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Featured Application: A potential application developed from the results obtained by this study
is a monitoring system of atrial fibrillation for stroke early warning in both healthy people and
heart disease patients.

Abstract: This research studies the effects of both Daubechies wavelet basis function (DWBF) and
decomposition level (DL) on the performance of detecting atrial fibrillation (AF) based on electrocar-
diograms (ECGs). ECG signals (consisting of 23 AF data and 18 normal data from MIT-BIH) were
decomposed at various levels using several types of DWBF to obtain four wavelet coefficient features
(WCFs), namely, minimum (min), maximum (max), mean, and standard deviation (stdev). These
features were then classified to detect the presence of AF using a support vector machine (SVM)
classifier. Distribution of training and testing data for the SVM uses the 5-fold cross-validation (CV)
principle to produce optimum detection performance. In this study, AF detection performance is
measured and analyzed based on accuracy, sensitivity, and specificity metrics. The results of the
analysis show that accuracy tends to decrease with increases in the decomposition level. In addition,
it becomes stable in various types of DWBF. For both sensitivity and specificity, the results of the
analysis show that increasing the decomposition level also causes a decrease in both sensitivity
and specificity. However, unlike the accuracy, changing the DWBF type causes both two metrics
to fluctuate over a wider range. The statistical results also indicate that the highest AF accuracy
detection (i.e., 94.17%) is obtained at the Daubechies 2 (DB2) function with a decomposition level of 4,
whereas the highest sensitivity, 97.57%, occurs when the AF detection uses DB6 with a decomposition
level of 2. Finally, DB2 with decomposition level 4 results in 96.750% for specificity. The finding of this
study is that selecting the appropriate DL has a more significant effect than DWBF on AF detection
using WCF.

Keywords: atrial fibrillation detection; feature extraction; wavelet coefficient; Daubechies wavelet
basis function; artificial intelligence

1. Introduction

Atrial fibrillation (AF) occurs at any age, but the incidence of AF is far more common
in older adults than in children [1–3]. In the European Union, the number of subjects
with AF (those aged ≥ 55) is estimated to be doubled from 2010 to 2060, i.e., from 8.8 to
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17.9 million [4]. Meanwhile, in the US, the number of subjects with AF will reach more than
5.6 million in 2050. Half of them will be over 80 years old.

AF is a heart rhythm disorder that is characterized by irregular heart contractions [5,6].
It is triggered by two conditions, i.e., the deceleration of conduction velocity in various atrial
regions and an increase in the heterogeneity of atrial refractoriness. Other conditions, such
as an overactive thyroid (thyroid gland) or the excessive use of alcohol, can also cause AF.
Although there is an insignificant relationship, AF is also often associated with an increased
risk of chronic kidney disease, ischemic heart disease, and sudden cardiac death [7,8]. AF is
not classified as a severe disease; however, it may induce paralysis complications, such as
heart failure and atrial thrombosis, with a risk of stroke [9]. One in three patients with AF
will not have any symptoms. The early management of AF needs to be performed in the
detection and screening of AF. In 2020, the European Society of Cardiology (ESC), through
its guidelines, recommended that wearable devices be employed for the self-detection of
AF in the general population [10].

Along with advances in telecommunications technology and mobile apps, several
portable AF detectors have been proposed and developed [11]. Based on the type of signal
used, AF detectors can be categorized into two groups, namely, photoplethysmogram
(PPG)-based detectors and electrocardiogram (ECG)-based detectors. Fan, et al. [12] devel-
oped an Android app on Huawei smartphones to detect AF. The application utilizes the
smartphone’s camera to detect blood volume changes in accordance with the principle of
the PPG sensor. Then, the validation is carried out using the ECG-12 Leads Standard. The
analysis results have shown that the Android application is able to work well; the accuracy
in detecting AF was 94%. Tison, et al. [13] used a PPG-based commercial smartwatch to
identify AF. Evaluation results showed that the accuracy of AF detection in patients under-
going cardioversion treatment was high. Unfortunately, it is not for outpatient use. Gropler,
et al. [14] evaluated the accuracy of ECG-based off-the-shelf KardiaMobile products from
AliveCor [15] for detecting arrhythmias (including AF) in the pediatric population. The
results of the study showed that KardiaMobile could well distinguishing ECG signals
in a population of healthy children and populations of children with heart disease. The
false-positive rate in detecting AF was 13 percent (4/30). Using the same type of device
as Gropler, et al. [14], HABERMAN, et al. [16] conducted research on different subjects.
The subjects used in the research were elite athletes and cardiac clinic patients. The re-
sults of the study concluded that KardiaMobile was suitable for general conduction and
arrhythmia screening.

