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Abstract: To meet the demand for cooperative signal control at oversaturated heterogeneous traffic
flow intersections containing CAVs and HVs, cooperative control including dedicated CAV lanes
has been explored to improve intersection safety capacity and reduce vehicle delays while avoiding
uncertain HV driving behaviour. However, this approach does not fully exploit CAV network
connectivity advantages and intersection spatial and temporal resources. Here, an oversaturated
heterogeneous traffic flow signal control model based on a variable virtual waiting zone with a
dedicated CAV lane is proposed. Within the model, CAVs going straight or left share a dedicated
CAV lane, a CAV variable virtual waiting zone is within the intersection ahead of the dedicated CAV
lane, and CAVs and HVs share the straight-through lane. The model framework has three layers.
The upper layer optimizes the barrier time using a rolling time domain scheme. The middle layer
optimizes the phase duration and variable virtual waiting zone switching time based on the fixed
phase sequence, returning the vehicle delay to the upper optimization model. The lower layer
performs CAV grouping and trajectory planning in the dedicated CAV lane based on signal timing
and variable virtual waiting zone duration, returning the CAV delays to the middle level.

Keywords: variable virtual waiting zone; dedicated CAV lane; heterogeneous traffic flow; oversatu-
ration; cooperative signal control

1. Introduction

Networked signals from advanced communication devices and other detection devices
can sense intersection traffic demand and make intelligent control decisions [1–3]. Over
time, the rapid development of vehicle-to-everything (V2X) and connected and automated
vehicle (CAV) technologies will provide more real-time information about vehicles at
signalized intersections and optimize vehicle trajectories [4]. A common belief among
policy makers and scholars is that heterogeneous traffic flows with HV and CAV coexistence
will be prevalent in the next 20–30 years [5–7]. The construction of China’s urban roads and
increasing car ownership have made peak traffic flows at urban road intersections saturated
or oversaturated [8–10]. Collaborative control of heterogeneous traffic flows based on
dedicated CAV lanes has been explored to improve intersection capacity and reduce vehicle
delays while avoiding uncertainty in HV driving behaviour [11–15]. Based on these
advanced technologies and realistic situations, we need to study a new oversaturated
heterogeneous traffic flow signal control model with a variable virtual waiting zone based
on dedicated CAV lanes to utilize the advantages of CAV network linkages and exploit
the spatiotemporal resources of intersections. This new signal control model consists of
signal cycle control, dedicated lane variable virtual waiting zone time division, and vehicle
trajectory control.
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However, the challenges of the new signal control model include the following three
aspects. First, the signal control period and phase duration are directly related to intersec-
tion traffic efficiency and vehicle delay duration, and reasonable regulation of the signal
control period needs to fully consider the minimum vehicle delay at the entrance. Second,
to fully exploit the space-time resources inside an intersection, the length and holding time
of the variable virtual waiting zone need to be set reasonably. Third, the trajectory planning
and grouping of CAVs in dedicated lanes also becomes complicated under oversaturated
heterogeneous traffic demand.

In this paper, our objectives are to solve the above problems. An oversaturated hetero-
geneous traffic flow signal cooperative control model based on a variable virtual waiting
zone for dedicated CAV lanes is proposed. The contributions of this study include signal
cycle duration optimization, variable virtual waiting zone maintenance time optimization,
and CAV trajectory optimization.

(1) An oversaturated heterogeneous traffic-flow cooperative signal-control model
based on a variable virtual waiting zone in a dedicated CAV lane is proposed for the
first time. The three-level structure of this model has coupling constraints and nested
correlations. The variable virtual waiting zone can provide terminal constraints for a CAV
to optimize its trajectory within the dedicated lane. The period and phase duration of the
signal are based on the delay of the heterogeneous traffic flow, and the determination of
the delay depends on the maintenance time of the variable virtual waiting zone and the
trajectory planning of the CAV. Therefore, these three components are considered in this
paper in an interrelated and comprehensive manner.

(2) Different from existing dedicated CAV lanes, to improve intersection capacity and
reduce vehicle delays strategy we propose a variable virtual waiting zone concept based on
dedicated CAV lanes combined with signal phasing. The variable virtual waiting zone fully
exploits the spatial and temporal value of intersections and organically integrates the signal
and CAV network characteristics to provide redundant space for CAV trajectory planning.

