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Abstract: Although they have achieved great success in optical images, deep convolutional neural
networks underperform for ship detection in SAR images because of the lack of color and textual
features. In this paper, we propose our framework which integrates prior knowledge into neural
networks by means of the attention mechanism. Because the background of ships is mostly water
surface or coast, we use clustering algorithms to generate the prior knowledge map from brightness
and density features. The prior knowledge map is later resized and fused with convolutional feature
maps by the attention mechanism. Our experiments demonstrate that our framework is able to
improve various one-stage and two-stage object detection algorithms (Faster R-CNN, RetinaNet, SSD,
and YOLOv4) on two benchmark datasets (SSDD, LS-SSDD, and HRSID).
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1. Introduction

Ship detection has received increasing attention in the field of synthetic aperture
radar (SAR) for its broad application for military [1–3], marine traffic monitoring [4,5],
harbor surveillance [6,7], etc. Following their success in optical images, deep learning-
based methods are replacing traditional methods, which rely on manually designed feature
extraction, as the most popular models for SAR images [8–13]. Among the deep learning
methods, deep convolutional neural networks (CNNs) overwhelm other branches in the
computer vision.

Despite the popularity of CNNs for various tasks of SAR images, ship detection
remains a challenging task for three reasons. Firstly, SAR images do not have important
features, such as color and textual features, which are vital for object detection. Secondly,
ships are normally quite small in SAR images. Therefore, resolutions are too small to easily
locate ships [14–17]. Thirdly, for complex backgrounds (e.g., coast), ship detection is heavily
affected by the scattering points from the background [6,18–21].

Although the imaging mechanism of SAR images poses great obstacles, it provides sup-
plementary information for ship detection. In most cases of SAR images, the backgrounds
of ships are water surface (e.g., ocean, river) or coast. On the one hand, due to complex
scatterings from the ships, such as volume scattering and double-bounce, the intensity of
echoes generated by ships is significantly stronger than that of the water surface [22,23].
On the other hand, due to the structure and material of the ship, the ship has many strong
scattering objects [24], i.e., strong scattering points. Studies [25,26] have shown that the
strong scattering points of the ship are more dense than the surrounding areas.

Over the recent years, a series of explorations have been proposed to combine prior
knowledge with deep learning methods. Gao et al. [27] extracted the SAR polarization
features [28] using the power–entropy (PE) decomposition theory. After that, the polar-
ization features were fed into RetinaNet [29] as the input. Zhang et al. [30] defined the
saliency value of a pixel as the color contrast of all other pixels in the image. They gener-
ated high-quality slices using a saliency detection method to suppress background clutter,
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before using CNNs to further detect ship targets. Their method substantially improved
the detection capability of offshore ships while ensuring the inshore ship detection per-
formance. However, due to the over-suppression of saliency detection, their method did
not perform well when facing small ships with very few pixels. Sun et al. [31] pointed
out that the general deep learning-based detectors perform poorly because they ignore
the characteristics of SAR images. They grouped all the extracted strong scattering points,
and generated the initial ROI areas based on the grouping result. Compared to those
extracting only a portion of strong scattering points as key points, Sun et al.’s method
performed better for small targets. However, the method of getting the initial ROI at the
beginning of training was trained insufficiently, which makes the initial ROIs inaccurate
and causes the model to fail to learn valid knowledge. Although previous works recognize
the importance of prior knowledge for the CNNS, they combine the prior knowledge by
feeding it into the networks. Therefore, the networks could not access the raw information
which may be missing from the prior knowledge.

In this paper, we propose a framework which integrates prior knowledge into CNNs
by fusing it with an attention mechanism. In our model, the prior knowledge is used to
guide the attention of deep networks. Our framework can be categorized into two stages:
prior knowledge representation and prior knowledge integration. The aim of the first stage
is to generate the probability score for each pixel of which how likely it is on the ship
area or background. Based on the findings from other works [28,31,32], brightness and
density are two promising features for prior knowledge. To this end, we employ k-means
clustering as brightness filtering because there are ships and backgrounds in a bounding
box. Similarly, DBSCAN clustering is utilized as the density filtering. For the second stage,
we down-pool the original prior knowledge map into the same size as the feature map.
After that, position-wise multiplication integrates the resized prior knowledge map into
the CNNs.

Our contributions can be summarized into three items.

1. To our best knowledge, our framework is the first that can integrate prior knowledge
into arbitrary CNN-based detectors using attention mechanism for SAR images.

2. By the attention mechanism, the deep learning models can learn from both prior
knowledge and vanilla images.

3. Our experiments exhibit the superiority of our method using object detection algo-
rithms (Faster R-CNN, RetinaNet, YOLOv4, and SSD) on three SAR image datasets
(SSDD, LS-SSDD, and HRSID).

The remainder of this paper is organized as follows. Section 2 presents the related
works about traditional methods, CNN-based object detection algorithms, and attention
mechanisms. Section 3 details our intuition and approaches to represent prior knowledge.
Section 4 demonstrates the combination of prior knowledge and deep CNNs. Section 5
displays the settings, descriptions, and results of our experiments.