There are several steps that must be performed to detect atrial fibrillation. These steps
are shown in detail in Figure 1, consisting of signal preprocessing (denoising), segmentation,
feature extraction/selection, and classification [17–19]. As shown in Figure 1, the first step
of detecting AF is denoising, which is the process of removing noise using either analog
or digital filters. It can be performed in both hardware and software [20]. The second
step is signal segmentation for recognizing a complete cycle of the signal [21]. Feature
extraction/selection is a further process after the signals can be identified. In ECG-based de-
tectors, the interval of RR is frequently used as a feature for detecting AF [22–25]. Another
feature that is often utilized for AF detection purposes is the QRS signal duration, as used
by Aeschbacher, et al. [26]. Finally, classification is a technique used in grouping features
according to the type of arrhythmia, such as: premature atrial contraction (PAC), prema-
ture ventricular contraction (PAC), AF, or ventricular tachycardia/ventricular fibrillation
(VT/VF). Many studies have used artificial intelligence, such as machine learning algo-
rithms, to classify the feature data of arrhythmia, such as in Yang, et al. [27], Rohr, et al. [28],
Chickaramanna, et al. [29], Jahan, et al. [30], to achieve accurate detection results.
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Figure 1. Four essential steps required to detect atrial fibrillation (AF).

Feature extraction is the key to success in arrhythmia detection (including AF). There
are several feature extraction techniques have been proposed for detecting AF features,
such as in Kumar, et al. [18], Gokana, et al. [22], Kennedy, et al. [23], Asgari, et al. [31],
Dalila, et al. [32], He, et al. [33], Saraswat, et al. [34], Gupta, et al. [35]. In general, ECG-
based AF extraction techniques can be classified into two categories [36], i.e., feature
extraction (FE) based on dynamic features of the signal [16,22,26,37–41] and FE based on
the signal morphology [18,31,33–35].

In the dynamic feature category, there are several AF features that can be identified from
ECG signals, such as RR interval, QT segments, and QRS duration. In 2014, RR intervals
and the Shannon entropy of AF-confirmed ECG signals were used by Gokana, et al. [22] as
features for detecting AF. Both features were then classified using a proposed classification
algorithm. The experimental results showed that the AF detection accuracy reached 99.5%.
In 2019, Nguyen, et al. [37] combined both RR intervals and the variability of QT segments
as parameters of AF identification. The accuracy in detecting AF was 94%. Unfortunately,
Nguyen, et al. [37] did not share information about sensitivity and specificity in their report.
Aeschbacher, et al. [26] revealed the relationship between AF occurrence and QRS duration.
They found that in a large population, QRS duration was an independent predictor of AF
incidence in women but not men.

In the FE group based on signal morphology, researchers have attempted to eliminate
the method for detecting P peaks, R peaks, or T peaks so that the performance of AF
detection does not depend on the quality of beat detection. In 2015, Asgari, et al. [31]
used stationary wavelet transform (SWT) as a method to extract AF features from ECG
signals. They used the support vector machine (SVM) classifier to classify the AF features.
Experiments showed that the sensitivity achieved was 97.0% and the specificity of detection
was 97.1%. He, et al. [33] also proposed using a wavelet to obtain AF features. However,
unlike Asgari, et al. [31], the features used were continuous wavelet transform (CWT),
and the classifier chosen was the convolutional neural network (CNN). The experiments
carried out resulted in a sensitivity of 99.41%, with a specificity of 98.91% and an accuracy
of 99.23%. In 2018, Kumar, et al. [18] analyzed log energy entropy (LEE) and permutation
entropy (PEn) features to identify AF. Both features were calculated from a sub-band signal
generated by flexible analytic wavelet transform (FAWT). Experimental results showed that
LEE was superior to PEn, with the accuracy, sensitivity, and specificity being 96.864%, 95.8%,
and 97.8%, respectively. In the experiment, the classifier chosen was random forest (RF).

In general, morphological-based feature extraction studies, as explained in the previ-
ous paragraph, only focus on proposing new methods without an in-depth exploration of
the effects of wavelet parameters, such as wavelet basis functions (WBFs) and decomposi-
tion levels, on overall system performance. As a consequence, the results are not optimal,
and there is uncertainty about whether it is the best result or not. Kumar, et al. [18] only
observed the effect of the number of features derived from LEE and PEn based on accuracy,
sensitivity, and specificity. The features of the wavelet function were not explored. Almost
similar to Kumar, et al. [18], Asgari, et al. [31] also only focused on log energy entropy (LEE)
and permutation entropy (PEn). As He, et al. [33] relied on deep learning methods, they
did not explore wavelet features. Parameter setting was only performed on the convolution
neural network (CNN) method, such as the learning rate initial value, the moment coeffi-
cient, and several other parameters on CNN. On the other hand, Saraswat, et al. [34] only
showed wavelet features without computing the accuracy, sensitivity, and specificity of
these wavelet features. Recently, Gupta, et al. [35] proposed a fractional wavelet transform
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for use in the detection of AF. Instead of exploring the wavelet function for the features in
detecting AF, the authors used the wavelet to remove ECG noise.

