity
metrics in a supervised link prediction setup.

4.1. Classification Performance

Table 3 sets out the performance scores of three different classifiers in classifying posi-
tive and negatively labeled links. Classifier performances are demonstrated considering
three different performance metrics described before. In regard to the accuracy score, this
study observes that both linear (i.e., logistic regression) and ensemble-based classifiers per-
form reasonably well using the dynamic similarity metrics/dynamic features constructed
in this study. Nevertheless, RandomForest, the ensemble-based classifier, outperformed
others in the case of undirected and co-authorship networks, whereas the linear classifier
performs well in the directed network. In regard to the ensemble-based classifiers, bagging
with a decision tree used as a base classifier is susceptible to overfitting and computation-
ally expensive, as it considers all the available features to split a node in decision trees.
Conversely, the RandomForest, a special case of bagging, randomly considers only a subset
of the best features of those available. Therefore, it performed superior to bagging in some
cases. In the co-authorship networks, we observed better performance by the bagging
algorithm considering all three performance metrics. Considering AUCROC scores in the
RandomForest classifier across the classification datasets, this study observed better perfor-
mance in GMIT , and in the rest of the network datasets, scores are better in comparison to a
random algorithm having the highest AUCROC score of 0.50. The highest AUCROC scorer
is the RandomForest algorithm in GUCI , whereas, in co-authorship networks, the highest
AUCROC score was achieved in Gph by the same classifier. In regard to the AUCPR scores,
in all networks, we have observed that all classifiers surpassed the minimum score of
0.04. Although the RandomForest algorithm demonstrated improved performance in most
cases using this metric, interestingly, it demonstrated inferior performance in regard to
AUCPR in Gph dataset. The highest AUCPR score achiever is the Bagging algorithm in Gth.
Considering the aforementioned discussion on classifiers’ performances, we found that the
RandomForest algorithm in the undirected networks, the linear classifier, logistic regression
in the directed network, and Bagging in the co-authorship networks exceeded others in
regard to performance metrics. Although a further study can reveal the underlying reason
behind the classification performance differences demonstrated by different classifiers, it
is evident from the classifiers’ performances in this table, and we can conclude that the
dynamic similarity metrics constructed in this study can be successfully utilized to predict
future links in dynamic networks. Considering the Random Forest classifier, in GMIT ,
considering accuracy and AUCROC scores, although better performance was observed
in the classification dataset constructed using a monthly sliding window (i.e., 30 days);
however, considering the AUCPR score, it is the window size of seven days that performs
well. Likewise, the similar window size provided better performance in GEmail and GFF.
However, in GUCI , we observed better performance in the classification datasets where the
dynamic features were constructed using a window size of one day. On the other hand,
in the directed network GRetwt, considering the linear classifier, we have observed that the
classification dataset, built upon considering hourly window size, has outperformed others.
Based on the aforementioned observations, it is evident that the choice of the window
resolution to sample or aggregate links in a dynamic network greatly impacts dynamic link
prediction considering similarity/proximity metrics built upon the evolutionary informa-
tion. This study took the advantage of three different algorithms provided in the WEKA
machine learning software. In Table 4, we provide a comparable picture of these features in
regard to their rank of importance obtained by these algorithms. It is noteworthy that, for
each network dataset, we considered the high-performing classification datasets. These in-
clude the classification datasets in GMIT , GEmail , and GFF using monthly window size, daily
window in GUCI and hourly window size for GRetwt. The ranks of the features are assigned
in increasing order, with one denoting the highest ranking. Information gain and chi-square
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evaluator algorithms evaluate the worthiness of a feature by calculating the information
gain and chi-square statistics with respect to the class variable. On the other hand, the last
two columns denote the rank of a feature in regard to the SVM and RandomForest classifier.
Finally, all the ranks for every four algorithms were aggregated to generate the final rank.
From this table, it is observable that sim5(a, b), which represents the Bray–Curtis similarity
of actor dynamicity values, became the most prominent feature in GMIT , and temporal
similarity of neighbourhood dynamicity measured by the DTW method and denoted by
sim2(a, b) was found as an important feature in GEmail , GUCI , GRetwt, GFF and Gph. On the
other hand, the temporal similarity of structural dynamicity values of actor pairs, denoted
by sim1(a, b) turned out to be a leading feature in Gth. Features generated by considering
the correlation of dynamicity values became the least significant features in most datasets.