The remainder of this essay is structured as follows. Section 2 examines related re-
search. The issue is discussed in Section 3 together with introduction of the variable virtual
waiting zone. Section 4 presents the variable virtual waiting zone oversaturated heteroge-
neous traffic flow traffic signal and vehicle trajectory control model based on dedicated
CAV lanes. Section 5 simulates and analyses the relevant results to reach conclusions. The
work is concluded in Section 6, which also provides suggestions for additional research.

2. Related Work
2.1. Traffic Signal Control

Signal control based on vehicle arrival data can improve traffic sustainability and
traffic efficiency. For signal optimization problems based on CAV arrival data, including
green light duration optimization and phase sequence adjustment [16–22], the input for
signal optimization is usually vehicle arrival information. In order to optimize the signal
timing and phase sequence in a connected car environment, Feng et al. [17] suggested a
real-time adaptive phase adjustment technique based on vehicle speed and spatial data.
The experimental results show that the proposed algorithm has the ability to significantly
reduce traffic delay. Shaghaghi et al. [18] included additional traffic data to use vehicle
trajectory data as input for signal optimization, such as intersection waiting duration
and traffic demand, including breakdowns and jumps. The signal optimization model is
typically built using the National Electrical Manufacturers Association (NEMA) industry
standard traffic signal structure optimizer [17,22]. In addition, Macroscopic Fundamental
Diagram (MFD)-based traffic performance metrics is also used as input information for
signal optimization [23]. To identify junction signal timing techniques, including signal
cycle length and red and green light durations, Jiang et al. [22] used a phase-controlled
optimization model. The experimental results showed that the suggested optimization
strategy could increase traffic efficiency while maintaining high standards. Other variables
such as fuel consumption and driving comfort are frequently seen as goals of optimization
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problems in addition to vehicle delay. It has been demonstrated that approaches such as
dynamic programming and mixed-integer linear programming can be utilized to solve these
issues [24]. However, these studies only consider the optimization of traffic signals, ignoring
the optimization of vehicle trajectories, especially the random model problems [25–27]
caused by the random arrival of vehicles, which may affect the performance of relevant
strategies.

2.2. Optimal Control of Waiting Zones

Road signal intersection capacity can be effectively increased by intersection waiting
zones during peak hours [28,29]. Intersection waiting zones usually include left-turn wait-
ing zones and straight-through waiting zones [30–32]. Geometric layout, signal phasing,
and suggested optimal traffic conditions are the current focus of studies on optimal waiting
zone control. Yang et al. [31] systematically analysed the effects of waiting zones on vehicle
average delay and vehicle fuel consumption under different green time ratios and different
traffic demands through numerical simulations. Intersection safety and sustainability are
often considered key indicators for evaluating the level of optimal control of intersection
waiting zones [33,34]. When comparing scenarios of crossings with and without waiting
zones, Jiang et al. [33] employed traffic conflict approaches and an ordered probability
model to identify key variables that affect the severity of conflicts in waiting zones. The
results of the study indicate that for manually driven vehicles, the use of a waiting zone
increases intersection conflicts, bringing about secondary stops or repeated acceleration
of vehicles inside the waiting zone. Unreasonable speed performance is also a negative
contributor to fuel consumption and emissions [35]. The net-linked characteristics of CAVs
have natural advantages to enhance the safety of intersection waiting zones and help in
CAV trajectory planning in waiting zones [36]. Unfortunately, little research has been
performed on waiting zones based on the net-linked characteristics of CAVs, including the
waiting zone length, direction, and vehicle speed.

