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Abstract: Currently, machine learning techniques are widely used in structural seismic response
studies. The developed network models for various types of seismic response provide new ways to
analyse seismic hazards. However, it is not easy to balance the applicability of the input, accuracy,
and computational efficiency for existing network models. In this paper, a neural network model
containing an efficient self-adaptive feature extraction module (AFEM) is designed. It can recognize
time-frequency features from ground motion (GM) inputs for structural seismic response prediction
tasks while considering the model’s computational accuracy and computational cost. The self-
adaptive feature extraction module is constructed based on the MFCCs feature extraction process
in NLP. AFEM recognizes time-frequency features closely related to structures’ behaviour and
response under dynamic loads. Taking the seismic response prediction of a typical building as the
target task, the neural network configuration, including a baseline model M0 and three comparison
models (M1, M2, and M3) with AFEM, is systematically analysed. The results demonstrate that the
proposed M1 model with initial AFEM, the M2 model with combined amplitude and phase features,
and the M3 model with a complex-valued network are more adaptable than the baseline model to
the target task. The extracted amplitude and phase features by the M3 model’s AFEM significantly
improve model validation accuracy by 8.6% while reducing computation time by 11.4%. It could
provide the basis for future research on regional earthquake damage intelligence assessment systems.

Keywords: neural network; seismic response; self-adaptive feature extraction; time-frequency features

1. Introduction

Seismic (especially strong) hazards have long been a severe threat to public life and
well-being [1], which are highly sudden, cause large-scale destruction, are widely influ-
enced, and firmly interlocked. Earthquakes cause catastrophic casualties and significant
economic losses. Therefore, research on seismic hazards [2–5] has continued, where struc-
tural seismic response prediction (or assessment) are hot areas. Whether vulnerability
analysis and capability spectrum (CSM) method studies [6–8] or structural seismic response
studies based on NLTHA [9–11], an analysis is carried out by constructing a hazard-to-
damage mapping model. As a result, the method of using neural networks for analysis
was successfully introduced [12,13] into the field of seismic hazard research. For exam-
ple, O.R. et al. [14] combined an autoregressive (AR) model with an artificial neural net
(ANN) [15] to predict structural responses and detect damage by using long time series of
acceleration data as initial inputs to the hybrid model. C.S. Huang et al. [16] used the previ-
ous and current steps of ground motion (GM) acceleration as input signals and constructed
a backpropagation neural network (BPNN) model to recognize the dynamic properties of
buildings and assess post-earthquake structural damage. However, the calculation cost
for various models that use this input must be considered due to the inherent complexity
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of GM data (the long time series acceleration data). For example, D.M. Sahoo. et al. [17]
proposed a model for predicting the seismic response of multi-degrees-of-freedom struc-
tures using functionally linked neural networks (FLNN). To reduce the computational cost,
the Chebyshev and Legendre polynomials were introduced in the model to process the
GM data. Xu Y et al. [18] created a real-time framework for assessing regional structural
damage. This study used a long short-term memory (LSTM) neural network architecture
with adjusted truncated GM data as the input to improve the stability of network training
and reduce the calculation time.

On the other hand, researchers used the main features of GM data extracted by hand as
the input of the neural network for building the analytical model. O.R. de Lautour et al. [19]
used the ANNs technique to create a mapping between structural and ground motion
characteristics with damage indices. The input part of this model adopted some main pa-
rameters that can represent ground motion characteristics: peak ground acceleration (PGA),
peak ground velocity (PGV), peak ground displacement (PGD), duration, and dominant
frequency, supplemented by some building structure parameters; the output part was an
index that describes the degree of damage. K. Morfidis. et al. [20] proposed a model of
ANNs that can predict the damage state of R/C buildings. For the selection of network
inputs, they considered the results of a previous study on the correlation between ground
motion intensity measures (IMs) and structural seismic dynamic response [21]. Specifically,
14 main seismic parameters and their combinations are extracted from recorded GM data
and combined with additional building structure parameters, which generate the inputs
for ANNs. Oh B.K. et al. [22] developed a neural network that can act as a proxy for the
relationship between GM features and structural seismic responses. They extracted GM
features from artificial earthquakes: significant duration, mean and predominant period,
PGA, and resonance area.

Essentially, GM data is a kind of ground motion signal that is captured through sensors,
etc. It objectively reflects the real situation and accordingly does not have comparatively
strong task information, and the density of task information may be very low. So, GM data
in the above study mainly needs to be ‘purified’ and then fed to the neural network model to
meet the task requirements, and this refinement is mainly done by hand. Nevertheless, such
hand-crafted features may face the following challenges in use. Namely, (a) an accurate de-
scription of the seismic response needs detailed consideration for both time domain features
and frequency domain features of earthquakes. Furthermore, a hand-crafted GM feature
may not always be the best. (b) Multiple factors (e.g., target task, target accuracy, etc.) must
be considered when producing GM features by hand. It is also a problem to balance be-
tween feature production efficiency and the accuracy and calculation cost of the task model.
Furthermore, the damage caused by earthquakes to building structures is catastrophic.
Researchers from different countries have studied various aspects of vibration control
problems under seismic effects [23,24], such as active and semi-active vibration control
of important building structures. Intelligent control strategies, whose core technology is
to quickly capture the model parameters of controlled objects with known responses and
predict the structural response at unknown moments in real time and accurately [25,26],
have more or less various defects, so the prediction of a building’s structural response
under ground shaking is also a very critical and challenging topic in vibration control.

Considering the above observations and perspectives, designing a method that gives
a suitable GM feature representation for the task at hand seems necessary, combining GM
feature extraction with the target task and self-adaptively retaining the ground motion
features that match the task at hand. In addition, it should also be available to improve the
efficiency of the task when it is used, and achieve a balance between the seismic damage
prediction method’s evaluation accuracy and computational efficiency.

Deep learning (DL) [27] techniques are one of the ways to achieve this goal. Indeed, Re-
current neural network (RNN) [28] architectures in DL have already been used in earthquake
engineering. For example, seismic waveform classification by RNN [29,30], earthquake loca-
tion and time prediction [31], seismic trend prediction using LSTM [32], response prediction
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for buildings [33–36], etc. Moreover, natural language is an information carrier created by
humans for storing knowledge and communicating. Investigators [37] have created many
successful natural language processing techniques to enable machines to obtain information
in language accurately. Several methods have recently been applied in seismic/vibration
feature extraction processes [38–41]. Nevertheless, these feature designs are separate from
the task network model; thus, the designed features may not be the best fit for the target
task. Other than that, no GM feature recognition method is self-adaptive to the target task.