To overcome the problems above, this research proposes a study of the effect of WBF
and decomposition level on the performance of artificial intelligence-based AF detection
when the features used are wavelet coefficients. There are four wavelet coefficient features
used in this research, i.e., maximum, minimum, average, and standard deviation of the
wavelet coefficient. The artificial intelligence-based classifier chosen in this study is support
vector machine (SVM). The next chapter discusses material and methods, results and
discussion, and conclusions.

2. Materials and Methods

This section explains the material and methods used in this research. The material
covers data and parameters for experiments, tools, and matrices, while the method is a
procedure used in processing ECG signals in order that atrial fibrillation and normal data
can be detected.

2.1. Material
2.1.1. Data Sources

In this study, the experimental data used are MIT-BIH data (AFDB and NSRDB), which
are publicly available on Physionet [42,43]. AFDB is the result of long-term ECG recordings
from 25 AF-indicated subjects (mostly paroxysmal). The duration of each recording is
10 h. It consists of two ECG signals taken at a frequency of 250 Hz and has a 12-bit
resolution in the ±10 millivolt range. There are four distinct rhythms in each recording:
AF (atrial fibrillation), AFL (atrial flutter), Jr (AV junctional rhythm), and N (all other
rhythms). However, the rhythm used in this study is AF only. This research excludes
2 pieces of data, i.e., numbers 00735 and 03665. Both 0735 and 03665 have no AF samples.
In addition, both pieces of data are also not audited [43]. The same scenario was also used
in several previous studies [18,31,44–46]. For the normal data, this study uses the Normal
Sinus Rythm Database (NSRDB). NSRDB provides 18 long-term ECG records from subjects
referred to the Arrhythmia Laboratory at Beth Israel Hospital in Boston (now Beth Israel
Deaconess Medical Center). The subjects chosen did not have significant arrhythmias and
consisted of 5 men, aged 26 to 45, and 13 women, aged 20 to 50 years. The details of the
data used in this study are showed in Table 1.

2.1.2. Parameter of Experiments

The parameters of experiments in this study are both wavelet basis function (WBF)
and decomposition level (DL). Ten WBFs from the Daubechies wavelet family, DB1 to DB10,
together with DL1 to DL10, have been selected. Daubechies are wavelets with a number
of vanishing moments (N), and the minimum filter size is 2N [47,48]. The simplest and
the oldest function in Daubechies is the Haar wavelet (DB1). It has a value of either 1 for
0 ≤ x ≤ 0.5 or −1 for 0.5 ≤ x ≤ 1; otherwise, it will be 0. This wavelet has a disjointed
pattern, resembling a square shape [49], as shown in Figure 2.
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Table 1. Experimental data for detecting AF.

NO AF Data Record Number (AFDB) Normal Data Record Number (NSRDB)

1 4015 16,265
2 4043 16,272
3 4048 16,273
4 4126 16,420
5 4746 16,483
6 4908 16,539
7 4936 16,773
8 5091 16,786
9 5121 16,795
10 5261 17,052
11 6426 17,453
12 6453 18,177
13 6995 18,184
14 7162 19,088
15 7859 19,090
16 7879 19,093
17 7910 19,140
18 8215 19,830
19 8219
20 8378
21 8405
22 8434
23 8455

DBN wavelets, except for Haar wavelets, with a length of 2N − 1 (orders 2 to 10) are
presented in Figure 3 [49].
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The wavelet decomposition level is a level or order of decomposition of a signal in the
wavelet domain. In discrete wavelet transform (DWT), a signal form can be approximated
(to be decomposed) by N orthogonal wavelet signals consisting of detailed and approxima-
tion signals. N is the order of decomposition or decomposition level (DL) [50]. The DL is
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very important in determining the accuracy of the wavelet function approach to a signal
form. DWT decomposition can be defined in Equations (1) and (2) as follows:

s(i)(l) = x(k) ∗ ϕi,l(k), (1)

d(i)(l) = x(k) ∗ ψi,l(k), (2)

where s(i)(l) and d(i)(l) are the approximation coefficient and the detail coefficient at
resolution i of scaling function ϕi,l(k) and orthogonal wavelet function ψi,l(k). Wavelet scale
basis functions ϕi,l(k) and wavelet functions ψi,l(k) are defined by Equations (3) and (4)
as follows:

ϕi,l(k) = 2
i
2 hi (k− 2il ), (3)

ψi,l(k) = 2
i
2 gi (k− 2il ), (4)

where factor 2
i
2 is the normalized inner product, i and l are scale parameters and transla-

tional parameters, and k is a discrete time sample [51].