2. Related Work
2.1. General CNN-Based Object Detection

Neural networks have a family of variants, including convolutional neural networks
(CNNs) [33], recurrent neural networks (RNNs) [34], auto-encoders [35,36], transform-
ers [37,38], etc. CNNs are one of the most vital branches that are widely applied in
computer vision tasks, including object recognition [39], object detection [29,40–42], seg-
mentation [43], and image generation [44]. CNN-based object detectors can be grouped into
single-stage and two-stage algorithms. Faster R-CNN [45] is one of the most widely used
two-stage detectors, which is an extension of Fast R-CNN [42]. The Faster R-CNN replaces
the selective search of Fast R-CNN with region proposal networks (RPN). The RPN enables
the end-to-end training and further reduces the computational complexity. The single-
stage algorithms do not rely on proposed regions, such as typical single-stage algorithms
YOLO [41,46,47], SSD [48], and RetinaNet [29], which perform classification and regression
directly from feature maps. The YOLO [46] models the detection task as a pure regression
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problem. It divides the image into grids of patches, and performs the prediction and
classification of the bounding boxes for the center of each grid. The core of RetinaNet [29]
is focal loss, a loss function derived from a modification of binary cross-entropy. Focal loss
makes the model more focused on hard-to-classify samples during training by reducing
the weights of easy-to-classify samples. YOLOv4 [41] uses PANet [49] instead of the com-
monly used FPN as the neck of the network and assembles various optimization strategies
for CNNs, including Mosaic data augmentation method, Mish activation function [50],
and CIoU loss function [51], to improve the detection accuracy of the algorithm.

In the deep learning era, the CNNs have dominated the object detection in SAR images.
Lv et al. [52] combined a sliding window and Faster R-CNN approach to detect pylons
in SAR images and used a data enhancement strategy to train it. Their detector has good
immediacy and detection rate in large-scene SAR images. Ge et al. [53] improved the
feature extraction capability of the algorithm for azimuthally inscribed objects by adding
SENet and inverted residuals to the backbone of YOLOv5. Their proposed detector was
suitable for detecting azimuthally sensitive targets, such as aircraft. Zhang et al. [54] cross-
coupled the edge-aware network by a residual space pyramid set and attention mechanism
to help object recognition. In addition, they improved the model’s multi-scale feature
extraction capability by semi-dense connectivity based on residual convolution blocks.
Their proposed SAR image detector performed well on SAR oil tank and residential area
images. Sun et al. [55] used transformer to build the neck of YOLOv5. They found out that
adding the structure of transformer in the high level of YOLOv5 can help the model to
obtain global background information, which improved the performance of YOLOv5. This
method achieved good results in detecting military vehicles in large scenarios.

Deep CNNs have made a lot of breakthroughs for ship detection in SAR images
as well. Tang et al. [8] proposed a new ship detection model FLNet based on YOLOv5.
This model combined traditional image processing and deep learning-based methods,
with improved accuracy and recall. Zhu et al. [9] used FCOS as the baseline, redesigned the
feature extraction method, and redefined the sample according to the statistical features
of SAR ships to reduce the missed detection rate of small ships. Li et al. [10] replaced the
original RPNs with a fixed number of prior anchor boxes with K-means, applied cascade
amplification and feature fusion to design the feature extraction network, and improved the
speed and accuracy of the Faster R-CNN. To effectively aggregate the sparse and meaningful
clues of small ships, Shi et al. [11] introduced a deformable attention mechanism based
on the Swin Transformer to change the original self-attention mechanism. Yu et al. [12]
constructed a highly accurate and highly generalizable network, FIERNet, by combining
feature extraction and fusion modules. The differentiable neural structure search model
proposed by Li et al. [13] employs a new channel cropping scheme and loss function that
can generate significantly lighter neural networks with guaranteed accuracy.

2.2. Prior Knowledge for Detection SAR Images

Before the popularity of deep learning, constant false alarm rate (CFAR) was one of the
most seminal feature extraction methods [56] for object detection in SAR images. CFAR is a
statistical detection method based on hypothesis testing theory, which ensures a constant
false alarm probability by selecting a suitable threshold, and then determines whether the
target signal exists under this condition. The MS-CFAR [57], which takes into account the
statistical characteristics of the tested cell, has a more stable performance compared to other
algorithms based on CFAR. The statistical clutter edge selector designed in [58] can obtain
a uniform clutter field before CFAR, improving the detection performance of the classical
CFAR detector. Moreover, the idea of improving the algorithm by using clutter boundary
statistical features is also reflected in [59]. The bi-parametric clutter map CFAR detection
method proposed by Wang et al. [60] estimates the local threshold by following the standard
deviation and mean values of the new clutter map, which has better applicability and target
detection capability compared to the mono-parametric method. Zhou et al. [61] chose to
use the half-sided Gaussian distribution for modeling and proposed a new method called
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HG-CFAR. This method has higher efficiency relative to the CFAR method based on a
Gaussian distribution.

Specifically, there is a group of works which are for ship detection only. Li et al. [62]
found that the grayscale values on SAR images fluctuate due to the influence of speckle
noise. Such fluctuations take a regular form in uniform regions and an irregular form in non-
homogeneous regions. The ship region is a homogeneous region while the ship boundary
region and the artificial target are non-homogeneous regions. Based on this phenomenon,
they designed a new texture feature IUDF for helping ship detection in SAR images.
The proposed algorithm using IUDF has high accuracy and processing speed. The ship,
as a scatterer, has a strong coherent backscattering signal, and this feature can be formed
by evaluating the sub-resolution electromagnetic field, in which Gambardella et al. [63]
considered the Rice factor as a parameter that is sensitive to a dominant scatterer such as
a ship. Therefore, they designed a filtering technique based on the Rice factor, by which
the accuracy and efficiency of the ship detection algorithm can be effectively improved.
Zhang et al. [64] also designed a filtering technique for SAR ships, but their technique
was based on the strong double-bounced scattering phenomenon occurring from ships.
In [65], the authors found that the azimuth ambiguities caused by the undersampling of the
echo signal during SAR imaging can lead to false alarms of ships. As a result, they located
and eliminated the ambiguous points in SAR images in advance according to the imaging
coefficients of SAR, as a way to reduce the interference of orientation-ambiguous points to
SAR ship detection.