This paper presents a time-frequency feature-based seismic response prediction model
for building structures, containing two parts: an adaptive feature extraction module (AFEM)
and a classification module. The proposed model uses a neural network configuration to
predict the seismic state of building structures by combining AFEM with a classification
network to adaptively extract time-frequency features, using ground motion records as the
input that are closely related to the behaviour and response of the structure under dynamic
loads. The model can also be directly embedded into a machine learning-based intelligent
assessment method for efficient prediction of regional structural earthquake damage. In
addition, the estimation results from neural networks with different weight constraints,
different initialization methods, and different network structures and their computational
costs are discussed. The study is organized as follows. In Section 2, the proposed seismic
damage prediction model is illustrated in detail, including the dataset and the construction
of the proposed network. Then, in Section 3, the details of parameter tuning for the
proposed models are analysed and discussed, and the prediction performance of each
model is presented. Finally, conclusions are provided in Section 4.

2. Proposed Seismic Damage Prediction Model for a Building Structure

The proposed seismic damage prediction model for a building structure includes
time-frequency feature extraction and a classification network module. It establishes the
relationship between ground motion data and the seismic response of a structure to the
earthquake based on the time-frequency feature. Before creating the dataset for such a
model, GM data and the structural responses of a building structure to the GM need
to be obtained. In this study, historical seismic data obtained from the open database
is used for neural network training. However, some preprocessing is performed before
inputting the data into the network, including amplitude adjustment, frequency adjustment,
and time-holding adjustment. The damage response states of a target structure to ground
motion are obtained by conducting a structural dynamic response analysis of the building
and extracting seismic responses from the results. When the preprocessed seismic wave
data and seismic damage states obtained from the dynamic analysis are obtained, these
parameters are used as input and output data sets, respectively, to perform training and
generate a seismic prediction model corresponding to the target structure. In the event of a
future earthquake, the constructed model is used to predict the seismic damage of a target
structure by simply inputting GM data.

2.1. Generation Data Labels

In creating high-quality labels for the structural seismic response, two factors must be
considered: the structural seismic response model and seismic damage index selection.

2.1.1. Dynamic Response Analysis Model for the Target Structure

The seismic response of the structure is obtained from the numerical simulation of
a planar-reinforced concrete moment-resisting frame (RCMRF). As shown in Figure 1a,
the building model is a four-storey, three-span office building in Nansha District, Guangzhou
City. The load designed by the code [42], dead load and live load on the 1–3 floors are
5.0 kN/m2 and 2.0 kN/m2, respectively, and the dead load and live load on the roof are
6.0 kN/m2 and 0.5 kN/m2, respectively. The sizes and reinforcement of beams and columns
from the bottom and standard floor are shown in Figure 1c,d, respectively. In addition,
the distance for both horizontal directions between the columns is 6.0 m. The floor level of
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the first floor is 4.5 m, and the remaining floors are 3.3 m. The columns, beams, and slabs
are made of C30 concrete and HRB400 steel. The RC slab and protection layer thicknesses
are 120 mm and 40 mm, respectively. The code for the seismic design of buildings is
considered [43,44], and the main design parameters include the following: seismic inten-
sity (7), the basic design peak ground acceleration of 0.1 g (10% in 50 years), site class II,
and seismic design group (2). In this paper, the intermediate frame shown in Figure 1b is
selected for seismic analysis using OpenSees [45] finite element analysis software. Addi-
tionally, there is more information about this model in the study [46]. The effectiveness of
the model has been proven in studies [47].

(a)

(b)

(c)

(d)

Figure 1. A four-storey RCMRF-framed office building: (a) plan view. (b) Elevation. (c) columns and
beams for one floor. (d) columns and beams for floors 2–4.

2.1.2. Definition of Structural Damage State

The maximum inter-story displacement ratio (MIDR) is used as a basis for the damage
classification of the target structure [48–50]. It is extracted from the results of the dynamic
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response analysis carried out on the structural model. In this paper, the damage state
for a building is defined in five different levels: no damage (MIDR ≤ 1/550), minor
damage (1/550 < MIDR ≤ 1%), moderate damage (1% < MIDR ≤ 2%), extensive damage
(2% < MIDR ≤ 4%), and complete damage (MIDR > 4%). Other damage level definitions
can also be accommodated through the proposed model.

2.2. Ground Motion Dataset

Currently, there are a few databases that record ground motion [51–54]. In this study,
8079 and 1590 records are extracted from the PEER and K-NET databases, respectively.
The distribution of the ground motion records according to their PGA, moment magnitude
and epicentral distance are shown in Figure 2. Figure 3a shows one of the ground motion
records, and Figure 3b shows the Log Mel-spectrum feature and MFCCs hand-crafted from
it. Here, more attention is focused on those seismic waves that cause a significant seismic
response in the structure, so weaker ground motion records (e.g., PGA < 0.15 m/s2) are
not selected in this study. Moreover, the inherent scarcity of high-amplitude motion could
result in a tiny number of destructive earthquakes in the ground motion record, making
the dataset highly inhomogeneous and increasing the adverse effects of network training.
Therefore, the obtained GM history records are adjusted in amplitude. The frequency
adjustment and duration time adjustment methods are used to process the data, which can
reduce the network input dimension while catching the main feature of ground motion.
Studies [18,38] have shown the rationality and effectiveness of these methods.

(a) (b)

Figure 2. Distribution of the ground motion records according to their PGA and magnitude (a) and
epicentral distance (b).

(a)

Figure 3. Cont.
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(b)

Figure 3. Duration adjustment and hand-crafted feature: (a) Before and after duration adjust-
ment. (e.g., 1989 Loma Prieta earthquake, site Saratoga-Aloha Ave.). (b) Hand-crafted features:
Log Mel-spectrum (top) and MFCCs (bottom).

2.2.1. Training Set (Validation Set)

The GM data from the PEER database is selected as the training set, while 5% is
used as the validation set, and samples are preprocessed through the following three
steps. (a) Amplitude adjustment. As shown in Figure 4, the distribution of samples in the
GM dataset (before adjustment) is highly non-uniform, with a low percentage of strong
earthquakes and nearly 92.72% of “None” and “slight” samples. Therefore, the same
strategy as in the codes [44,50] is used to “scale” the natural ground motion data using scale
factors of 1.0, 2.0, 3.0, and 4.0 multiplied by the acceleration records. Richer data is obtained
after adjustment, where the percentage of extensive damage samples increased by a factor
of 4.36. Of course, other methods (e.g., random simulation [55], etc.) are also suitable;
(b) Frequency adjustment. Samples are down-sampled to 100 Hz using a fixed interval
screening method so that all samples are at the same frequency. As well, according to the
Nesbitt theorem [56], the maximum analysis frequency is set at 50 Hz in AFEM, which
is enough for most earthquake engineering applications [57]; (c) Duration adjustment.
As shown in Figure 3a, we adjust the duration of the ground motion data to a uniform
size (the minimum is 30.73 s) by good clipping or zero padding [50]. In addition, sample
statistics show that energy in the intercepted data accounts for an average of 90.51% of the
original data energy. So, samples retain most of the energy for the ground motion signal.

Figure 4. The ratio of each damage state before and after amplitude adjustment.
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Finally, 32,304 samples are obtained after preprocessing, which contain 30,688 training
samples and 1616 validation samples.