2.3. CAV Trajectory Optimization for Saturated Heterogeneous Traffic Flows

Optimal CAV trajectory control at intersections based on dedicated CAV lanes can
ensure traffic safety and improve the operational efficiency of saturated heterogeneous
traffic flows [12,14,37]. CAV trajectory planning at intersections based on dedicated CAV
lanes includes planning to reduce energy consumption and shorten traffic delay [38–44].
Zhao et al. [42] suggested a model predictive control method to achieve mixed CAV
platoons and HV platoons to minimize fuel consumption through signalized intersections.
Malikopoulos et al. [43] created an analytical model for controlling CAV trajectory and
solved the model from the standpoint of severe safety constraints. Additionally, various
cutting-edge control techniques for vehicles, such as numerical computation, are suggested.
Ma [44] proposed a decentralized planning approach for CAV trajectories. Based on a
two-layer model, Ma optimized the longitudinal and lateral trajectories of individual CAVs.
In the objective function, Ma considered vehicle delays, fuel consumption, and lane-change
cost. It employed a parallel Monte Carlo tree-search technique and a lane-change strategy
tree. Some numerical solution algorithms, including gradient-based methods [41] and
metaheuristic algorithms [45], also provide new perspectives for solving CAV trajectory
optimization problems. Unfortunately, CAV trajectory optimization near intersections
often needs to be considered in conjunction with signal phasing because of vehicle motion
continuity. Ma [11] proposed a dedicated CAV lane segregated intersection control model
based on a shared phase dedicated lane (SPDL) for a mixed traffic environment, which
is based on a dedicated CAV lane and unifies and optimizes CAV trajectory planning
and signalized phase control to reduce the delay of heterogeneous traffic flow. However,
the above problems in CAV trajectory planning for saturated heterogeneous traffic flow
ignore the value of the waiting zone, and no method has been developed for CAV trajectory
planning regarding signal phasing and having a waiting zone, which may play an important
role in the above strategies.
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3. Description of Related Problems
3.1. Traffic Signal Control

Figure 1 shows the layout of a common crossover with isolated intersections. Each arm
has vehicles that travel in three different directions: left, straight ahead, and right. There is
a dedicated CAV lane on each arm for straight-ahead and left-turn CAVs. Right-turn traffic
signals are not used to govern CAVs and HVs as they operate in the right-turn lane. There
is a passing zone and an adjustment zone on each arm close to the intersection. A CAV
variable virtual waiting zone is set in the intersection in front of the passing zone, and the
precise physical location of the signal intersection determines the size of the virtual waiting
zone. the direction of the virtual waiting zone is determined by the control system. The
CAVs are adjusted by the adjustment zone to form a queue and wait to enter the passing
zone and variable virtual waiting zone. The CAV queue then follows a planned trajectory
through the intersection without stopping in the dedicated lane formed by the passing
zone and the variable virtual waiting zone. The CAV queue composition, the time for each
CAV queue to enter the dedicated CAV lane, the CAV speed planning through the passing
zone and the variable virtual waiting zone, the intersection signal timing, and the variable
virtual waiting zone switching time are all optimized in one framework. The CAV queue
not only takes advantage of the network connection of the network-connected vehicles
and shortens the vehicle spacing, but also simplifies the amount of computation for CAV
trajectory optimization, laying a realistic foundation for the implementation of the variable
virtual waiting zone. To examine whether the model is valid, presumptions are made as
follows:

(1). HV does not change lanes in the adjustment zone and the passing zone, and the
adjustment zone and passing zone are equipped with basic sensing devices, which
can collect or predict the arrival information of CAV and HV at the intersection in the
next signal cycle.

(2). The number and location distribution of HVs can be detected by roadside infrastructure.
(3). CAVs can change lanes and complete formations in the adjustment zone.
(4). Each arm has a dedicated CAV lane.
(5). A passing zone is allowed within the intersection.
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3.2. Variable Virtual Waiting Zone