2.3. Attention Mechanisms

Attention mechanisms make the model focus on more critical features. Squeeze-and-
Excitation Networks (SENet) [66] and Convolutional Block Attention Module (CBAM) [67]
are two of the most popular attention mechanisms. SENet computes channel weights by
compressing the information of all points in the space and uses the fully connected layer to
exploit the correlation between channels, effectively improving the accuracy of the network.
In [68,69], the researchers added SENet to the feature extraction network to enhance the
representation of vehicle features. Compared to SENet, which simply uses the channel
attention mechanism, CBAM additionally uses the spatial attention mechanism. One of the
advantages of CBAM is that it is plug-and-play and can be easily incorporated into various
algorithms. Zhu et al. [70] integrated CBAM into YOLO to help YOLO better find regions of
interest. Wang et al. [71] made their VGG-style network more focused on effective features
by embedding CBAM. Feng et al. [72] combined CBAM with SSD to effectively suppress
useless information and improved the pedestrian detection accuracy of the algorithm.

Attention mechanism has been extensively used for object detection in SAR images.
Zhang et al. [73] designed a lightweight attention mechanism which has significant perfor-
mance and efficiency for the detection task of multi-class SAR targets in both moving and
stationary situations. Combined with feature pyramids, SENet achieved competitive per-
formance in the SAR bridge detection [74], because the SENet enables detectors to suppress
irrelevant information while obtaining additional valid information. Guo et al. [75] used a
mixture of feature pyramid networks and CBAM to further process the features enhanced
by scattering information, effectively adapting to the discrete and variable nature of aircraft
in SAR images.

Attention mechanism is useful for ship detection as well. The ship attention module
proposed by Sun et al. [21] distinguishes the strong scattering points of artificial facilities
on land and ships in water by generating a feature map containing rich texture features,
which effectively reduces false alarms in the land area and improves the accuracy of the
algorithm. Wang et al. [7] designed a Spatial Group-wise Enhance (SGE) attention module
to reduce the problem of adjacent ships being ignored. SGE reduces the computational
effort in the form of channel grouping, while enhancing the spatial features of each group of
channels, providing more semantic features. Their experimental results showed that their
method has better detection capability for densely docked ships and makes a contribution
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to ship detection in complex scenarios. Shao et al. [76] designed a dynamic shrinkage
attention mechanism to address the impact of speckle noise on SAR images, which can
automatically learn the soft threshold required by the denoising algorithm to achieve
feature-level denoising.

3. Representing Prior Knowledge
3.1. Analysis

SAR images are different from optical images due to different imaging mechanisms.
Optical images record multi-band data, while SAR images record single-band data, such
as the amplitude and phase of one band of echoes. Therefore, SAR images are usually
single-channel pictures, which have a pixel value range of 0 to 255, inclusively. The digital
image element, or pixel value, reflects the intensity of the scattered echoes before the
imaging. The stronger the echo signal, the larger the pixel value is. Figure 1 visualizes
ships in optical images (first row) and SAR images (second row), respectively. In the optical
images, we can easily locate ships by the contour, color differences, and texture. However,
there is a large amount of speckle noise in SAR images, and the ship targets are usually
blurred. Ship targets in SAR images not only lack rich color information, but also possess
unclear texture features. This delivers difficulties for the detection of ships in SAR images.

(a)

(b)

Figure 1. Examples of optical and SAR images, with the ship target marked by the red rectangle.
(a) Optical images. (b) SAR images.

The intensity of scattered echoes roughly depends on two types of factors [77]. The first
factor is the operating parameters of the radar system, including the operating wavelength
of the radar sensor, the angle of incidence, the polarization mode, etc. The second factor
is the characteristics of the ground target, including the roughness of the ground surface,
the radar scattering cross section (RCS), the complex permittivity of the target, etc. They
mainly affect the type of scattering occurring from the target and thus the intensity of the
scattered echoes [77–80]. Ships generally have simultaneous volume scattering, surface
scattering, and double bounce [81]. The echoes generated by double-bounce are very strong.
Even if only surface scattering is considered, the echoes generated by the ships will be
stronger than those from the sea surface. We refer to this phenomenon as the brightness
difference. Figure 2 illustrates this phenomenon. The ships look significantly brighter than
the sea surface.
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(a) (b) (c) (d)

Figure 2. Ships with different background in SAR images. Ships are significantly brighter on SAR
images than on the sea surface. The ship targets are marked in red boxes, and the strong scattering
points on land are marked in green boxes. (a) Example 1 of ship’s brightness. (b) Example 2 of ships’
brightness. (c) Example 3 of the brightness difference between ships and land. (d) Example 4 of the
brightness difference between ships and land.

From Figure 3, we can conclude the strong scattering points on land also produce high-
intensity echoes, which leads to the pixels on the SAR image having similar brightness as
ships. Therefore, brightness alone is not enough to distinguish ships from the background.
SAR imaging has the inherent defect of coherent speckle noise [82]. In SAR images,
the grayscale values of neighboring pixel points can vary randomly due to coherence,
which is around a certain mean value. As a result, a uniform scatterer can also appear to
vary unevenly between bright and dark on a SAR image. Targets with different structures
are affected differently by speckle noise due to the different distributions of the basic
scatterers in their bodies. We describe this phenomenon in terms of the density of bright
spots in the region. From Figure 3, we can discover that the density of the bright spots of the
ships in the red boxes is significantly higher than that of the background in the green boxes.

(a) (b) (c) (d)

Figure 3. Objects with different densities in the SAR images. The difference in densities comes from
the difference in structures. The red boxes in the figure mark the ships while the green boxes mark
the areas. The densities of land are significantly different from those of the ships. (a) Example 1 of
density difference between ships and land. (b) Example 2 of density difference between ships and
land. (c) Example 3 of density difference between ships and land. (d) Example 4 of density difference
between ships and land.