2.2.2. Testing Set

A test dataset is built with GM data obtained from K-NET to prevent data leakage. Af-
ter frequency and duration adjustment, 1590 samples are obtained. Whether in the training
or test set, sample labels are obtained before frequency and duration adjustment, which
gives a one-to-one correspondence between the label and the seismic response. It helps to
avoid systematic errors accused by the data during frequency and duration adjustment.

2.3. Neural Network Configurations

This study proposes four neural network configurations for seismic damage prediction,
including a baseline network. The prediction performances of these configurations are
comparatively evaluated in Section 3. Besides the baseline network, each neural network
configuration contains an adaptive frequency feature extraction network module and a
classification network module. The effects of the network parameter settings for both
modules are also analysed.

2.3.1. Model M0

The baseline network M0 model: An NLP approach (MFCCs [58]) is used for the
hand-crafted feature. It is designed with inspiration from how humans perceive speech
signals [59] and physiological evidence directed to the human ear structure. The same
features are used for vibration signals [41], which achieve good results. Figure 3b shows
the features we extracted by hand, and the specific steps are also shown in Figure 5-M0,
where the samples are pre-emphasized, framed (frame length is 0.05 s, frameshift is 0.03 s),
windowed (hann window), and then the time domain samples are converted to frequency
domain samples by fast Fourier transformation (FFT) [60]. Following, a 40-dimensional
Mel-filter set is applied to map the frequency domain samples to Mel-scale, which is
calculated as follows:

F(mel) = 2595× log 10[1 +
f

700
] (1)

here, f is the signal frequency, and F is the Mel-scale. The sample is transformed into a linear
Mel-spectrum. Then, the log Mel-spectrum is obtained by non-linear activation log, and a
signal with a lower amplitude and frequency is amplified in this way. The discrete cosine
transform (DCT) is the final step of MFCCs, which aims to compress data dimensionality,
and it is calculated as follows:

C(n) =
M

∑
m=1

S(m)cos
(n(m− 1/2)π

M

)
(2)

where S(m) is the log Mel-spectrum, m is the number of Mel-filters, and n is the DCT
transform corresponding to m. Moreover, short-time energy [61] is added to enhance the
time-domain features of samples. In addition, the classification module of the M0 network
is composed of some gated recurrent unit (GRU) [62,63] layers and fully connected layers. It
outputs the probability that five damage states occur. In Section 3, the effect of its parameter
settings is also analysed.
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Figure 5. Neural network configurations: M0 model (baseline model): hand-crafted time-frequency
feature and classification network module; M1 model: M1-AFEM and classification network module;
M2 model: M2-AFEM and classification network module; M3 model: M3-AFEM and classification
network module.

2.3.2. Model M1

M1: The time-frequency feature extraction process is implemented by an adaptive
feature extraction module (AFEM), and the same classification network module as the
baseline network is used. However, rather than the MFCC extraction process, AFEM
automatically generates time-frequency features that are best suited to the target task with a
data-driven approach, and features are learned in the frequency domain. Compared to data-
driven feature learning methods conducted directly from time-domain waveforms [64–66],
frequency-domain learning does not need to consider the complexity of time-domain
convolution and additional parameter tuning. At the same time, the Fourier transforms
without any parameters would be simpler and improve calculation efficiency [67]. On the
other hand, a similar method exists in the study of NLP [68–70]. However, we extend the
structure and different parameter settings for seismic wave data. Specifically, as shown in
Figure 5-M1, the preprocessed GM dataset is used to input AFEM. A sample is split into
multiple segments along the time dimension after the short-time Fourier transform (STFT),
and the step is similar to frame splitting, windowing, and the FFT used in extracting MFCCs.
Here, the same parameters are chosen: a frame length of 0.05 s and a frameshift of 0.03 s.
Next, the data flows through two normalized transformation layers (Norm-1 and Norm-2).
The first normalization layer is used to transform data from the complex domain to the real
domain to obtain the power spectrum (or amplitude spectrum). The first normalization
layer uses the squared (or absolute) value. The second normalization layer removes the
distribution differences between layers and improves the training stability and model
performance. A detailed discussion of the parameter settings is given in Section 3.3.

Then, a linear transform layer that can be learned is used to process the samples, and its
weight matrix is similar to filters in MFCCs, where each row represents an n-dimensional
filter. Benefiting from the idea of sharing neural network weights [71], which allows
the weights to be replicated at least once over a small frequency range, the final learned
frequency features will be more prosperous and more adapted to the target task.

The data is fed to the classification module through a non-linear activation layer.
A power function or a logarithmic function can be chosen for the activation layer func-
tion, which has different contributions to the AFEM. The detailed analysis is presented
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in Section 3.3.4. Moreover, DCT and short-time energy connections are also added to
AFEM (Figure 5-M1) for easy comparison with the baseline model (M0).

Note that although the feature learning process here is similar to MFCCs, it can be
combined with other parts of the neural network to learn features through the objective
function for the task at hand instead of being designed in advance. Furthermore, we
believe that this module, with a slight transformation, can be combined with other FFT
transform-based feature extraction methods (i.e., LFCC [72], BFCC [73], etc.) that provide
multiple feature choices for different types of tasks using GM data as the input.

2.3.3. Model M2

M2 is formed by combining two M1 models with the same inputs. As shown in
Figure 5-M2, samples are transformed by the STFT layer to generate two groups of fea-
tures: (

∣∣S(ejw)
∣∣) amplitude and phase (∠S(ejw)), which are normalized (i.e., Norm 2 in

Figure 5-M2) and entered into linear transformation layers 1©/ 2© to extract features, fol-
lowed by non-linear activation and joining short-time energy after DCT transformation
that finally produces two kinds of features. It can be seen that the phase feature extraction
process is consistent with the amplitude feature extraction. Moreover, M2 uses the same
initialization weight in the linear transformation layer as the M1 model.

2.3.4. Model M3

In non-stationary physical data, the phase information can stabilize the training and
improve the generalization ability of the neural network [74]. Another way to effectively
combine amplitude and phase is complex, namely real and imaginary parts. In this regard,
a deep complex network is advantageous, providing the benefit of explicitly modelling in
the phase space for physical systems and has been used with good results in studies, such
as synthetic aperture radar (SAR) image processing [75].