A variable virtual waiting zone is an area planned inside an intersection in front
of a dedicated CAV lane passing zone, divided into a straight virtual waiting zone and
a left-turn virtual waiting zone. The actual geography determines the virtual waiting
zone length. The principle of setting the virtual waiting zone length is to maximize the
use of intersection space value and CAV network connection value without affecting the
intersection traffic. Therefore, the maximum length of the straight virtual waiting zone is
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measured from the intersection stop line along the straight direction to the intersection of
the intersecting HV left-turn lane. The maximum length of the left-turn virtual waiting zone
is calculated as the distance between the junction stop line along the left-turn direction and
the intersection of the intersecting HV straight lane, as shown in Figure 2. A straight-ahead
CAV in the designated CAV lane on this side will enter the intersection with the left-turning
vehicles at the same time as or with a delay when the intersection’s left-turn signal is in
the green phase. The straight-ahead car runs to the straight virtual waiting zone, and
when the straight-ahead green light comes on, the CAV passes through the straight virtual
waiting zone and enters the intersection in a nonstop manner, finally passing the signal
intersection without stopping. Figure 3a is a schematic diagram, and the corresponding
phase division diagram is shown in Figure 3b. The intersection lane groups are divided as
shown in Figure 2. When the green light for straight-ahead in this lane comes on, in the late
green light, the left-turn CAV in the dedicated CAV lane follows the straight-ahead CAV to
the left-turn waiting zone in the intersection. When the left-turn green light is on, the CAV
passes the left-turn virtual waiting zone and enters the intersection without stopping. The
relevant schematic diagram is shown in Figure 3c, and the corresponding phase is shown
in Figure 3d. Throughout the process, there is no need to increase the effective green time
of the straight-ahead phase or the number of straight-ahead inlet lanes, yet it is equivalent
to making the inlet lanes wider. The variable virtual waiting zone makes full use of the
intersection area of the intersection, but reduces the signal control time and shortens the
entire intersection cycle duration. This type of release can be thought of as exchanging time
for space and then space for time, ultimately fulfilling the goal of mutual conversion of
space and time while utilizing all of the intersection’s space-time resources.
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3.3. Intersection Phase Sequence Setting Analysis

In view of a series of HV problems in heterogeneous traffic flow, such as slow signal
control response, relatively large headway time distance, and easy traffic violation and
secondary parking in the HV left-turn waiting zone, if the left-turn HV and left-turn CAV
are set in the same left-turn lane containing the left-turn waiting zone, the CAV network
linkage effect will be difficult to utilize. Because CAVs use a dedicated lane, to achieve the
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overall heterogeneous saturated traffic flow efficiency improvement, this study sets the
signal phase of the intersection to a fixed-phase sequence, that is, straight-ahead and then
left-turn (Note: This study focuses on the changes brought by the dedicated CAV lane and
variable virtual waiting zone on the overall efficiency of the intersection, the question of
whether the HV lane is equipped with a waiting area is not considered.). The purpose of
this setting is to fully exploit the value of the intersection’s spatial and temporal resources.
There is a reason for this: if the left-turn lane turns first, and then the straight-ahead goes,
vehicles in the HV straight-ahead lane will be restricted to the stopping line, and only
left-turn traffic flow will be available in the intersection, so the intersection space and
location resources will not be not fully utilized.
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4. Model Formulation

Figure 4 shows the signal control and CAV trajectory optimization model framework
based on a variable virtual waiting zone with a dedicated CAV lane proposed in this paper.
How CAVs and HVs enter the intersection at future time T is used as the input to the control
model. Each CAV can transmit the following information to the control unit through the
V2I communication channel: the time of entering the adjustment zone and the direction
of travel at the intersection. The control system can also obtain the average arrival rate
of each HV in a timely fashion by using the information obtained using roadside sensing
equipment.

The model framework includes three layers, which achieve the following: signal
timing optimization, variable virtual waiting zone switching time optimization, and CAV
trajectory optimization. In order to reduce the time that cars take to cross the intersection,
the upper layer of the model dynamically optimizes the barrier duration according to the
arrival of vehicles. Using the output from the higher layers, the phase duration of the
signal light and the switching time of the variable virtual waiting zone are optimized in the
middle layer, and the vehicle delay time calculated by the middle-layer model is fed back
to the upper-layer model. Based on the time information transmitted by the middle-layer
model, the lower-layer model accurately adjusts a CAV in the passing zone and the variable
virtual waiting zone track and simultaneously transfers the CAV travel time to the middle
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layer. The overall output of the model includes a cross-optimal signal control scheme and
CAV trajectory planning.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 32 
 

arrival of vehicles. Using the output from the higher layers, the phase duration of the sig-
nal light and the switching time of the variable virtual waiting zone are optimized in the 
middle layer, and the vehicle delay time calculated by the middle-layer model is fed back 
to the upper-layer model. Based on the time information transmitted by the middle-layer 
model, the lower-layer model accurately adjusts a CAV in the passing zone and the vari-
able virtual waiting zone track and simultaneously transfers the CAV travel time to the 
middle layer. The overall output of the model includes a cross-optimal signal control 
scheme and CAV trajectory planning. 