2.1.3. Environments

This study uses both software and hardware for experiments, as follows:

1. The hardware for experiments consists of a personal computer that is set up as a
server. The server specifications are OMEN by HP Obelisk Desktop 875-0075d, 12GB
RAM, and 1TB Hard disk.

2. The software used in this study is Windows 10 Home Single Edition, which has a
Python program for running the experiments. In addition, Pychram 2018 is also
installed for editing Python programs.

2.1.4. Metrics

Several metrics are used in this study to measure the performance of the AF detector,
such as sensitivity, specificity, and accuracy. Sensitivity is the proportion of actual AF
rhythm that is correctly identified as AF, and specificity is the proportion of normal rhythm
that is correctly detected as normal. Finally, accuracy represents the overall accuracy of the
method used [52]. In detail, the formulas of sensitivity, specificity, and accuracy can be seen
in Equations (1)–(3), as follows:

Sensitivity =
TP

TP + FN
∗ 100%, (5)

Speci f icity =
TN

TN + FP
∗ 100%, (6)

Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100%, (7)

where TP is true-positive, TN is true-negative. TP can be defined as the number of AF
beats that is correctly detected as AF. Meanwhile, TN is the number of normal beats that
is correctly identified as normal. In those formulas, FP (false-positive) is the number of
normal beats that is incorrectly detected as AF, and FN (false-negative) is the number of
AF beats that is identified incorrectly as normal. Furthermore, confusion test metrics are
presented in Table 2.

Table 2. Confusion matrix TP, TN, FP, FN.

Actual AF Actual Normal

Predicted AF TP FP
Predicted Normal FN TN
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2.2. Methods
2.2.1. Development of Training and Testing Data

To identify AF and normal rhythms, a support vector machine (SVM)-based classifier
must be trained using training data. The training dataset is based on normal and AF
features derived from the statistic of wavelet coefficients. Two steps must be taken in
developing the training dataset, i.e., 1. Remove the raw data that is labeled other than AF.
Perform the same process to delete the data that is not labeled as normal in the dataset
from NSRDB. 2. Implement a DWT feature extraction algorithm to obtain the statistic of
wavelet coefficients (maximum, mean, minimum, and standard deviation). The wavelet
coefficients signal can be defined as in Equation (8).

S = An + Dn + Dn−1 + · · ·+ D1 (8)

where An and Dn are the approximation and detail at a decomposition level n, respectively.
Figure 4 shows an example of raw data labeled as normal and AF from both NSRDB
and AFDB. As shown in Figure 4, the peak-to-peak distance of the adjacent waves in a
normal ECG signal is the same. On the other hand, in an ECG AF signal, the distance tends
to fluctuate.
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2.2.2. Feature Extraction

Algorithm 1 shows the feature extraction process of raw data (normal and AF data), as
mentioned in Section 2.2.1. As can be seen from Algorithm 1, the DWT function extracts the
ECG raw data by decomposing the ECG signal into several frequency sub-bands [51,53].
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Algorithm 1. Feature Extraction Algorithm.

function wavedec(data, wavelet, mode=‘symmetric’, level=None, label, axis = −1):
a = data;
coeffs_list = [];
features = np.array([]);
label = np.array ([label]);
#set wavelet family
wavelet = call_Wavelet(wavelet)

#S = An + Dn + Dn−1 + ... + D1
for i ≤ level:

#extract a:approximate, d:detail
a, d = DWT(a, wavelet, mode, axis)

coeffs_list.append(d)
coeffs_list.append(a)
coeffs_list.reverse()

#cal_stats return max, mean, min and std
features = np.append(features, cal_stats(coeffs_list[0]))

for 1 ≤ i ≤ len(coeffs_list):
features = np.append(features, cal_stats(coeffs_list[i]))

return np.append(features, label)
end function

The procedure for the systematic decomposition of signal resolution x [n] is shown in
Figure 5. As shown in Figure 5, three levels of decomposition have been implemented to
signal x [n]. At each level, the signal is decomposed using two types of DWBF-based filters,
namely, g [n] and h [n]. Note that g [n] is a DWBF high-pass filter, while h [n] is a DWBF
low-pass filter. Each output of these filters is then downsampled by 2. The downsampler
output of the first high-pass filter is detail–1 (D1), while the downsampler output of the first
low-pass filter is approximation–1 (A1). Then, at the second level, the same decomposition
process is carried out on approximation signal–1 (A1), and this is repeated until the last
level (Level 3).
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Figure 6 shows the results of Level 4 decomposition using DBWF (DB2) on ECG signal
numbered 4015, AF signal. The signal at the top is the input signal, while all the signals
below are the decomposition results, consisting of approximate signals and detailed signals.