M3 (Figure 5-M3): The first half of the AFEM in our setting uses a complex network.
Data are converted to a real-valued network after a linear transformation layer. Here,
note that the BN and LN of complex arrays are not normalized in the same way as real-
valued arrays. The study [76] indicates that shifting and scaling the complex array to a
distribution with mean 0 and variance 1 is not enough, and the resulting sample space
is elliptical and may have high eccentricity. Therefore, BN and LN of complex arrays
are achieved by replacing the normalization with a whitening operation of a 2D vector,
calculated as follows:

x̃ = V−
1
2 (x−E[x]) (3)

where x is the sample data, V is its 2× 2 covariance matrix, and the covariance matrix is
calculated as follows:

V =

[
Vrr Vri
Vir Vii

]
=

[
Cov(<{x},<{x}) Cov(<{x},={x})
Cov(={x},<{x}) Cov(={x},={x})

]
(4)

here, the standard normal complex distribution is achieved by transforming the data to be
0 as the centre and multiplying it by the square root of the variance for both components.
Furthermore, in the linear transformation layer of the complex array, the following equation
is used:

Y =

{
<{Y}
={Y}

}
=

[
W< −W=
W= W<

]
×
[

X<
X=

]
(5)

|Y| =
[
<{Y}2 +={Y}2

] 1
2 (6)

The conversion from a complex domain to a real domain is completed by Equation (6).
Here, since the complex operation in AFEM does not contain loss and activation func-
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tions, the weights can be learned by back propagation. The program is completed in the
Tensorflow2.2 [77] framework using the above calculation.

2.4. Calculation Platform and Network Training Setup

All calculation operations in this study are performed on a computer that is equipped
with an AMD Ryzen Threadripper 2950X at 3.5 GHz and an NVIDIA RTX 3080 Ti (12 GB)
graphics card. For software, the operating platform is Windows 10, and the main program
is built using Python 3.7. In addition, the Tensorflow [77] framework is selected to build a
deep neural network model and used for training and testing.

The output of the model is a label corresponding to the input, and the loss function is
set with categorical cross-entropy. Adam [78] is used for optimization during the training
period, and batch size is determined according to calculation resources. Unless otherwise
indicated, the batch size is set to 128 for this study. Furthermore, to account for the
instability of the model optimization process, three Monte Carlo simulations are carried
out independently for each network configuration.

3. Analysis and Discussion

In this section, the proposed seismic damage prediction model is applied to a four-
storey office reinforced-concrete building (Figure 1). The four models in Section 2.3 are
used to predict structural seismic damage and evaluate the prediction model’s performance.
The parameter settings of those models are analysed and discussed.

3.1. Study on GRU Parameter Settings

The effects of parameter settings for the target task (seismic response prediction
of structural) model are systematically analysed using the M0 model in this subsection.
The inputs to the model are MFCCs (in Section 2.3.1 with a size of 1024 × 13, where
the first dimension is the short-time energy and the other dimensions are MFCCs with
12 coefficients.

3.1.1. Network Structure

The “number of cells in the hidden layer” and “number of hidden layers” are key
parameters that influence the network’s structure. As shown in Table 1, 15 models are
trained to analyse the network structure parameters. The accuracy of the listed models is
an average value obtained on the validation set after three Monte Carlo training runs for
each network. The last column shows the trainable parameters of each network, which can
be used as an index of network complexity when accuracies are calculated on the same
platform. In addition, four additional GRU networks are trained, and the inputs to these
networks are GM data (long time series data) without having the features extracted by
hand, similar to the inputs of the study [18]. However, our inputs are in 3074 dimensions,
and the network structure parameters are the same as networks 1, 5, 9, and 13 in Table 1.

Although a marginal error may theoretically be introduced during data preprocessing,
MFCCs accurately reflect the main features of ground motion and provide good Mo model
performance. Therefore, we use it as a baseline to compare and analyse whether the
features extracted by AFEM are more suitable for this model. In addition, compared with
the model that uses truncated long time series as the input, the MFCC features lead to
an average improvement of 5.1% in model validation accuracy and a 60.4% reduction in
training time, which are significant improvements in both. However, it still does not prove
that the hand-crafted features are the most suitable features for the target task (structural
seismic response prediction). After all, MFCCs correspond to human ear structures, not
building structures.
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Table 1. Network configurations, accuracies (validation set), and the number of parameters on
the graph.

No. Number of Layers Number of Cells in Each Layer Accuracy (%) Parameters on Graph

1 1 32 86.94 4581
2 1 64 87.19 15,301
3 1 128 87.38 55,173
4 1 256 87.62 208,645
5 2 32 87.54 10,917
6 2 64 87.69 40,261
7 2 128 88.06 154,245
8 2 256 87.44 603,397
9 3 32 87.62 17,253
10 3 64 87.37 65,221
11 3 128 87.53 253,317
12 3 256 87.27 998,149
13 4 32 88.30 23,589
14 4 64 87.56 90,181
15 4 128 87.19 352,389

Note: Values of other hyperparameters are as follows: Learning rate = 0.001; batch size = 128; maximum
iterations = 100; dropout ratio = 0.3 for the output layer, 0 for the input and hidden layers.

On the other hand, better performance of the task network can be achieved by balanc-
ing the number of hidden layers, the number of cells in the hidden layers, and the network
complexity, as shown in Table 1. Here, models 4, 6, 7, 9, and 13 have fewer parameters and
a higher verification accuracy.

3.1.2. Sensitivity Studies on the Hyperparameters

Apart from the network structure, the hyper-parameters of the proposed network
(e.g., dropout ratio and learning rate) have an important influence on the model’s perfor-
mance [79].

Dropout Ratio

Dropout is currently widely used in various types of deep neural networks, which
prevents network overfitting by randomly dropping a part of neurons during training [80]
and improves model performance. In RNN, no temporal dimensional connections are
chosen randomly to be dropped in order not to impair the network’s ability to remember in
the temporal dimension. Since parameter tuning involves much computation, we chose the
typical eight network structures (networks 4, 6, 7, 9, 10, and 13) for our study. The dropout
is tested in the input, hidden, and output layers of the GRU, respectively, ranging from 0.05
to 0.6, with 12 samples at a uniform interval of 0.05, which gives a total of 216 networks
tested. Only the test results for the two network structures are shown in Figure 6 to keep
things simple since the other groups follow similar trends.

According to Figure 6, trends can be summarized as the change in dropout ratio does
not make the GRU model accuracy change significantly for the selected range, and the
dropout is not a key factor for the GRU network to recognize the input features. Neverthe-
less, on the whole, the input layer is more sensitive to dropout changes, and the degradation
of GRU model validation performance is more significant. Therefore, to prevent potential
overfitting and ensure model performance, the dropout ratio is set at 0.5 for the output
layer and 0 for the input and individual hidden layers in this section.
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(a)

(b)

Figure 6. Influence of the dropout ratio on the M0 model (validation set). (a) Network with 2 layers
and 64 cells in each layer. (b) Network with 2 layers and 128 cells in each layer.

Learning Rate

The learning rate represents the size of the step that the model is adjusted along the
gradient direction in the backpropagation optimization. In this study, we explore the appro-
priate settings obtained by changing the size of the initial learning rate without introducing
the learning rate scheduling (e.g., 1-cycle scheduling [79]). Here, six different configura-
tions of the network are chosen for testing, with 11 different learning rates taken between
0.0005 and 0.2, and a dropout set to 0.5. A total of 66 models are retrained. As shown in
Table 2 and Figure 7, Although the inherent randomness of training makes the variation
of model accuracy always fluctuate, a suitable setting of network parameters makes the
model training process more stable and easier to converge. Therefore, the learning rate is a
crucial control parameter for the target task network. Given the divergence and accuracy
of the model, the learning rate chosen for the model in this paper is 0.001.