 
Figure 4. Three-layer optimization model framework. 

4.1. Upper-Layer model 
Considering the fixed phase sequence in this study, the cycle length and phase dura-

tion will be optimized. To facilitate modelling, the NEMA ring barrier structure is 
adopted, according to Figure 5. Each ring’s and barrier group’s respective 2 phases are 
indexed as p = 1, 2. For instance, the phases in Figure 5 are indexed as p = 1 for pass direc-
tions m of 1, 3, 5, and 7 and as p = 2 for pass directions m of 2, 4, 6, and 8. A urban road 
traffic system is highly stochastic in nature. The traffic condition of the road network at 
any time depends not only on the incoming and outgoing traffic volume in the current 
period, but also on the traffic conditions and control strategies of previous cycles. Since 
the road network situation changes in each cycle, the traffic conditions of the previous 
cycles and the current cycle must be considered when optimizing the signal control strat-
egy for the current cycle. The signal control system needs to be discretized into a multistep 
decision process to better adapt to changes in traffic operating conditions and the envi-
ronment. Dynamic programming is a method to solve the optimization of the multistep 
decision process, which can transform the multistep optimal control problem into multi-
ple one-step optimal control problems, and finally achieve optimal process results. There-
fore, optimal signal timing in the upper layer is considered a discrete-time dynamic-pro-
gramming issue. 

To prevent a dimension problem in the dynamic planning process, the idea from 
Ma’s paper [11] is applied in this study. The barrier groups in the NEMA loop are used as 
the basic stages, and the CAVs and HVs in multiple signal cycles within prediction range 
T are made to pass the intersection in an optimal way by rolling and repeating barrier 
group 1 and barrier group 2. This is shown in Figure 6. 

 
Figure 5. Ring barrier controller structure. 

Figure 4. Three-layer optimization model framework.

4.1. Upper-Layer model

Considering the fixed phase sequence in this study, the cycle length and phase duration
will be optimized. To facilitate modelling, the NEMA ring barrier structure is adopted,
according to Figure 5. Each ring’s and barrier group’s respective 2 phases are indexed as
p = 1, 2. For instance, the phases in Figure 5 are indexed as p = 1 for pass directions m
of 1, 3, 5, and 7 and as p = 2 for pass directions m of 2, 4, 6, and 8. A urban road traffic
system is highly stochastic in nature. The traffic condition of the road network at any
time depends not only on the incoming and outgoing traffic volume in the current period,
but also on the traffic conditions and control strategies of previous cycles. Since the road
network situation changes in each cycle, the traffic conditions of the previous cycles and
the current cycle must be considered when optimizing the signal control strategy for the
current cycle. The signal control system needs to be discretized into a multistep decision
process to better adapt to changes in traffic operating conditions and the environment.
Dynamic programming is a method to solve the optimization of the multistep decision
process, which can transform the multistep optimal control problem into multiple one-step
optimal control problems, and finally achieve optimal process results. Therefore, optimal
signal timing in the upper layer is considered a discrete-time dynamic-programming issue.
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To prevent a dimension problem in the dynamic planning process, the idea from Ma’s
paper [11] is applied in this study. The barrier groups in the NEMA loop are used as the
basic stages, and the CAVs and HVs in multiple signal cycles within prediction range T are
made to pass the intersection in an optimal way by rolling and repeating barrier group 1
and barrier group 2. This is shown in Figure 6.