3.2. Generating by Brightness

As aforementioned in Section 3.1, brightness is important to distinguish ships from the
water surface. Therefore, we can use an interval of pixel values to separate ships from the
water surface. Only pixels within are considered as ships. Since the images from training
set and test set are i.i.d., the interval which fits for the training set suits the test set as well.
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We perform clustering on pixels of each bounding box (annotations of training set)
individually. we use K-means [83] clustering with two classes (one for the foreground
and the other for the background) to cluster the pixel values. The cluster which has a
higher value as the center than that of the other cluster represents the foreground. From the
foreground pixels, we find a pair of median value medi and max value maxi, where i
indicates the global index of bounding boxes. The global median value med and max value
max could be calculated as:

med = arg min
x

1
n ∑

i
(medi − x)2 (1)

max = arg min
x

1
n ∑

i
(maxi − x)2 (2)

Here, n is the total number of bounding boxes. The final interval is [2 · median −
max, max].

As can be seen from Figure 4, most of the points in the clustering results are distributed
at higher pixel value levels. It can be illustrated that most pixels in the bounding boxes
represent ships while others are noises. The intervals from Equations (1) and (2) visualized
on the second row suggest the effectiveness of our approach.

Ex
am

pl
es

H
is

to
gr

am
s

(a) (b)

Figure 4. Two ship examples and their histograms. In the example, only the pixels in the green box
(on the images from first row) are included in the distribution for the second row. (a) Ship pixel
distribution example 1. (b) Ship pixel distribution example 2.
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3.3. Generating by Density

As discussed in Section 3.1, brightness is insufficient to separate ships from land,
but density is a promising feature, because the pixels on the ships are more dense than that
on land. We use DBSCAN [84] for the filtering in this stage. The input of the DBSCAN is
the foreground pixels of the brightness filtering. DBSCAN owns two hyper-parameters to
tune: Eps and MinPts. Two points are considered neighbors only if the distance between
them is no bigger than Eps. A core point has at least MinPts points in its neighbors.

Instead of adopting the strategy introduced in the original paper [84], we use the
metric IoU to tune the hyper-parameters. Experiments are conducted using different
combinations of Eps and MinPts, and the final set of parameters with the highest IoU is
selected. The IoU of a single image and the IoU of the whole dataset are calculated as
shown in Equations (3) and (4):

IoU =
U

X̂ + X−U
(3)

Average IoU =
∑n

i=1 Ii × Bi

∑n
i=1 Bi

(4)

In Equation (3), U represents the number of points where the clustering result overlaps
with the real ship. X represents the number of points in the clustering result. X̂ represents
the number of real ship points. In Equation (4), n is the total number of images. Ii represents
the IoU of the ith image. Bi represents represents the number of targets on the ith image.

After sequentially applying K-Means clustering and DBSCAN clustering, for each pixel
on the SAR images, we obtain a binary value for it. A pixel with value one is considered a
part of ship, while a pixel with value zero is taken as background. Such matrix is denoted
as prior knowledge map because the values are calculated based on prior knowledge of
SAR images. The prior knowledge map has the same size as the SAR image but with a
single channel.

4. Combining Prior Knowledge Map

Figure 5 depicts the comprehensive architecture of our framework. The framework
has three important parts: the backbone, our attention component (BDAM), and the prior
knowledge map. The backbone can be ResNet [85], VGG [86], GoogleNet [87], etc. Our
attention component (BDAM) does not change the sizes of the input and output of the
backbone. We insert it between stages of the backbone. The shape of the input and output
of BDAM is equally the same.

4.1. Resizing Prior Knowledge Map

The diagram of our attention component is depicted in Figure 6. The original prior
knowledge map, on which each point indicates if it is foreground or background, has the
size of (H, W, 1). In order to be attended with the feature map, we need to convert the prior
knowledge map to the same size as the feature map. Let us assume that a feature map has
the size (h, w). We divide the original prior knowledge map into m× n windows, where
m = bH

h c and n = bW
w c.

The value of each window is the number of foreground points within. Intuitively,
the window with more foreground points requires more attention. We normalize the
counting of foreground points into [0, 1] as the confidence score. The process of converting
the original prior knowledge map into the resized prior knowledge map is depicted in
Figure 7.
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Figure 5. The comprehensive architecture of our framework. It consists of backbone, BDAM, and a
prior knowledge map.

4.2. Integrating Prior Knowledge Map

Traditional attention mechanisms (such as SENet) serve as self-attention, which have
one input tensor. In our work, there are two input tensors: one is for the resized prior
knowledge map; and the other is the feature map of CNNs. The output tensor is considered
as a better representation of the feature map of CNNs. The output is fed into latter stages
of the CNNs.

Our BDAM extends the structure of CBAM. The detailed structure of BDAM is shown
in Figure 6. Given an intermediate feature map, CBAM (depicted in Figure 6a) successively
infers attention maps along two separate dimensions, channel and spatial. After that,
the attention maps are multiplied to the input feature map for adaptive feature refinement.
Our module (BDAM) uses the CNN feature map for channel attention and the prior
knowledge map for spatial attention (Brightness and Density Spatial Attention Mechanism,
BDSM), which is shown in Figure 6b.

The intermediate CNN feature map F ∈ RC×H×Wand the prior knowledge map
P ∈ RC′×H′×W ′ are used as the input of BDAM. F is passed through the channel attention
mechanism to obtain the channel attention weight Mc ∈ RC×1×1, while P is passed through
the spatial attention mechanism to obtain the spatial attention weight Ms ∈ R1×H×W .
The channel attention weight and spatial attention weight are multiplied to get the final
attention weight M ∈ RC×H×W . This process can be described as:

M = Mc(F)⊗Ms(P)

F′ = M⊗ F
(5)
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where ⊗ represents the element-wise multiplication, and F′ is the feature map after adjust-
ing the weights.
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Figure 7. The schema of resizing the prior knowledge map. Details include regional division, core
point statistics, assigning the initial weight, and weight normalization.