Appl. Sci. 2023, 13, 2956 13 of 29

Table 2. The effect of the initial learning rate on the M0 model’s performance (validation set).

Network Learning Accuracy Number of Network Learning Accuracy Number of
Structure Rate (%) Iterations Structure Rate (%) Iterations

1 layer 64 cells 0.0005 87.3 64 2 layer 32 cells 0.0005 87.4 87
0.00075 87.7 87 0.00075 87.3 86
0.001 87.5 72 0.001 87.6 88
0.0025 87.4 63 0.0025 87.0 53
0.005 86.8 23 0.005 87.1 22
0.0075 83.4 8 0.0075 85.4 14
0.01 84.3 12 0.01 84.1 8
0.0125 82.2 4 0.0125 83.2 9
0.015 81.4 3 0.015 83.2 5
0.0175 81.7 6 0.0175 83.2 8
0.2 79.1 4 0.2 82.1 4

2 layer 64 cells 0.0005 86.9 92 2 layer 128 cells 0.0005 87.5 34
0.00075 87.9 65 0.00075 87.6 31
0.001 87.7 42 0.001 87.9 31
0.0025 86.8 25 0.0025 87.6 19
0.005 86.3 15 0.005 85.6 10
0.0075 85.5 9 0.0075 84.1 7
0.01 85.0 6 0.01 82.1 6
0.0125 83.4 6 0.0125 81.9 5
0.015 82.2 4 0.015 81.2 5
0.0175 80.8 5 0.0175 77.6 9
0.2 81.2 4 0.2 78.2 8

3 layer 32 cells 0.0005 87.4 99 4 layer 32 cells 0.0005 88.1 93
0.00075 88.1 89 0.00075 87.4 94
0.001 87.9 83 0.001 88.1 64
0.0025 87.7 64 0.0025 87.4 58
0.005 87.4 39 0.005 87.3 13
0.0075 86.3 14 0.0075 84.5 12
0.01 84.2 12 0.01 82.3 7
0.0125 83.9 6 0.0125 82.2 4
0.015 82.8 4 0.015 81.8 8
0.0175 81.9 4 0.0175 82.1 4
0.2 82.0 8 0.2 79.0 4

Note: Here, dropout ratio = 0.5.

Figure 7. Typical training processes with different learning rates (taking network “2 layers 128 cells”
as an example).

3.2. Analysis of Time-Frequency Characteristic Parameters

The size of the time-frequency feature matrices obtained by hand is mainly affected by
the signal length, frame length, frameshift, FFT, etc. These parameters are different from
those used in speech signals and must be determined according to the task. The M0 model
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is also used in this subsection to compare and analyse the effects of different parameter
settings on the model’s performance.

3.2.1. Influence of Signal Length, Frame Length and Frame Shift

In speech signals, the frame length is usually set at 25 ms, and frameshift is taken
to be 40–60% of the frame length when crafting MFCCs. However, the frequency of those
relative sampled signals is usually 8 kHz or 16 kHz, which is quite different from the GM
sampling frequency (100 Hz) which is used here. Therefore, the signal length, frame length,
and frameshift will impact the hand-crafted features, influencing the model’s performance.
Thus, we additionally take four different truncation lengths (30.74 s, 40.97 s, 40.98 s, and 40.99 s)
and the corresponding four sets for frame length and frameshift ((0.06 s, 0.03 s), (0.06 s, 0.04 s),
(0.05 s, 0.02 s), and (0.06 s, 0.02 s)), respectively. Through the same preprocessing, we obtain
four new datasets whose sample sizes are 1024× 12, 1024× 12, 2048× 12, and 2048× 12,
respectively. A total of 60 networks (15 network structures) are selected for testing. The dropout
and learning rates of all networks are set at 0.5 and 0.001, respectively, and the results are
shown in Figure 8. It can be seen that retaining more energy and a suitably small frameshift
during preprocessing improves network performance. Frame length and frameshift have a
more significant influence on the task than truncation duration, they are the more critical control
factors. Furthermore, the verification accuracy on the GRU network is not significantly different
when feature matrices have the same size. Moreover, network performance can be improved by
about 1% by increasing the feature matrix size.

In summary, for the time-frequency features used in this study, frame length and
frameshift are the controlling factors that significantly affect the network’s performance.
A frame length of 0.05 s and a frameshift of 0.03 s are recommended.

Figure 8. Validation accuracy of each model with different hand-crafted feature inputs (such as
the legend of 3073 s-1024: a truncation length of 30.73 s is used in the preprocessing, and the first
dimension of hand-crafted features is 1024).

3.2.2. Influence of Inverse Spectrum Boosting and Pre-Emphasis

Most speech recognition systems will pre-emphasize the input speech signal to filter
out low-frequency interference, namely, by a first-order digital filter to preprocess the input
signal. Pre-emphasis has a transfer function H(z) = 1− µz−1, where the value of µ is close
to 1 and typically takes values in the range [0.94, 0.97]. However, this may be unreliable or
even negative for GM data. Because the pre-emphasis filter used in the FFT calculations can
compromise the phase information, the phase spectrum directly affects the intensity and
non-stationarity of seismic waves [81], as illustrated in Figure 9a. Nevertheless, the speech
signal’s pre-emphasis enhances Log Mel’s performance, so it is retained in MFCCs.
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(a)

(b)

Figure 9. Validation accuracy of each model with different hand-crafted feature parameters: (a) The
effects of inverse spectrum boosting and pre-Emphasis; (b) influence of temporal first and second
derivatives. Note: (1) learning rate = 0.001, dropout = 0.5; (2) lifter: sinusoidal lifter applied to
produce filtered MFCCs and n = 26; (3) pre-emphasis: pre-emphasis applied on the signal and
µ = 0.97; (4) MFCCs + D: MFCCs with 12 coefficients and energy along with their temporal first
derivatives; (5) MFCCs + D + D: MFCCs with 12 coefficients and energy along with their first and
second derivatives.

In addition, both low-order and high-order DCT coefficients are easily affected by
noise [82]. In contrast, the middle-order coefficients are relatively much more stable, so
there are also some MFCCs implemented with cepstrum-lift that aim to suppress the Mel
coefficients at both ends and strengthen the middle Mel coefficients. However, the above
procedure has little influence on the GM data, as shown in Figure 9a.

In conclusion, MFCCs are extracted using µ = 0 (i.e., no pre-emphasis), while no
cepstrum-lift is used.