The rolling repeated barrier group scheme fully considers the coupling relationship
between the traffic situations of the previous and current cycles. As shown in Figure 7,
in addressing a real-time traffic control problem, when the suggested model is solved
using the most recent traffic state, the signal timing information of the previous two barrier
groups is used. In the first barrier group, the optimization program applies the calculated
signal timing results to the second signal timing cycle according to the real-time CAV and
the predicted HV arrival information. Using Figure 7 as an illustration, throughout the
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first barrier group of the current signal control cycle, the model optimizes the supplied
data using a calculation, and the results of the optimization calculation determine the
signal control scheme and CAV trajectory planning of the first barrier group in the second
cycle. The CAV of the first barrier group in the second cycle begins to leave the adjustment
zone and enter the designated CAV lane once the first barrier group in the first cycle has
completed its operation. The real-time entrance speed and the signal control timing are
used to change the speed of the CAV queue in the passing zone and the variable virtual
waiting zone. Similarly, the second barrier group in the first cycle will affect the second
barrier group’s signal control scheme and CAV trajectory planning in the second cycle. In
this way, a rolling repetitive barrier group scheme is formed.
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The upper-layer control model discretizes the optimal signal duration problem into
a time-based dynamic programming problem. The state update frequency is set to ∆t,
meaning that the objective function is computed every t seconds, and the total signal control
duration is T. State sj at stage j is defined as the sum of time steps allotted up to stage j − 1.
The decision variable uj is used to represent how many time steps were allowed to stage j.
The numbers of time steps Umin

j and Umax
j determine uj:

Umin
j ≤ uj ≤ Umax

j (1)

where Umin
j and Umax

j are determined by the following:

Umin
j =

Gmin
1,j + R1,j + Gmin

2,j + R2,j

∆t
(2)

Umax
j =

Gmax
1,j + R1,j + Gmax

2,j + R2,j

∆t
(3)
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where the minimum and maximum green light timings for obstacle group j at phase p are
represented by Gmin

p,j and Gmax
p,j . Rp,j is the yellow- and red-light times for obstacle group j

at phase p. The term ∆t is a time step, and ∆t is set according to the actual situation in this
study to ensure that Umin

j and Umax
j are integers.

The state transfer equation is as follows:

sj+1 = sj + uj (4)

The stage objective function f j is the minimum intersection delay; the full process
objective function vj is the sum of the stage objective functions.

The core idea of dynamic programming is Bellman’s principle, which seeks the optimal
solution through continuous iteration of the objective function, starting from an initial value
through the positive sequence to continuously use Bellman’s equation to make corrections,
and the optimal policy is derived after calculating the optimal state value by conducting a
direct search for the optimal evaluation function.

4.1.1. Forwards Recursion

When the signal duration of a cycle is determined, as seen in Figure 6, the total vehicle
delay time can be estimated. Figure 8 illustrates the recursive reasoning.
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The best choice is represented by u∗j−1
(
sj
)
, and the middle-level model’s calculation of

f j
(
sj, uj

)
makes use of the phase duration, variable virtual waiting zone switching time,

and CAV trajectory optimization.

4.1.2. Backwards Recursion

The best choice u∗j at stages 1 and 2 is resolved via backwards recursion in accordance
with the dynamic programming principle, according to Figure 9.

4.2. Middle-Layer Model

Based on the data collected from the upper-layer model, the middle-layer model
optimizes the phase duration of barrier group j and the holding time of the variable virtual
waiting zone. It then gives the upper-layer model the least vehicle delay f j

(
sj, uj

)
for

phase j.
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4.2.1. Human-Driven Vehicle Delays

A moving vehicle’s delay time dhm
j and a stationary vehicle’s delay time dhs

j are both

included in the delay time dh
j of HVs in barrier group j:

dh
j = dhm

j + dhs
j (5)

A lane group is described in this work as one or more lanes of the same inlet lane with
the same steering function. The term dhm

j is the delay of all human-driven motion vehicles
in barrier group j, which is equal to the total of the delays of human-driven motion vehicles
within each lane group.

dhm
j = ∑2

r=1 ∑2
p dh

p,r,j ∀p = 1, 2; r = 1, 2 (6)

where dh
p,r,j denotes the delay of the barrier group j in the NEMA ring r during the P phase

period. It can be reacted to by changing the queue length lp,r,j of the lane group during the
phase time, which can be calculated using the following equation:

dh
p,r,j = ∑

t0+sj+uj
t=t0+sj+1 lp,r,j(t)∆t (7)

where t0 is the time step at the beginning of the optimization signal, lp,r,j(t) is the queue
length of the lane group at time t when the phase in NEMA ring r in barrier group j is P,
and the queue length at time t is jointly influenced by the cumulative vehicle arrival rate
τp,r,j(t) at time t and the cumulative vehicle dissipation rate θp,r,j(t) at time t.