Algorithm 1 processes the approximation signals and the detail signals into a feature
for detecting atrial fibrillation. According to the algorithm, a feature set is the result of the
first approximation signal, which is convoluted on all detailed signals at all levels (known
as the wavelet coefficient index—WCI). Table 3 lists the maximum, average, minimum, and
standard deviation values of each WCI of the signal numbered 4015 (AF signal); the signal
numbered 16,265 (normal signal) has a WCI, as shown in Table 4.



Appl. Sci. 2023, 13, 3036 9 of 18Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 19 
 

 

Figure 6. Decomposition Level 4 using DB2 on the 04015 ECG signal. Red graphs and green graphs 

are approximate and detailed signals, respectively. 

Table 3. Max, mean, min, and stdev features (normal). 

Coefficients Max Mean Min Stdev 

A4 9.60 −0.18 −6.65 0.60 

D4 1.91 0.00 −1.41 0.40 

D3 2.37 −0.01 −1.46 0.37 

D2 2.26 0.00 −1.38 0.27 

D1 0.85 0.00 −0.81 0.10 

Table 4. Max, mean, min and stdev features (AF). 

Coefficients Max Mean Min Stdev 

A4 7.33 0.27 −11.72 3.10 

D4 3.61 0.01 −3.73 0.99 

D3 2.07 0.00 −1.94 0.39 

D2 0.74 0.00 −0.74 0.12 

D1 0.18 0.00 −0.22 0.03 

Figure 6. Decomposition Level 4 using DB2 on the 04015 ECG signal. Red graphs and green graphs
are approximate and detailed signals, respectively.

Table 3. Max, mean, min, and stdev features (normal).

Coefficients Max Mean Min Stdev

A4 9.60 −0.18 −6.65 0.60
D4 1.91 0.00 −1.41 0.40
D3 2.37 −0.01 −1.46 0.37
D2 2.26 0.00 −1.38 0.27
D1 0.85 0.00 −0.81 0.10

Table 4. Max, mean, min and stdev features (AF).

Coefficients Max Mean Min Stdev

A4 7.33 0.27 −11.72 3.10
D4 3.61 0.01 −3.73 0.99
D3 2.07 0.00 −1.94 0.39
D2 0.74 0.00 −0.74 0.12
D1 0.18 0.00 −0.22 0.03
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2.2.3. Classification

This study used a support vector machine (SVM) classifier to identify AF rhythms and
normal ECG signals. SVM works by recognizing the best separating hyperplane between
two training sample classes. It focuses on the training case located at the corner of the class
descriptors to provide the optimal hyperplane. The hyperplane is effective for training
with small samples [54]. It can be represented in the feature space by using a radial base
function (RBF) kernel (see Formula (9)) or a Gaussian formula, as in Equation (10) [55]:

K
(
x′, x

)
= ∑

i
φi(x′)φi(x) (9)

K
(
x′, x

)
= e−γ||x−x′ ||2 (10)

or

K
(
x′, x

)
= e−||x−x′ ||2/2σ2

(11)

For xi input points mapped to the target yi (i = 1, 2, 3, . . . , p), the decision function
formulated with respect to the kernel is defined in Equation (12):

f (x) = sign

(
p

∑
i=1

αiyiK(x, xi) + b

)
(12)

where b is the bias. The coefficient αi can be found using Formula (13) by maximizing the
Lagrangian (L) as follows:

L =
p

∑
i=1

αi −
1
2

p

∑
i,j=1

αiαjyiyjK
(
xixj

)
(13)

In addition, αi and
p
∑

i=1
αiy must meet the following constraints:

αi ≥ 0
p

∑
i=1

αiyi = 0 (14)

Thus, only points closest to the hyperplane have αi > 0 (support vectors).

2.2.4. Experiment Scenario

Figure 7 illustrates a method for evaluating the effect of both DWBF and DL on
detecting AF. Both feature extraction and classification in the scenario implement WCI
statistics and SVM, respectively. As shown in Figure 7, the first step in the method is the
development of training and testing data, as described in Section 2.1.1. There are 41 ECG
data records, consisting of 23 AF data records and 18 normal data records. For the 23 AF
data records, there are 264 AF events. Meanwhile, the same normal number of events is
obtained from the 18 NSRDB data records. The total ECG data for training and testing is
528 data records. Then, the noise of the ECG data is filtered using the hard-thresholding
technique [20].

The next step is to choose a combination of both the Daubechies (DB) function and the
decomposition level (DL)—DBiDLj; i and j refer to the order of the Daubechies function
and the level of decomposition. The parameters DBiDLj are then applied for extracting
both AF and normal features from 528 ECG data records. There are 528 × 4 or 2.112 feature
datasets due to each ECG data record producing 4 features, i.e., max, min, mean, and stdev.
The feature datasets are then classified using SVM to identify AF and normal data based on
5-fold cross-validation. The results of the classification are measured using three metrics,
i.e., accuracy (acc), sensitivity (se), and specificity (sp).
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3. Experiment Results

Tables 5–7 show the results of experiments with scenarios figured in Figure 7. Each
value in the tables is an average of five tests according to the 5-fold cross-validation (CV)
principle [56]. To reveal the effect of both DBWF and DL on the performance of AF detection,
all data in the tables are averaged and plotted in Figures 8–10.