3.2.3. Influence of Temporal First and Second Derivatives

The extracted MFCCs (static properties) are usually combined with their dynamic proper-
ties (temporal first and second derivatives of the MFCCs) to effectively improve speech systems’
recognition performance. So, we investigate the effect of temporal first and second derivatives
on the hand-extracted features. Again, 12 models (6 network structure models) are selected
for the analysis, and the results are shown in Figure 9b. Combining the MFCCs with their
temporal first and second derivatives does not significantly improve the network performance.
The A GRU (or RNNs) network is a network with “memory”, which can discover dependen-
cies in the time dimension for a sample and learn some dynamic features from hand-crafted
features. Therefore, redundancy will be generated by increasing the temporally first and second
derivative features, which limits the model’s performance when the network structure is small.

As a result, features are extracted without considering their temporal first and second
derivatives in this study.

3.2.4. Other

As shown in Figure 3b, log Mel-frequency spectral coefficients (MFSC) are features
created during extracting MFCCs. A study [61] has shown that MFSC features yield better
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results in the language processing task. Hence, we compare the effects of MFCCs and MFSC
on the M0 model, and the results are shown in Table 3. It can be seen that the network with
MFSC features has a longer calculation time, while accuracy is not significantly improved
(about 0.5%), and needs to show better performance on small network structures. As a
result, MFCCs are used as the input of model.

Table 3. Effect of MFSC features on the M0 model’s performance (validation set).

Input Network Structure
1 Layer 128 Cells 2 Layers 32 Cells 2 Layers 64 Cells 2 Layers 128 Cells 3 Layers 32 Cells 4 Layers 32 Cells

MFCCs 87.5 87.6 87.7 87.9 87.9 88.1
MFSCs 85.7 85.0 86.7 87.9 88.4 88.9

Note: (1) Learning rate = 0.001, dropout ratio = 0.5; (2) input shape: MFCCs: 1024× 13 and MFSC: 1024× 40.

3.3. Analysis of AFEM Setting

A different setting of internal parameters for AFEM can significantly affect the model’s
performance in making predictions, including the weight constraint method, normalization
method, activation function, and weight initialization method. In this subsection, the M1
model is used to analyse the effect of AFEM parameter settings on model performance
in detail. Here, classification network hyperparameters are set with: a learning rate of
0.001, a dropout ratio of 0.3, and a preprocessing truncation duration of 30.73 s based on
the studies in the above subsections. Meanwhile, five network structures are selected for
training: 1 layer 256 cells, 2 layers 64 cells, 2 layers 128 cells, 3 layers 32 cells, and 4 layers
32 cells. For simplicity, since the other groups follow a similar trend, only the results on the
3 layers 32 cells are shown.

3.3.1. Method of Weight Constraint

As shown in Table 4, different types of constraints are used to constrain the weight
matrix of the AFEM module: exponential constraint and weight clipping. An exponential
constraint is used to ensure that the weights are positive by applying an exponential func-
tion to each element in the weights. Furthermore, weight clipping is calculated as follows:

W
′
ij = max(a, min(Wij, b)) a < b (7)

where the current weights of Wij are constrained by the ranges (a, b) after the mini-batch
training update. The results in Table 4 show that weight clipping is more beneficial for
feature extraction, especially for a = 1 and b = 1. The network has the highest validation
accuracy, which is 1.8% higher relative to the validation accuracy of hand-crafted features.

Table 4. Effect of different weight constraint settings on the performance of AFEM (validation set).

Model Method Accuracy % Increase %

M0 Hand-Crafted 87.6 -

M1 AFEM (a, b)

(−∞,+∞) 87.9 0.2
(−∞, 1) 88.6 1.1
(0,+∞) 89.0 1.6
(0, 1) 89.2 1.8

M1 AFEM (exponential) eWij 88.3 0.8

3.3.2. Norm-2

In neural networks, it is helpful to apply normalization before samples enter the linear
transformation layer [82]. Here, as shown in Figure 5-M1, we use a Norm-2 conversion
layer in AFEM (as shown in Figure 10). Specifically, at first, the input data are transformed
into logarithmic space, which the BN [83] method is applied to here. The BN method
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processes the normalized features based on the mean and variance of the current small
batch sample set, calculated as follows:

ẑ(l) =
z(l) −E

[
z(l)
]

√
Var

(
z(l)
)
+ ε

(8)

where Var
(
z(l)
)

and E
[
z(l)
]

are the variance and expectation of each dimension for z(l)

under the current parameters approximated by the small batch sample set, respectively.
After BN, the output data is normalized using LN [84], which is different from BN as LN
normalizes in the column direction of the matrix z(l). Finally, an exponential function
transforms the data back to the original space.

Figure 10. Two layer normalization.

As shown in Table 5, the contribution of each component in Norm-2 for AFEM perfor-
mance is checked separately. It can be seen that the dominant factor is the log domain, which
suggests that the distribution of the input features can be adjusted more effectively in the
logarithmic space. In addition, BN has a significant effect on the validation accuracy of the
M1, which makes the data centred at 0 and the weight update of the linear transformation
layer no longer be biased to a specific direction, which improves the learning efficiency.

Table 5. Effect of different normalization settings on the M1 model’s performance (validation set).

Log-Domain Batch-Norm Layer-Norm Accuracy %

X X X 89.2
X X × 88.7
× X X 84.5
X × X 86.0

Note: X means that the method is used; ×means none.

3.3.3. Different Weight Initialization

Parameter learning in neural networks is a class of non-convex optimization problems.
When gradient descent is used to optimize the network parameters, the initial value setting
is important and significantly affects the generalization ability and optimization efficiency
of the network. In this subsection, we will provide more possible initialization settings for
the linear transform layer of AFEM. Here, five different frequency warping methods [85]
(initialization values) are selected.

1 Liner warping. After reaching the peak, it linearly decreases in a triangular fashion
like Mel-warping. However, unlike Mel-warping, the spacing between the points
corresponding to the peak is equal.

2 Gaussian warping. It is created by applying a one-dimensional Gaussian kernel
function to Mel-warping (Equation (1)). It peaks at the same time as Mel-warping.
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However, unlike Mel-warping, it gradually decreases in a Gaussian fashion rather
than a triangular fashion.

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (9)

where µ means the sample mean and σ is the sample variance.
3 Barr warping. A non-linear transformation describing the human ear’s perception

of frequencies in terms of psychoacoustic scales, and the equidistance corresponds
to a frequency scale of equal distance on perception. Here, the following equation
transforms the frequency f to the bark scale.

Bark = 6 sin−1
( f

600

)
(10)

4 Equivalent rectangular bandwidth scale (ERB). It simulates the perception of sound
from the human ear using a rectangular frequency bandpass filter or a bandstop
filter for psychoacoustic measurements. Here, the following equation calculates the f
conversion to the ERB scale.

ERB( f ) = 9.265× lg
(

1 +
f

24.7× 9.265

)
(11)

5 GammaTone warping. Similar to Mel-warping, an audio signal is discriminated by
simulating the response of the human ear cochlea to frequencies. Here, the following
frequency expression is used to calculate this.