lp,r,j(t) = lp,r,j(t− 1) + τp,r,j(t)− θp.r.j(t) ∀t = t0 + sj + 1, · · · , t0 + sj + uj (8)

To calculate length lp,r,j at any moment in the signal optimization process, it is nec-
essary to determine length lp,r,j at time t0 + sj, which is calculated using the following
formula:

lp,r,j
(
t0 + sj

)
=

{
lp,r,j−1

(
t0 + sj−1 + uj−1

)
, i f j ≥ 2

lp,r,1(t0) = l0
p,r,1, i f j = 1 (9)

where l0
p,r,1 is the initial length of the queue at time t0.

The cumulative vehicle arrival rate τp,r,j(t) in Equation (8) is the arrival rate of HVs
in barrier group j at time step t for NEMA ring r and phase P. This value is determined
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by the arrival rate τm(t) of each moving vehicle in the direction of passage m. The arrival
rate τm(t) of each moving vehicle can be divided into a saturated arrival rate τs

m(t) and an
unsaturated arrival rate τr

m(t):
τs

p,r,j = ∑m τm
p,r,jτ

s
m (10)

τr
p,r,j = ∑m τm

p,r,jτ
r
m (11)

where τm
p,r,j is defined to be 1 if the moving vehicle crosses the intersection under phase P

of ring r of group j and 0 otherwise.
The cumulative vehicle dissipation rate θp.r.j(t) in Equation (8) is affected by the queue

length and vehicle arrival rate, and considering the phase change, the cumulative vehicle
dissipation rate θp.r.j(t) is divided into θ1.r.j(t) and θ2.r.j(t) by phase:

θ1.r.j(t) =

{
min

{
τs

1,r,j(t), l1,r,j(t− 1) + τr
1,r,j(t)

}
, i f t0 + sj < t ≤ t0 + sj + g1,j

0, otherwise
(12)

θ2.r.j(t) =

{
min

{
τs

2,r,j(t), l2,r,j(t− 1) + τr
2,r,j(t)

}
, i f t0 + sj + g1,j +

R1,j
∆t < t ≤ t0 + sj + uj −

R2,j
∆t

0, otherwise
(13)

where
Rp,j
∆t should be an integer and gp,j is the length of the green light during phase

switching in phase j.
The following equation can be used to determine the delay time dhs

j of a stationary
vehicle in stage j:

dhs
j = ∑8

m=1(1−∑2
p=1 ∑2

r=1 τm
p,r,j)d

h
m,j (14)

where dh
m,j is:

dh
m,j = ∑

t0+sj+uj
t=t0+sj+1 lm,j(t)∆t, m ∈ [1, 8] (15)

where lm,j(t) is:

lm,j(t) = lm,j(t− 1) + τr
m(t) t ∈

[
t0 + sj + 1, t0 + sj + uj

]
(16)

where lm,j
(
t0 + sj

)
is:

lm,j
(
t0 + sj

)
=

{
lm,j−1

(
t0 + sj−1 + uj−1

)
, i f j ≥ 2

lm,1(t0) = l0
m,1, i f j = 1

(17)

4.2.2. Connected and Autonomous Vehicle Delays

The delay time dc
j of the network-linked autonomous vehicles in barrier group j is as

follows:
dc

j = ∑ω∈Ψ(t
ω
j − tω

f ree) (18)

tω
j = tbe f ore−j + twaiting−j + tnormal−j (19)

tω
j = tω

(
ϑj, gj

)
, ∀ω ∈ Ψ (20)

where Ψ is the collection of CAVs that arrive at the intersection within anticipated time
T; tω

f ree is the time at which a CAV can pass freely; and tω
j is the time at which the CAV

actually passes through barrier group j. Equation (19) illustrates that this time includes
time tbe f ore−j, which occurs before the CAV enters the virtual waiting zone; time twaiting−j,
which occurs while it is moving in the virtual variable waiting zone; and time tnormal−j,
which occurs when it crosses the stop line of the variable virtual waiting zone and begins
to move inside the intersection (his time is calculated in the lower level trajectory model.).
In Equation (20), ϑj is the barrier group j phase, gj is the barrier group j phase duration,
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and tω is the barrier group j signal timing, in the lowest layer model, which is managed by
the CAV trajectory planning.