Table 5. Average accuracy (%) due to DWBF and decomposition level (DL).

Daubechies Wavelet Basis Function (DWBF)

D
ec

om
po

si
ti

on
Le

ve
l(

D
L)

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10

1 87.50 86.67 85.83 90.00 86.67 86.67 90.00 85.83 86.67 89.17
2 90.83 89.17 90.83 90.83 88.33 90.00 87.50 90.83 90.83 86.67
3 82.50 85.00 87.50 86.67 90.83 88.33 87.50 89.17 85.00 85.83
4 93.33 94.17 92.50 88.33 82.50 90.83 90.00 90.83 90.00 90.83
5 89.17 90.83 89.17 86.67 85.83 80.73 89.17 90.83 83.33 83.33
6 83.33 87.67 84.67 85.00 85.83 82.50 75.20 84.17 80.00 81.67
7 85.83 80.00 75.83 81.67 76.67 85.83 75.00 80.83 80.83 80.83
8 68.33 82.50 81.67 80.83 72.50 83.33 80.83 84.17 77.50 80.00
9 83.67 77.50 69.17 75.00 78.33 86.67 80.00 84.17 79.17 83.33
10 80.83 75.00 73.33 72.50 73.33 77.50 72.50 73.33 76.67 77.50
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Table 6. Average sensitivity (%) due to DWBF and decomposition level (DL).

Daubechies Wavelet Basis Function (DWBF)

D
ec

om
po

si
ti

on
Le

ve
l(

D
L)

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10

1 92.44 94.46 86.39 91.39 82.23 92.86 88.10 83.57 84.39 92.10
2 95.14 96.07 93.29 90.36 83.82 97.57 84.66 90.74 89.96 81.25
3 91.24 94.58 82.89 83.33 90.70 96.21 85.16 88.30 81.39 95.24
4 90.29 93.66 85.28 86.42 77.26 93.24 92.14 89.76 89.83 90.10
5 90.00 87.23 84.75 89.13 88.38 89.72 90.69 92.62 89.58 90.82
6 80.72 89.74 82.53 95.24 89.50 88.04 76.76 89.54 80.26 89.64
7 86.98 82.98 70.81 91.39 72.47 89.39 73.87 91.27 87.30 84.81
8 78.75 80.78 78.98 93.39 75.00 83.39 79.10 79.24 89.83 85.99
9 75.56 77.14 77.58 85.95 75.54 88.57 80.78 80.44 80.56 80.12
10 78.00 77.11 76.50 80.00 75.14 87.13 80.20 84.85 82.19 80.48

Table 7. Average specificity (%) due to DWBF and decomposition level (DL).

Daubechies Wavelet Basis Function (DWBF)

D
ec

om
po

si
ti

on
Le

ve
l(

D
L)

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10

1 79.57 77.95 89.05 89.05 92.50 71.58 92.74 86.79 91.50 87.24
2 88.54 80.99 90.98 94.89 92.41 79.75 92.07 91.57 93.48 84.50
3 76.24 75.02 94.41 89.67 91.48 78.73 91.83 89.08 92.50 76.48
4 92.17 96.75 89.91 93.83 92.67 89.29 88.74 91.33 91.07 93.33
5 90.80 96.57 94.07 89.09 87.58 76.05 91.31 89.81 82.61 79.75
6 74.72 76.12 83.81 76.63 86.50 80.05 76.21 80.99 82.75 76.36
7 88.14 70.26 92.86 72.95 92.08 88.21 87.81 79.43 82.17 80.62
8 61.74 70.54 89.00 65.14 76.19 76.04 88.00 89.71 82.92 73.38
9 75.23 58.82 82.58 86.79 90.50 66.71 80.67 88.50 82.50 81.00
10 72.33 72.38 84.05 58.75 89.79 67.25 76.88 87.78 81.00 64.88
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Figure 8. Accuracy due to DWBF and DL.
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Figure 9. Sensitivity due to DWBF and DL.
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transform (SWT) DL6 
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Sen: 97%, Spe: 

97.1%, Acc: 96.4%, 

2 
Arvanaghi, et al. 

[57] 

Classification of cardiac arrhyth-

mias using arterial blood pressure 

based on discrete wavelet trans-

form 

Discrete wavelet trans-

form (DWT) DB6 DL10 

Least-Squares 

Support Vec-

tor Machines 

(LS-SVM) 

Acc: 95.75% 

3 Kumar, et al. [18] 

automated diagnosis of atrial fi-

brillation ECG signals using en-

tropy features extracted from 

flexible analytic wavelet trans-

form 

 Flexible analytics wave-

let transform (FAWT): 

log energy entropy 

(LEE)) 

Random For-

est 

Sen: 95.8%, Spe: 

97.6%, Acc: 

96.84% 

4 Kora, et al. [58] 
Atrial fibrillation detection using 

discrete wavelet transform 
DWT (DB2 DL2) SVM  Acc: 94.07% 
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Figure 10. Specificity due to DWBF and DL.