H( f ) = c[R( f )⊗ S( f )]

=
c
2
(n− 1)!(2πb)−n

{
eiφ[1 + i( f − f0)/b]−n + e−iφ[1 + i( f + f0)/b]−n

}
(12)

where c is the proportionality constant, n is the filter order, and b is the time de-
cay coefficient. f0 and φ (radian) are the frequency and phase of the carrier wave,
respectively.

As shown in Figure 11, compared with Mel-warping, each warping decreases differ-
ently after reaching the peak point, and the corresponding log features also vary. There is
little change among Figure 11b,d,f. In contrast, Figure 11l has greater differences from the
other features. Additionally, in Table 6, there is a 1.1% to 2.1% increase in accuracy relative
to the M0 model for models with six different initialization settings, which indicates that
the features extracted by them are more suitable for the task at hand.

Table 6. The effect of different initialization methods on the M1 model.

No. Initialization Method Accuracy % Increase %

1 Mel 89.2 1.8
2 Linear 88.9 1.5
3 Gauss 89.0 1.6
4 Brak 89.4 2.1
5 ERB 88.6 1.1
6 GammaTone 89.0 1.6

Note: The increase is relative to the network (3 layers 32 cells) with hand-crafted features as input on the M0 model.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)
Figure 11. Different initialization methods and log spectrum features. (a) Mel, (b) Log Mel feature,
(c) Linear, (d) Log Linear feature, (e) Gauss, (f) Log Gauss feature, (g) Bark, (h) Log Bark feature, (i)
ERB, (j) Log ERB feature, (k) GammaTone, (l) Log GammaTone feature.
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3.3.4. Others

In order to further improve the richness and adaptiveness of the features extracted by
AFEM, we use a power function instead of a logarithmic function for non-linear activation in
the activation layer after the linear transformation layer, and the transformation relationship
between both is as follows:

S1(Z) = log(S(Z)) (13)

S2(Z) = (S(Z))γ (14)

S2(Z) = eγS1(Z) =
−∞

∑
n=0

(γS1(Z))n

n!
(15)

s2(n) = σ(n) + γs1(n) +
γ2

2
s1(n) ∗ s1(n) +

γ3

3
s1(n) ∗ s1(n) ∗ s1(n) + ... (16)

where ∗ denotes the convolution, γ is the power exponent, s(n) is the original signal,
and S(Z) is a kind of Z-transform for s(n), which corresponds to the output of the linear
transformation layer in the M1 model (Figure 5-M1). S1(Z) and S2(Z) represent the results
after the log-transform and power exponential transform of S(Z), respectively, and S2(Z) is
related to S1(Z) by Equation (15), which is expanded to give Equation (16). It demonstrates
that the features’ power-transform is a linear combination of log-transformed convolution.
Moreover, the overlapping combined components of the log-transform are compressed into
the power-transform by convolution; the power-transform gives richer feature information
so that a good result is obtained in the spoofing speech detection (SPD) task. The power
exponent, in particular, is configured as a learnable weight that self-adapts to changes in
the task. After a previous test, it is appropriate to set the initial value to −1/7, which can
reduce the calculation time by about 3% (as shown in Table 7) while keeping the verification
accuracy largely unchanged (Figure 12).

Table 7. The effect of different activation functions (γ = −1/7, Epoch = 200).

Model Method Features Non-Linearity Accuracy % Increase % Training Times (h)

M0 Hand-Crafted Amplitude Log 87.6 - 3.5

M1
AFEM

Amplitude Log 89.2 1.8 3.3
Power 89.2 1.8 3.2

Phases Log 93.6 6.8 3.4
Power 94.1 7.4 2.9

M2 Amplitude and Phases Log 93.8 7.1 3.5
Power 94.4 7.6 3.2
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Figure 12. Different γ values affect AFEM (validation set). Note: Here is an example of the legend
(AFEM Log (Amplitude)): The amplitude features are used in AFEM, and the activation function
is the log.

On the other hand, the weights learned in the linear transformation layer are shown
in Figure 13. The normalization can help reduce the noise of the weights. It can also
be seen that there is a significant difference between the learned weights and the initial
weights (Figure 13a,b), especially in the low-frequency region where AFEM retains addi-
tional features. In addition, during the range of 0–30 Hz, AFEM learns several influential
frequency bands from the input data. The learned weight matrix shows apparent fluctu-
ations, and the weight features are clear in the range of 0–30 Hz. However, after 30 Hz,
the weight matrix is approximately high-pass filtered. There is a boundary effect similar
to that in the speech spectrum with obvious noise interference in the weight matrix near
50 Hz.

Furthermore, the validation accuracy of the network does not improve by increas-
ing the weight matrix to 100 dimensions, as shown in Figure 13d-right. The learned
100-dimensional weight matrix is very similar to that in 40 dimensions (Figure 13c-right),
which seems to be some linear transformation of 40 dimensions. One possible explanation
for an AFEM with the same size STFT is that the increased dimensionality makes it possible
for the linear transform layer to have one or no FFTs passing through each row. It leads to
the feature recognition effect needing to improve. Therefore, the size of the weight matrix is
not a controlling factor in improving the performance of the AFEM. Furthermore, 40 dimen-
sions are suitable here, considering the calculation cost and additional parameter tuning.
Meanwhile, the maximum analysis frequency of AFEM should be increased appropriately
according to the task at hand to prevent boundary effects.
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(a) (b)

(c)

(d)

Figure 13. Magnitude response of the learned weight matrix ordered in centre frequency. (a) Mel
initialization and learned centre frequency (AFEM); (b) Mel-initialized weight matrix (AFEM) linear
layer; (c) Training weight matrix of 40 dimensions with (right) and without (left) normalization;
(d) Training weight matrix of 100 dimensions with (right) and without (left) normalization.

3.4. Study on the M2 Model

The studies in the above sections show that the features extracted by AFEM are more
applicable to the task at hand than MFCCs, allowing the validation accuracy of the model
to be increased by a maximum of 2.1%. However, the complete information of the ground
motion acceleration time course contains two aspects: amplitude and phase, obtained by
the Fourier transform. AFEM of the M1 model only uses the power spectrum (amplitude)
without focusing on the phase, which cannot fully represent the non-stationary nature
of the ground motion acceleration time history. A study [86] has also shown that phase
information is valuable in processing and analysing seismic data. Therefore, phase feature
learning needs to be introduced in AFEM of the M2 model to optimize the performance.

Moreover, as shown in Figure 12, we test the network performance when γ takes
different initial values while extracting the phase features. The results indicate that the
overall change in the network validation accuracy is small compared to using log activation.
However, the calculation time is reduced by 14.7% within the range of values taken (as
shown in Table 7). More importantly, by comparing with the amplitude features, the phase
features extracted have an average improvement of 5.4% for the M0 model validation
accuracy. Meanwhile, the verification accuracy is improved by 7.2% on average compared
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to the hand-extracted features. Here, the computational results when γ = −1/7 are given
in Table 7, which shows that the computational efficiency of the M2 model is significantly
improved over the one which directly uses hand-crafted features as the input.