The channel attention module can be divided into two branches: max-pooling and
average-pooling. Max-pooling and average-pooling operations are performed on the CNN
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feature maps to obtain Fmax and Favg. Fmax and Favg are fed into the multilayer perceptron
(MLP), and the two results output by the MLP are summed element-wise. The merged
tensor is finally passed through the Sigmoid function to obtain the channel weights. This
process can be described as:

Mc(F) = Sigmoid(W0(W1(Fmax)) + W0(W1(Favg))) (6)

where W0 ∈ RC×C/r,W1 ∈ RC/r×C represent the weights of the MLP, and r is the reduc-
tion ratio.

In the BDSM, the prior knowledge map is first resized by a multilayer convolutional
neural network. The resized prior knowledge map is subjected to maxi-pooling and
average-pooling operations in the channel direction. Then, the outputs Pmax and Pavg of
the two branches are concatenated and fed into a convolutional layer with a convolutional
kernel of size 7× 7. The spatial attention weights are calculated as:

Ms(P) = Sigmoid( f ([MaxPool(W(P)); AvgPool(W(P)])

= Sigmoid( f ([Pmax; Pavg]))
(7)

where W represents the weights of the initial layers of convolution and f represents the
last layer of convolution.

5. Experiments and Results
5.1. Environment

Our experiments are conducted with one Tesla V100 DGXS 32GB GPU. The operating
system was Ubuntu 18.04. We used PyTorch 1.8.0, cuda 11.6, and cudnn 7.6.5 as our
GPU platform.

5.2. Datasets

The datasets used in the experiment are SSDD [88], LS-SSDD [89], and HRSID [90].
These datasets contain SAR ships only. SSDD has 1160 images with 2456 ships. SSDD
derives from three satellites: RadarSat-2, TerraSAR-X, and Sentinel-1, which display ships
at multiple scales and in multiple scenarios. The HRSID comes from three radar satellites:
TerraSAR-X, TanDEMX, and Sentinel-1B, with a total of 5604 images containing 16,951
ships. The data of LS-SSDD are from one satellite, Sentinel-1, with a total of 9000 images.
The three datasets are annotated as the format of PASCAL VOC. The size of ships within
these three datasets varies widely. According to the MS COCO [91] definition of target size,
LS-SSDD consists of no big ships and almost small ships, while SSDD and HRSID contain
various sizes of ships. Table 1 demonstrates the details of the three datasets. Because of
the scarcity, SAR datasets are smaller than other detection datasets, such as COCO which
contains 328,000 images.

Table 1. Statistics of datasets.

Datasets The Largest Ship (pixel 2) The Smallest Ship (pixel2) Average (pixel2) Number of Pictures

HRSID 522,400 3 1808 5604
SSDD 62,878 28 1882 1160

LS-SSDD 5822 6 381 9000

For the SSDD, we follow the data split instructed by its owner [92]. Those images
with a tail number between 2 and 7 or 0 are divided into the training set, while those
with a tail number of 8 are used for validation during the training process and, finally,
the remaining images are used for testing. The division of validation, test, and training
sets in the HRSID dataset is randomly divided according to 1:1:8. The authors of LS-SSDD
gave a fixed division of the dataset into a training set of 6000 and a test set of 3000. In the
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experiments of this paper, we randomly delineated 1000 from the 6000 training sets as the
validation set. Table 2 shows the number of images for different purposes after the division
of the three datasets.

Table 2. Distribution of datasets.

Datasets Training Validation Testing Total

SSDD 812 116 232 1160
HRSID 4538 505 561 5604

LS-SSDD 5000 1000 3000 9000

5.3. Implementation Details

In this experiment, the backbone networks of all algorithms are loaded with parame-
ters pretrained on the ImageNet dataset. Among them, the backbone networks of the algo-
rithms are ResNet50 except for YOLOv4 whose backbone network is CSPDarkNet53 [41].
Faster R-CNN and RetinaNet additionally add FPN as the neck of the network.

The optimizer used in the training process is SGD, whose parameters momentum and
weight decay are set to 0.937 and 0.0001. The training epochs of the other three algorithms
are 25, except for YOLOv4 where the training epochs are 200. The data augmentation
strategies used in training the four algorithms are RandomFlip and Resize. MixUp and
Mosaic data augmentation strategies are additionally used in the YOLOv4 training, where
Mosaic is only used in the first 70% of epochs (140 epochs).

5.4. Evaluation Criteria

Following the convention of MS COCO [91], we adopt the following six metrics for
evaluation: AP (Average Precision), AP50, AP75, APS, APM, and APL. AP50, AP75 are the
AP values obtained with IoU fixed at 0.5 and 0.75. APS, APM, and APL calculate the average
AP values for all small, medium, and large targets, respectively.

5.5. Hyper-Parameter Analysis

As mentioned in Section 3.3, clustering parameters are the key point of the attention
mechanism. Table 3 displays the brightness intervals of the ships obtained with brightness
clustering in the datasets.

Table 3. The brightness intervals of SSDD, LS-SSDD, and HRSID.

Datasets Median of the Interval Interval Width

SSDD 0.9531 0.0928
HRSID 0.8245 0.3443

LS-SSDD 0.8507 0.2346

From the table, we observe that the same class of targets may have different brightness
intervals in different datasets. The cause is the different system parameters used in the
acquisition of different datasets. Therefore, it is necessary to use brightness clustering to
learn the brightness intervals of the targets in the dataset in advance.

Figure 8 shows the performance of different Eps and MinPts on three datasets.
The more leftward the horizontal coordinate in this graph, the smaller the ratio of MinPts
to Eps2. It can be found that as the ratio rises, the curves of SSDD and HRSID will first rise
to a certain value and then start to fluctuate in a small range, while the curve of LS-SSDD
starts to fall after fluctuating for a period of time. According to the trend of the curve
changes in Figure 8, the combination used for the experiments on SSDD is Eps = 5 and
MinPts = 5, while the combination of Eps = 7 and MinPts = 7 is used for the experiments
on HRSID. And for the LS-SSDD, we choose the combination of Eps = 6 and MinPts = 5.
Using these parameters, the average IoUs obtained on SSDD, LS-SSDD, and HRSID are
0.754, 0.463, and 0.632.
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Figure 8. The performance of different Eps and MinPts on SSDD and HRSID. The vertical coordinate
is the value of IoU and the horizontal coordinate is Eps: MinPts.