Table 5 shows the 5-CV average accuracy due to DWBF and DL parameters. As shown
in Table 5, the highest accuracy is obtained when the Daubechies wavelet basis function is
DB2 and the decomposition level is DL4–DB2DL4, i.e., 94.17%. It is followed by DB1DL4
and DB3DL4, i.e., 93.33% and 92.5%, respectively. To obtain the effect of the Daubechies
basis wavelet function and the decomposition level, data in Table 5 were then averaged
and plotted in Figure 8. As shown in Figure 8, the accuracy due to DWBF tends to fluctuate
constantly in a narrow range between 83% to 86% (Accuracy@DB). However, the trend of
the accuracy tends to decrease significantly when the decomposition level changes from
DL1 to DL10 (Accuracy@Level), i.e., from 90% to 76%.

Table 6 is the 5-CV average sensitivity due to DWBF and DL parameters. The best
sensitivity is DB6DL2 (97.57%), and it is followed by DB6DL3 (96.21%) and DB2DL2 (96.07%),
respectively. The effect of the Daubechies basis function and the decomposition level is
illustrated in Figure 9. As shown in the figure, the sensitivity deteriorates when the
decomposition level changes from DL1 to DL10 (Sensitivity@Level). However, the decrease
in the sensitivity is not as great as the decrease in the accuracy in Figure 8. The lowest
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sensitivity is in DL10. The effect of DWBF can be seen in Sensitivity@DB in Figure 9. If
it is compared to the accuracy due to DWBF in Figure 8, the sensitivity due to DWBF in
Figure 9 fluctuates constantly in a wider range (between 80% to 91%).

Table 7 is the 5-CV average specificity due to DWBF and DL parameters. As shown
in Table 7, the highest specificity is achieved when DBWF is DB2 and DL is on Level 4,
i.e., 96.75%. Then, it is followed by DB2DL5 and DB4DL2, which have specificity at 96.57%
and 94.89%. The effect of DBWF and DL can be seen in Figure 10. Specificity@level in
Figure 10 shows that the specificity decreases from 92% to 75%. However, the fluctuation of
the decline looks unstable. Additionally, Specificity@DB in Figure 10 provides information
that the DBWF fluctuates constantly in the range of 76% to 90%, which is wider than the
fluctuation of sensitivity in Figure 9.

4. Performance Comparison to State-of-the-Art of Other Studies on Atrial
Fibrillation Detection

Table 8 illustrates a comparison of existing research results that focus on the de-
tection of atrial fibrillation using machine learning algorithms with our research. As
shown in Table 8, all previous studies used as a comparison with this research have
considered the morphological features of the ECG signal, i.e., DWT and energy entropy,
such as in Kumar, et al. [18], Asgari, et al. [31], Arvanaghi, et al. [57], Kora, et al. [58],
Abdelazez, et al. [59]. Table 8 also shows that the performance results are measured using
either a single metric [57–59] or several metrics [18,31]. In general, our research has the best
AF detection sensitivity compared to the existing studies. Sensitivity is the most important
metric in health research that can compute the probability of getting a positive test result in
subjects with AF [60]. For accuracy and specificity, our results only differ by about 2% and
1%, respectively, from Asgari and Kumar’s studies.

Table 8. Performance of atrial fibrillation detection based on morphological feature extraction
algorithm of ECG signal using machine learning.

No Authors Title of Article Features Extraction Algorithm Classifier Algorithm Performance Results

1 Asgari, et al. [31]

Automatic detection of atrial
fibrillation using stationary wavelet
transform and support
vector machine

Stationary wavelets transform
(SWT) DL6 SVM Sen: 97%, Spe: 97.1%,

Acc: 96.4%,

2 Arvanaghi, et al. [57]

Classification of cardiac
arrhythmias using arterial blood
pressure based on discrete
wavelet transform

Discrete wavelet transform
(DWT) DB6 DL10

Least-Squares Support
Vector Machines
(LS-SVM)

Acc: 95.75%

3 Kumar, et al. [18]

automated diagnosis of atrial
fibrillation ECG signals using
entropy features extracted from
flexible analytic wavelet transform

Flexible analytics wavelet
transform (FAWT): log energy
entropy (LEE))