4.2. Feature Importance

By considering the improved performances of our dynamic features, our next objective
is to compare all dynamic features to assess their relative competency in the dynamic link
prediction task. For this purpose, an alternative to ROC curves for models with a large
skew in the class distribution. P–R curves can sometimes expose differences between
classifiers that are not apparent in the ROC curves. In Figure 3, we present the ROC and
P–R curves for the best-performing classification dataset from each group. For this figure,
we selected a classification dataset from GUCI constructed using a daily temporal sampling
window, GRtwt with an hourly sampling window, and Gth from the co-authorship networks.
In regard to the classifier, we have selected RandomForest for the undirected network,
logistic regression for the directed network, and bagging for the directed network. In this
figure, the left column contains the P–R curves, and the right column presents the ROC
curves in the three datasets chosen above. In this figure, the red line denotes the best-
performing dynamic feature in the chosen classification dataset of each network, the green
line denotes an existing time series of topological similarity metrics-based link prediction
strategy, and the orange line denotes the performance of ResourceAllocation metric used
in link prediction over the static network. The red lines in the P–R and ROC plots denote
the high-performing dynamic feature in the corresponding datasets (i.e., sim2(a, b) in GUCI
and GRtwt and sim1(a, b) in Gth. The green lines denote the metric (i.e., simSoares) developed
by following the method described by Soares and Prudêncio [34]. In this dynamic link
prediction strategy, this study first developed a time series of the Jaccard similarity measure
for every non-connected actor pair for each SIN generated, considering the sampling
window size of the high-performing classification dataset of the corresponding network.
For example, the high-performing classification dataset in GUCI was developed using daily
SINs (see Table 3 for performance measures). Then, the ARIMA forecasting method was
used to predict the future value of the Jaccard metric, which was also used to train the
classifier for positive and negatively labeled dyads. Finally, the orange lines denote the
traditional topological similarity metric ResourceAllocation (i.e., simRA) that is widely used
for higher performance in predicting links in cross-sectional networks. It is noteworthy that,
in P–R plots, the curves tend to lie in the bottom left corner of the diagonal line, whereas,
in ROC plots, the curves tend to lie in the top-left region of the plots. The higher the curves
than the diagonal line, the higher the predictor’s performance. Through the curves, it is
observable that, apart from the P–R curve in the GRtwt network, in every plot, the dynamic
features constructed in this study exceeded others in performance.
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Table 3. Classification performances by three classifiers considering the classification datasets of
undirected, directed networks and co-authorship networks considering three different window
sizes used to sample dynamic networks. Both directed and undirected network datasets used
three different sampling window sizes to generate SINs in the dynamic networks, whereas the
co-authorship networks used only a yearly sliding window.

Undirected Network

RandomForest

Accuracy (%) AUCROC AUCPR

Days 1 7 30 1 7 30 1 7 30

GMIT 82.19 80.52 84.91 0.683 0.663 0.700 0.30 0.46 0.29

GEmail 76.29 87.47 88.23 0.714 0.644 0.724 0.40 0.32 0.31

GUCI 89.46 84.95 84.67 0.764 0.713 0.654 0.34 0.29 0.29

GFF 85.03 84.98 85.33 0.687 0.636 0.773 0.39 0.36 0.43

Bagging

GMIT 70.69 71.71 71.77 0.611 0.614 0.671 0.33 0.44 0.31

GEmail 77.22 77.69 75.96 0.656 0.594 0.603 0.34 0.27 0.33

GUCI 84.47 83.81 82.99 0.630 0.619 0.632 0.29 0.31 0.28

GFF 73.11 72.80 72.22 0.622 0.588 0.644 0.35 0.32 0.39

Logistic Regression

GMIT 73.30 72.22 72.68 0.536 0.613 0.590 0.26 0.38 0.22

GEmail 78.23 77.91 78.13 0.654 0.637 0.563 0.36 0.30 0.25

GUCI 85.25 84.73 84.64 0.628 0.573 0.619 0.29 0.26 0.22

GFF 75.44 75.22 75.03 0.664 0.618 0.579 0.40 0.35 0.27

Directed Network

RandomForest

Hours 6 12 24 6 12 24 6 12 24

GRetwt 87.87 87.59 87.03 0.739 0.712 0.720 0.36 0.26 0.26

Bagging

GRetwt 85.81 84.55 85.11 0.695 0.644 0.574 0.21 0.21 0.19

Logistic Regression

GRetwt 88.11 88.13 88.01 0.735 0.712 0.622 0.32 0.26 0.23

Co-Authorship Network (Window Size = 1 Year)

RandomForest

Accuracy AUCROC AUCPR

Gth 77.90 0.663 0.49

Gph 81.49 0.722 0.18

Bagging

Gth 81.35 0.702 0.56

Gph 80.95 0.711 0.32

Logistic Regression

Gth 66.45 0.593 0.43

Gph 70.90 0.581 0.11
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Table 4. The rank of different dynamic features constructed in this study using different algorithms
for directed, undirected and co-authorship networks. Ranks are in increasing order with number one
denoting the highest ranking. The total column represents the aggregation of all ranking scores to
generate the final ranking.