On the other hand, both log and power functions are appropriate activation functions,
as shown in Figure 14. The learned weight matrix has some variation pattern, allowing
AFEM to extract more practical features. For amplitude features, a log is better than the
power function to make the learned weights less noisy and more regular. On the contrary,
the power function performs better for the phase features. According to the analysis from
Section 3.3.4, it is clear that power-transform can obtain information over a larger region
compared to log-transform. Furthermore, combined with the phase feature, the M2 model
can extract more intensity non-stationary information from the GM data, which is more
appropriate for our task. Additionally, amplitude and phase are concatenated in the feature
dimension and fed into the GRU network to explore information that may be complemen-
tary to the amplitude component alone. Validation accuracy is again improved slightly.

(a)

(b)

Figure 14. Learned weight matrix. (a) Amplitude feature extraction: log activation (up) and power
activation (down); (b) phase feature extraction: Log activation (up), power activation (down).

3.5. Study on the M3 Model

The results of M3 model training are shown in Table 8, where the use of complex
networks in AFEM improved the model validation accuracy by up to 8.6% compared to
the hand-crafted features. Furthermore, it is significantly better to use the power function
as the activation function than the log function. This score-level fusion is more valuable
than concatenating on the feature dimensions, which can result in training with 5.5% fewer
parameters and 3.1% less calculation time.
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Table 8. The effec t of complex neural network. (γ = −1/7, Epoch = 200).

Model Method Features Non-Linearity Accuracy % Increase % Training Times (h)

M3 AFEM Complex Log 93.7 7.0 3.2
Power 95.1 8.6 3.1

Note: The increase is relative to the network (3 layers 32 cells) with hand-crafted features as the input.

3.6. Prediction on Testing Dataset

The method of ensemble learning [87] is used for testing. Specifically, it is done in
four steps: (a) Select the five best models from the M3 model with complex networks;
(b) predictions are made for each model on the test dataset; (c) counting all the predictions;
(d) the final prediction is determined by the probability of happening (note that, the highest
probability of damage state is selected if there are different probabilities of damage states.
Otherwise the median of different damage states is selected). Furthermore, the confusion
matrix is selected as an index to evaluate the prediction performance, and the results are
shown in Figure 15b. Most predictions correctly classify the damage states for the GM
test dataset, and the overall prediction accuracy is 93.3%. Meanwhile, all predictions are
over-predicted or under-predicted within a damaged state in the respective damage state
sample data. For the test dataset (Figure 15a), the data imbalance between categories is
similar to the training set, which allows the network to more accurately predict low-damage
states (at least 91%). In comparison, medium- and high-damage (moderate and extensive)
will be less accurate. Furthermore, limited by the amount of data in the severe damage
(complete) sample (0.63%), the predictions have a certain amount of chance. However,
although the M3 model slightly understates seismic damage, the overall prediction accuracy
is very promising. The prediction accuracy will be further improved if further network
tuning is performed.

(a)
Figure 15. Cont.
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(b)
Figure 15. Test dataset and confusion matrix. (a) Sample label distribution of the test dataset;
(b) confusion matrix for the M3 model on the test dataset.

4. Conclusions and Future Work

This study presented a neural network model for predicting structural seismic damage.
The AFEM module of the model automatically extracts features that meet the current
structural seismic response from the input GM data and balances model performance
and computational efficiency. It recognizes the ground motion features that reflect the
seismic response of a building structure by replacing hand-crafted features designed
by perceptual evidence with data-driven adaptive feature extraction. This study takes
the seismic response prediction of a typical building as the target task. It verifies the
performance of three models (M1, M2, and M3) by comparing their results with the baseline
M0 model and FEM-based results. Moreover, AFEM can be more easily connected to other
task networks, which helps to extract the time-frequency features of seismic waves and has
high practicality and expandability, increasing its potential value.

On the other hand, compared with the M1 model, the validation accuracy of the M2
model incorporating phase features is improved by a maximum of 7.6%. At the same time,
the training time has been reduced. The proposed M3 model uses complex networks to
achieve a fusion of amplitude and phase features at the score-level, resulting in a significant
improvement of 8.6% in model validation accuracy compared to hand-crafted features
(in the M0 model). In the test dataset, the overall prediction accuracy is as high as 93.3%,
and the percentage of prediction bias covering no more than one level of samples is 100%.
It suggests that AFEM recognizes the model’s input more efficiently than MFCCs, resulting
in an 11.4% reduction in computational time. In addition, a fusion at the score-level is also
more efficient than a feature connection (in the M2 model), reducing the time by 3.1%.

Using the AFEM, the present study explores extracting time-frequency features for
training structural seismic damage models. Therefore, it does not pursue a detailed study
of unbalanced data. Research on performance improvement with unbalanced data and
small samples will receive attention in the next phase of the study. Furthermore, achieving
better performance with different datasets (synthetic/simulated ground motion, etc.) is a
potential follow-up study.
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75. Seyfioğlu, M.S.; Özbayoğlu, A.M.; Gürbüz, S.Z. Deep convolutional autoencoder for radar-based classification of similar aided
and unaided human activities. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1709–1723. [CrossRef]

76. Chiheb Trabelsi, O.B.; Ying Zhang, D.S.; Sandeep Subramanian, J.F.S.; Soroush Mehri, N.R.; Yoshua Bengio, C.J.P. Deep Complex
Networks. arXiv 2017, arXiv:1705.09792.

77. Bisong, E. Tensorflow 2.0 and keras. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 347–399.

78. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
79. Smith, L.N. A disciplined approach to neural network hyper-parameters: Part 1–learning rate, batch size, momentum, and

weight decay. arXiv 2018, arXiv:1803.09820.
80. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329.
81. Hu, Y.X.; Liu, S.C.; Dong, W. Earthquake Engineering; CRC Press: Boca Raton, FL, USA, 1996.
82. Cun, Y.L.; Bottou, L.; Orr, G.; Muller, K. Efficient BackProp, neural networks: Tricks of the trade edition. In Lecture Notes in

Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7700.

http://dx.doi.org/10.1109/ACCESS.2019.2947848
http://dx.doi.org/10.1007/s00024-010-0161-6
http://dx.doi.org/10.1109/TASSP.1980.1163420
http://dx.doi.org/10.5120/1499-2016
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43960.pdf 
http://dx.doi.org/10.1016/j.specom.2005.10.004
http://dx.doi.org/10.1016/j.cageo.2020.104643
http://dx.doi.org/10.1109/TAES.2018.2799758


Appl. Sci. 2023, 13, 2956 29 of 29

83. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.

84. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
85. Hohmann, V. Frequency analysis and synthesis using a Gammatone filterbank. Acta Acust. United Acust. 2002, 88, 433–442.
86. Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook; Cambridge University Press: Cambridge, UK, 2020.
87. Rani, P.I.; Muneeswaran, K. Emotion recognition based on facial components. Sādhanā 2018, 43, 48. [CrossRef]
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