Random Forest Sen: 95.8%, Spe: 97.6%,
Acc: 96.84%

4 Kora, et al. [58] Atrial fibrillation detection using
discrete wavelet transform DWT (DB2 DL2) SVM Acc: 94.07%

5 Abdelazez, et al. [59]
Detection of atrial fibrillation in
compressively sensed
electrocardiogram measurements

Mix among statistical methods,
empirical mode decomposition
(EMD), DWT (discrete Meyer
LD4), SWT (DB5 LD6), and
discrete cosine
transform (DCT)

Random Forest F1 Score: 85%

6 Our Research

The effects of Daubechies wavelet
basis function (DWBF) and
decomposition level on the
performance of artificial
intelligence-based atrial fibrillation
(AF) detection on electrocardiogram
(ECG) signal

DWT (DWBF and DL) SVM
Sen: 97.57% (DB6DL2),
Spe: 96.75% (DB2DL4),
Acc: 94.17% (DB2DL4)

5. Discussion

Experiments on the effect of the Daubechies wavelet basis function (DWBF) and the
decomposition level (DL) to detect atrial fibrillation have been performed, and the results
of experiments have been discussed in Section 3. As shown in Figures 8–10, the DWBF
has an insignificant effect on detection performance (accuracy, sensitivity, and specificity),
although the result of experiments on the three metrics show that each metric fluctuates in
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different ranges when the order of DBWF changes from DB1 to DB10; however, the pattern
of the three metrics tends to be constant. This is due to the nature of discrete wavelet
transform, which has an orthogonal transformation (shifting and scaling) of wavelet basis
function [61]. In addition, the almost similar waveforms for DB1 to DB10 also contribute to
the results. These two facts imply that false-positives and false-negatives in detecting atrial
fibrillation fluctuate at nearly constant values.

The different condition occurs when the decomposition level changes from DL1 to
DL10. All three metrics decrease with different rates. In general, this decrease is triggered
by the fact that an increase in the decomposition level (from 1 to 10) causes the WCI
signal to deviate from the original ECG signal. Furthermore, the sensitivity metric has a
slower decrease than the other two metrics, which is due to higher false-positives found,
compared to false-negatives, in the experiments. This finding is in line with the results of
research by Chen, et al. [62], who explored the effect of WBF and the decomposition level in
electroencephalography (EEG) signals. Chen, et al. [62] concluded that the decomposition
level was sensitive to the performance of EEG signal detection, and wavelet basis functions
have insignificant effects.

This research also compared the experimental results with other state-of-the-art re-
search on the detection of AF. As described in Section 4, our study has the best sensitivity in
detecting AF compared to other previous studies. In addition, the accuracy and specificity
that we obtained were almost the same as the previous studies’ results. More importantly,
our study shows the importance of both wavelet basis function and decomposition level to
get the best results, which has not been explored before in other studies.

6. Conclusions

The research objective to reveal the effect of the Daubechies wavelet basis function
(DWBF) and the decomposition level has been achieved. The details of the experiment
results can be seen in Section 3. The results show that choosing the right decomposition level
is very important in order to get the optimal performance of atrial fibrillation detection.
On the other hand, the selection of the DWBF order has less impact on AF detection
performance. Furthermore, the highest accuracy result is achieved in DB2DL4, which is
94.17%, while the highest sensitivity and specificity are obtained in DB6DL2 and DB2DL4,
i.e., 97.57% and 96.75%, respectively.
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60. Simundić, A.M. Measures of Diagnostic Accuracy: Basic Definitions. EJIFCC 2009, 19, 203–211.
61. Alonso, G.A.; Gutiérrez, J.M.; Marty, J.-L.; Muñoz, R. Implementation of the Discrete Wavelet Transform Used in the Calibration

of the Enzymatic Biosensors. In Discrete Wavelet Transforms—Biomedical Applications; Olkkonen, H., Ed.; IntechOpen: London,
UK, 2011.

62. Chen, D.; Wan, S.; Xiang, J.; Bao, F.S. A high-performance seizure detection algorithm based on Discrete Wavelet Transform
(DWT) and EEG. PLoS ONE 2017, 12, e0173138. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1186/1475-925X-13-18
http://www.ncbi.nlm.nih.gov/pubmed/24533474
http://doi.org/10.1016/j.eswa.2010.07.118
http://doi.org/10.1016/j.cmpb.2010.07.011
http://doi.org/10.4015/S101623721750034X
http://doi.org/10.1109/TIM.2020.3027930
http://doi.org/10.1371/journal.pone.0173138

	Introduction 
	Materials and Methods 
	Material 
	Data Sources 
	Parameter of Experiments 
	Environments 
	Metrics 

	Methods 
	Development of Training and Testing Data 
	Feature Extraction 
	Classification 
	Experiment Scenario 


	Experiment Results 
	Performance Comparison to State-of-the-Art of Other Studies on Atrial Fibrillation Detection 
	Discussion 
	Conclusions 
	Copyright 
	References