Figure 9 is the visualization of the clustering results on some images in the training
datasets. For the image of ships on the sea, the filtered points are all on the ships. Even for
a complex background as in the image of ships near the shore, our approach filtered out
most noisy points.

(a) (b)

(c) (d)

Figure 9. Display of partial clustering results on pictures. Ships from clustering are in red. (a) Original
image of ships on the sea. (b) Clustering results for the ships on the sea. (c) Original image of ships
near the shore. (d) Clustering results for the ships near the shore.

5.6. Time Analysis

We test the time required to represent and combine the prior knowledge individually.
Tables 4 and 5 detail the total time spent, the average time spent per image, and the FPS for
the different programs in the two phases. The images used to test the time performance are
from the training set of SSDD, with a total of 812 images.
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Table 4. Time consumption for representing the prior knowledge.

Operation Total Time Spent Average Time Spent (Per Image) FPS

brightness 71.3828 s 0.0879 s 11.375
density 217.8586 s 0.2683 s 3.727

the complete process 289.2406 s 0.1781 s 5.615

Table 5. Time consumption of combining the prior knowledge with SSD.

Operation Total Time Spent Average Time Spent (Per Image) FPS

brightness 7.2804 s 0.00897 s 111.532
density 7.0043 s 0.0086 s 115.929

the prior knowledge map 2.1932 s 0.0027 s 370.233
the complete process 18.0784 s 0.0223 s 44.916

Representing the prior knowledge includes calculating metrics (e.g., IoU metrics
of DBSCAN) for better hyper-parameter selection, which is approximately eight times
slower than combining the prior knowledge. However, because the hyper-parameters are
preserved during training and inference of models, the heavy cost is one-off and is the
disposal in time complexity. Table 5 demonstrates the complete elapsed time for generating
and representing prior knowledge as well as the elapsed time for each component during
training and inference. The complete program takes an average of 0.0223 seconds to process
an image on the GPU and achieves an FPS of over 44.

5.7. Qualitative Results

To prove the validity of BDAM, we add it to four popular detectors (Faster R-CNN,
YOLOv4, RetinaNet, and SSD) for experiments and compare it with the original algorithms.
In addition, we compare the effects with attention mechanisms EAM [17], BCA [93], and
CBAM [67]. The first two are specially designed for SAR images while the last one is one of
the most popular for general purpose.

Tables 6–8 show the performance of these four algorithms on the three datasets,
where the bold data represent the one with the best results for a certain metric of the
same algorithm, and the underlined data represent the one with the second best results.
Figures 10 and 11 show the recognition results of some images.

As illustrated in Tables 6–8, BDAM performs well with all detectors on all three
datasets. Namely, the BDAM achieves 10 winners and 2 runners-up with Faster R-CNN;
9 winners and 2 runners-up with RetinaNet; 10 winners and 2 runners-up with SSD; and
7 winners and 2 runners-up with RetinaNet. We can notice that all baselines have a stable
improvement on the detection ability of large targets after adding BDAM. For example,
on the SSDD data, RetinaNet’s APL improves by 7.7% after adding BDAM while it improves
by 9.2% on the HRSID dataset, which is a significant improvement.

Tables 6 and 7 reveal that performance of each method on APM is better than that of APS
and APL. Although there is no large ship in Table 8, the performance of APM is better than APS.
In addition, from the three tables, we observe that the improvement of our model is insignificant
on APM. It indicates that the detectors we used learned features well on medium size targets.
BDAM could not improve detectors further if sufficient information has been utilized.

On SSDD (Table 6), BDAM combined with YOLOv4 underperforms other combinations.
Unlike other detectors, YOLOv4 uses Mosaic as one of its data augmentation strategies.
Mosaic extends CutMix by mixing four images at a time as one training image, which aims to
enrich the background. However, the reality images are likely to contain no objects, which is
equivalent to adding a lot of noise to the training process of the model. Adding appropriate
noise to the training process can be beneficial to prevent the model from overfitting. However,
it hinders BDAM. If an image does not contain objects, then the prior knowledge map obtained
by clustering is likely to be an all-0 image. It makes BDAM not work well but increases the
training burden of the model. Therefore, we follow the YOLOX [47] approach. Instead of
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using Mosaic in all epochs, we only use Mosaic in the first 70% epochs. However, limited by
the amount of data, BDAM still does not perform as well on SSDD as it does on HRSID.

Table 6. Experimental results of different algorithms on dataset SSDD. Bolded data represent the best
and underlined data represent the second best.

Algorithm AP AP50 AP75 APS APM APL

Faster R-CNN 0.659 0.959 0.776 0.638 0.700 0.678
+ BDAM 0.664 0.961 0.798 0.643 0.702 0.720
+ CBAM 0.655 0.959 0.781 0.634 0.693 0.681
+ EAM 0.657 0.961 0.776 0.635 0.692 0.678
+ BCA 0.660 0.961 0.762 0.639 0.701 0.663

RetinaNet 0.639 0.921 0.750 0.616 0.687 0.601
+ BDAM 0.641 0.942 0.762 0.621 0.681 0.678
+ CBAM 0.637 0.925 0.764 0.612 0.689 0.620
+ EAM 0.634 0.927 0.750 0.605 0.696 0.635
+ BCA 0.641 0.931 0.758 0.612 0.702 0.656

SSD 0.548 0.885 0.643 0.515 0.610 0.596
+ BDAM 0.555 0.891 0.651 0.520 0.626 0.598
+ CBAM 0.544 0.885 0.645 0.511 0.623 0.558
+ EAM 0.551 0.897 0.631 0.520 0.615 0.545
+ BCA 0.499 0.834 0.558 0.450 0.585 0.548

YOLOv4 0.499 0.937 0.472 0.453 0.633 0.637
+ BDAM 0.508 0.942 0.464 0.452 0.647 0.729
+ CBAM 0.507 0.958 0.464 0.457 0.639 0.657
+ EAM 0.504 0.940 0.485 0.452 0.644 0.675
+ BCA 0.505 0.952 0.452 0.454 0.632 0.713

Table 7. Experimental results of different algorithms on dataset HRSID. Bolded data represent the
best and underlined data represent the second best.