Feature Name Information Gain Chi-Square Attribute Evaluation Support Vector Machine Evaluator Random Forest Evaluator Total

GMIT

sim1(a, b) 5 5 1 4 15

sim2(a, b) 2 2 5 1 10

sim3(a, b) 3 3 3 5 14

sim4(a, b) 4 4 4 3 15

sim5(a, b) 1 1 2 2 6

GEmail

sim1(a, b) 5 5 3 3 16

sim2(a, b) 2 2 1 2 7

sim3(a, b) 3 3 5 1 12

sim4(a, b) 4 4 2 4 14

sim5(a, b) 1 1 4 5 11

GUCI

sim1(a, b) 2 2 1 2 7

sim2(a, b) 1 1 2 1 5

sim3(a, b) 5 5 3 4 17

sim4(a, b) 4 4 5 5 18

sim5(a, b) 3 3 4 3 13

GFF

sim1(a, b) 3 3 4 3 13

sim2(a, b) 1 1 3 1 6

sim3(a, b) 5 5 5 5 20

sim4(a, b) 2 2 1 2 7

sim5(a, b) 4 4 2 4 14

GRtwt

sim1(a, b) 2 2 1 2 7

sim2(a, b) 1 1 2 1 5

sim3(a, b) 5 5 5 3 18

sim4(a, b) 4 4 4 5 17

sim5(a, b) 3 3 3 4 13

Gth

sim1(a, b) 2 2 3 1 8

sim2(a, b) 1 1 5 3 10

sim3(a, b) 5 5 1 5 16

sim4(a, b) 3 3 2 2 13

sim5(a, b) 4 4 4 4 16

Gph

sim1(a, b) 5 5 2 4 16

sim2(a, b) 3 3 1 1 8

sim3(a, b) 2 2 3 2 9

sim4(a, b) 1 1 5 5 12

sim5(a, b) 4 4 4 3 15
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Figure 3. P–R curves (left column) and ROC curves (right column) for undirected network GUCI

(top row), co-authorship network Gth (middle row), and directed network GRtwt (bottom row).

5. Discussion and Conclusions

Link prediction problems in social networks gained considerable research interest from
various domains including anthropology, sociology, biology, information and computer
science. Focusing on static network topological information without considering the
influence of evolutionary process and associated dynamic changes incident to all actors
in the temporal network, has led the existing methods to be incompetent in dynamic link
prediction despite their compliance with the performance expectations. Recently, scholars
tend to acknowledge that emerging links can be derived by mining the evolutionary
information extracted from the network snapshots over time. Dynamic network topology
along with associated evolutionary information resulting from the temporal, structural,
and neighbourhood changes, associated with individual actors, can be exploited in dynamic
link prediction. Furthermore, since most networks inherently evolve over time, it is
imperative to exploit the temporal network dynamics to resolve issues with link prediction
problems in dynamic networks.

Considering the problem of dynamic link prediction, this study attempted to develop
evolutionary features by measuring the temporal similarity and correlation of the actor-
oriented evolutionary information in dynamic networks. For this purpose, we considered
both directed and undirected social networks of different sizes and domains. In a dy-
namic network composition, each selected network was sampled by considering three
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different resolutions ranging from hours and days to years to generate SINs. Consider-
ing different temporal granularity, this study then developed a time series of structural
and neighbourhood changes experienced by each user. Considering the rate of changes,
this study then defined two temporal measures to quantify actors’ temporal behaviour.
These measures are defined as structural and neighbourhood dynamicity. To develop
the dynamic features, this study leveraged the evolution of temporal similarity, and the
correlation of these two dynamicity values to quantify the similarity/proximity between
actors from an evolutionary perspective. The first four dynamic similarity metrics were
constructed in this way. The fifth dynamic feature was constructed by considering the
similarity measures widely used in ecology. In this measure, we quantify the normalised
abundance of actor-level dynamicity in temporal networks. In a supervised link prediction
setup, we have used two ensemble-based classifiers and one linear classifier to measure the
performance of our dynamic features. Through the performance metrics used in this study,
we have observed that these features can not only be indulged for dynamic link prediction
purposes but also can effectively support modelling the network growth. The performance
of dynamic features was also compared with a traditional topological metric widely used
for link prediction purposes in cross-sectional networks and a time series-based dynamic
link prediction strategy. In both cases, we have observed that dynamic features constructed
by leveraging the evolutionary aspect of actors can perform as well as the traditional ones
and sometimes can outweigh them in regard to prediction performance.

This study can further be extended in different ways. For example, instead of consid-
ering the network structural changes, one can exploit the temporal clustering tendency of
actors, introduce time series forecasting methods to predict the future values of actor-level
changes and employ other similarity measures (e.g., Euclidean, Manhattan) to measure the
similarity between temporal information. One important observation we have noticed in
this study is that the choice of the optimal sliding window to sample dynamic networks can
effectively impact prediction performance. Therefore, further study can exploit dynamic
link prediction performance to determine the optimality of the sampling resolution. On
the other hand, in the case of the directed networks, this study used the aggregation of
in-degree and out-degree centrality and neighbours to define the structural and neigh-
bourhood dynamicity. Further studies can adopt these centrality measures separately to
observe the prediction performance variations. Finally, like many other applications of
link prediction problems, this study can be valuable to help define new dynamic similarity
metrics for the purpose of dynamic link predictions in networks that inherently evolve
over time including terrorist networks, online social networks (e.g., Twitter), scholarly and
knowledge networks (e.g., keyword network) and collaborative filtering for the purpose of
modelling the consumers’ buying behaviour.
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