Algorithm AP AP50 AP75 APS APM APL

Faster R-CNN 0.626 0.866 0.716 0.502 0.768 0.599
+ BDAM 0.625 0.876 0.719 0.505 0.764 0.628
+ CBAM 0.625 0.875 0.712 0.505 0.761 0.612
+ EAM 0.621 0.866 0.710 0.500 0.763 0.615
+ BCA 0.613 0.855 0.707 0.493 0.749 0.618

RetinaNet 0.561 0.787 0.627 0.380 0.765 0.507
+ BDAM 0.567 0.796 0.633 0.387 0.764 0.566
+ CBAM 0.561 0.785 0.627 0.380 0.765 0.494
+ EAM 0.558 0.784 0.625 0.377 0.763 0.546
+ BCA 0.554 0.779 0.615 0.382 0.753 0.475

SSD 0.449 0.686 0.510 0.255 0.674 0.537
+ BDAM 0.457 0.694 0.518 0.257 0.684 0.539
+ CBAM 0.454 0.690 0.513 0.259 0.683 0.528
+ EAM 0.453 0.691 0.506 0.250 0.683 0.538
+ BCA 0.437 0.666 0.498 0.246 0.662 0.421

YOLOv4 0.550 0.914 0.603 0.395 0.686 0.607
+ BDAM 0.552 0.920 0.618 0.389 0.702 0.650
+ CBAM 0.550 0.912 0.610 0.377 0.690 0.621
+ EAM 0.540 0.920 0.578 0.376 0.680 0.619
+ BCA 0.545 0.912 0.600 0.382 0.690 0.616
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Table 8. Experimental results of different algorithms on dataset LS-SSDD. LS-SSDD does not contain
large ships, so the metrics of APL do not apply to it. Bolded data represent the best and underlined
data represent the second best.

Algorithm AP AP50 AP75 APS APM

Faster R-CNN 0.258 0.722 0.073 0.255 0.339
+ BDAM 0.262 0.741 0.093 0.258 0.352
+ CBAM 0.258 0.722 0.087 0.255 0.342
+ EAM 0.257 0.727 0.093 0.250 0.346
+ BCA 0.235 0.675 0.070 0.230 0.352

RetinaNet 0.213 0.607 0.072 0.206 0.363
+ BDAM 0.223 0.638 0.075 0.219 0.352
+ CBAM 0.211 0.599 0.069 0.204 0.385
+ EAM 0.218 0.632 0.063 0.214 0.333
+ BCA 0.207 0.598 0.058 0.203 0.324

SSD 0.158 0.488 0.045 0.148 0.325
+ BDAM 0.169 0.517 0.045 0.160 0.343
+ CBAM 0.162 0.517 0.042 0.157 0.298
+ EAM 0.139 0.476 0.030 0.133 0.301
+ BCA 0.052 0.210 0.006 0.052 0.122

YOLOv4 0.284 0.819 0.092 0.280 0.402
+ BDAM 0.287 0.830 0.087 0.284 0.408
+ CBAM 0.284 0.826 0.090 0.280 0.405
+ EAM 0.273 0.809 0.088 0.270 0.408
+ BCA 0.256 0.789 0.074 0.252 0.400

(a) (b) (c) (d) (e)

Figure 10. Ground truth and recognition results of some images. (a) Ground truth. (b) Faster R-CNN.
(c) Faster R-CNN with BDAM. (d) YOLOv4. (e) YOLOv4 with BDAM.



Appl. Sci. 2023, 13, 2941 17 of 23

(a) (b) (c) (d) (e)

Figure 11. Ground truth and recognition results of some images. (a) Ground truth. (b) SSD. (c) SSD
with BDAM. (d) RetinaNet. (e) RetinaNet with BDAM.

5.8. Ablation Study
5.8.1. Insertion Strategy

The insertion of BDAM can be divided into two ways, one is inserted between the
backbone’s stages, and the other is inserted into the backbone’s blocks. BDAM does not fit
into the second scheme. There is a big difference between BDAM and CBAM: the input
of spatial attention in BDAM is the prior knowledge map while the input of CBAM is the
output of the upper convolutional layer. If we want to insert BDAM into the block, it is
not as easy as CBAM, and we have to solve the input problem for each block. For one
input image, only one prior knowledge map can be generated. It means that we need
to generate multiple weight maps of different sizes from a single prior knowledge map,
which sounds like feeding a single image into a convolutional neural network to obtain
a multi-scale feature map. However, the prior knowledge map is different from images,
which are obtained by clustering based on our prior knowledge, and it contains certain
interpretability itself. However, if it is fed into a very deep network to extract weighted
graphs at multiple scales, we cannot guarantee whether the knowledge recorded on the
prior knowledge map can be retained. Moreover, the insertion of BDAM into the block
causes the effect of pre-trained parameters to be affected. According to He et al.’s study [94]
on pre-trained parameters, the amount of data in HRSID and SSDD does not support us
to train from scratch. The data in Table 9 confirm our concerns, where the BDAM with *
represents the insertion into the block.
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Table 9. Performance of insertion in block and insertion in stage on Faster R-CNN. Bolded data
represent the best and underlined data represent the second best.

Algorithm AP AP50 AP75 APS APM APL

+ BDAM 0.664 0.961 0.798 0.643 0.702 0.720
+ BDAM * 0.427 0.727 0.453 0.516 0.280 0.166

If we take the first way, since the size of the feature map output from each stage is
different, we can change the problem to which size of the feature map we should adjust
with BDAM. We conduct experiments on SSDD using Faster R-CNN. The backbone used
in the experiments is ResNet50, and the results of the experiments are shown in Table 10.

Table 10. Experimental results of different size weighting maps. Bolded data represent the best and
underlined data represent the second best.

Algorithm AP AP50 AP75 APS APM APL

Faster R-CNN 0.659 0.959 0.776 0.638 0.700 0.678
Input Size/4 0.659 0.959 0.779 0.639 0.696 0.663

Input Size/16 0.661 0.969 0.790 0.639 0.709 0.676
Input Size/64 0.664 0.961 0.798 0.643 0.702 0.720

Input Size/256 0.661 0.959 0.779 0.634 0.713 0.681
Input Size/1024 0.659 0.960 0.774 0.638 0.705 0.664

According to the experimental results, we find that using BDAM to adjust the feature
maps that are reduced by a factor of 8, each relative to the initial input length and width,
works best. That is, it is better to insert BDAM between the second stage and the third stage.

5.8.2. Attention Components

BDAM is a hybrid attention mechanism, in which the channel attention mechanism
follows the implementation of CBAM. Our innovation and work focus on the spatial
attention mechanism of BDAM. We call our spatial attention mechanism Brightness and
Density Spatial Attention Mechanism (BDSM). Previous comparative experiments can only
prove the effectiveness of BDAM, but are not enough to prove the effectiveness of BDSM.

To demonstrate the effectiveness of BDSM, we design the ablation experiments. The ac-
curacy of the four algorithms with only the channel attention mechanism, only BDAM,
and only BDSM is compared. In addition, spatial attention in CBAM uses the feature map
output at the upper layer of the feature extraction network as input, which is very different
from BDSM. Therefore, we also compared it with CBAM in the ablation experiment to
demonstrate the effect of the prior knowledge map. Table 11 presents the results of the
ablation experiments. The only dataset we used in the ablation experiment is HRSID.

Comparing BDSM with BDAM, under four baselines and six evaluation criteria,
BDAM wins a total of 12 winners and 9 runners-up, while BDSM wins a total of 11 winners
and 8 runners-up. BDSM performs similarly to BDAM, and even slightly better than BDAM
occasionally. For example, BDSM achieves 4 winners and 2 runner-ups in RetinaNet, and 3
winners and 1 runner-up in AP metrics. BDAM adds CAM to BDSM, but BDAM has a
humble improvement over BDSM. It indicates that BDSM plays a much larger role than
CAM in BDAM.

Comparing CAM with BDAM, the effect of adding CAM is worse than adding BDAM
for all metrics of different baselines. BDAM adds BDSM to CAM, and its effect has been
greatly improved. This suggests the effectiveness of BDSM. The difference between BDAM
and CBAM is the different spatial attention mechanisms, and BDAM beats CBAM in all
metrics and baselines. This also shows that BDAM’s spatial attention (BDSM) is superior to
CBAM’s spatial attention.
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From the above comparative experiments, we believe that BDSM is effective and plays
a major role in BDAM.

Table 11. Comparison of BDSM with different attention mechanisms. Bolded data represent the best
and underlined data represent the second best.

Algorithm AP AP50 AP75 APS APM APL

Faster R-CNN 0.626 0.866 0.716 0.502 0.768 0.599
+ BDAM 0.625 0.876 0.719 0.505 0.764 0.628
+ BDSM 0.626 0.868 0.716 0.506 0.762 0.678
+ CAM 0.622 0.856 0.713 0.500 0.763 0.622

+ CBAM 0.625 0.875 0.712 0.505 0.761 0.612

RetinaNet 0.561 0.787 0.627 0.380 0.765 0.507
+ BDAM 0.565 0.795 0.630 0.387 0.766 0.563
+ BDSM 0.567 0.796 0.633 0.385 0.767 0.558
+ CAM 0.551 0.777 0.624 0.370 0.752 0.525

+ CBAM 0.561 0.785 0.627 0.380 0.765 0.494

SSD 0.449 0.686 0.510 0.255 0.674 0.537
+ BDAM 0.457 0.694 0.518 0.257 0.684 0.539
+ BDSM 0.457 0.693 0.518 0.261 0.682 0.536
+ CAM 0.454 0.692 0.509 0.255 0.683 0.526

+ CBAM 0.454 0.690 0.513 0.259 0.683 0.528

YOLOv4 0.550 0.914 0.603 0.395 0.686 0.607
+ BDAM 0.552 0.920 0.618 0.389 0.702 0.650
+ BDSM 0.556 0.920 0.622 0.399 0.695 0.641
+ CAM 0.549 0.908 0.599 0.389 0.687 0.565

+ CBAM 0.550 0.912 0.610 0.377 0.690 0.621

6. Discussion

Overall, our paper establishes a simple way of integrating prior knowledge into the
CNN-based detectors by attention mechanisms. Through analyzing the ships in SAR
images, we discovered that clustering extracts the prior knowledge easily. From the
extensive experiments, we demonstrate that BDAM could be successfully applied to various
CNN-based detectors easily. For example, on the SSDD data, RetinaNet’s APL improves
by 7.7% after adding BDAM while it improves by 9.2% on the HRSID dataset, which is a
significant improvement. Furthermore, the ablation study implies that the most important
component in the BDAM is BDSM.

However, the limitation of the BDAM is obvious. As a proof-of-concept, our prior
knowledge is constructed by the fact that backgrounds in most images are shores or water
surfaces for ship detection. The task is hard to escalate into general object detection in
SAR images.
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