4.2.3. Determination of Variable Virtual Waiting Zone Holding Time

Due to the predefined phase sequence in this study, which is straight forward followed
by a left turn, the real vehicle speed vCAV−I at different junctions and the maximum
length S of the waiting zone at different intersections are not the same. As a result, the
maximum waiting zone length S and the average CAV passage speed in region vCAV−I−j
both influence the variable virtual waiting zone holding time twaiting−j:

twaiting−j =
S

vCAV−I−j
(21)

where S denotes the longest possible length of the intersection’s virtual waiting zone, which
is determined by the actual intersection spatial location and vehicle traffic direction, and
vCAV−I−j is the average value of the actual operating speed of CAVs within the variable
virtual waiting zone at the intersection in barrier group j. vCAV−I−j is affected by the lower
trajectory planning model, and its value size does not exceed the speed limit value of the
virtual waiting zone, which is discussed in the subsequent sections.

4.2.4. Signal Constraints

In optimizing the phase duration and the holding time of the variable virtual waiting
zone in barrier group j, the signal constraints need to satisfy the following equations:

Gmin
p,j ≤ gp,j∆t ≤ Gmax

p,j , ∀p = 1, 2 (22)

0 < twaiting−j < gp,j (23)

∑2
p=1(gp,j +

Rp,j

∆t
) = uj (24)

Equation (22) indicates the minimum and maximum green light duration limits.
Equation (23) indicates that the holding time of the variable virtual waiting zone cannot
exceed the green light duration of the intersection. Equation (24) shows that uj is equal to
the total of the lengths of the phases in the NEMA loop.

4.2.5. Determination of Variable Virtual Waiting Zone Holding Time

The minimum vehicle delay f j (sj,uj) is calculated differently for stages j = 1 and j = 2
because the model employs a rolling repeated barrier group structure. The lowest delay
times dh

1 for HVs and dc
1 for CAVs in the barrier group during stage 1, (T1) are added

together when j = 1 to form f j
(
sj, uj

)
:

(T1)
f1(s1, u1) = min(dh

1 + dc
1) (25)

The constraints are Equations (6)–(24), where j = 1.
The minimum delay time dh

j for HVs and the minimum delay time dc
j for CAVs in

the barrier group during phase j = 2, · · · , J are added together when j = 2 to generate
the performance function minimum vehicle delay f2(s2, u2). J is the number of barrier
groups that release each HV and CAV during predicted time T. The projected demand and
signal timeliness of the first two barrier groups define how much it is worth. The following
formula, (T2), is used to determine f2(s2, u2):
(T2)

f2(s2, u2) = min ∑J
j=2(d

h
j + dc

j ) (26)

The constraints are Equations (6)–(24), where j = 2, · · · , J.
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Due of the small number of participating cars, the mixed-integer nonlinear program-
ming models T1 and T2 are solved using the enumeration approach. The objective function
vj
(
sj
)

is calculated by feeding f1(s1, u1) and f2(s2, u2) into the top-layer model.

4.3. Lower-Layer Model

The middle-layer model provides the signal phase ϑj, phase duration gj, and holding
time twaiting−j information for phase j of the changeable virtual waiting zone. The middle-
layer model receives the journey time tω

j of the CAVs from the lower-layer model, which
performs trajectory planning and travel direction modification for the straight-ahead CAVs
and left-turn CAVs in the passing zone and variable virtual waiting zone. In the passing
zone and variable virtual waiting zone, the lower-layer model also executes trajectory
planning and travel direction adjustment for the straight-ahead CAVs and left-turn CAVs.

4.3.1. CAV Queue Adjustment

When the hold time of every phase in barrier group j is informed state, the passable
CAV queue in barrier group j can be determined. Given the preset phase sequence used in
this study, the phase sequence setting, or go-straight-ahead and turn-left-behind sequence,
is presented in Figure 3.

The straight-ahead and left-turn CAVs are regrouped into straight-ahead CAV groups
and left-turn CAV groups in the adjustment zone when the go-straight-ahead and turn-
left-behind sequence is utilized. The first vehicle is subject to a different speed restriction,
and the CAV queue may wait there until it enters the passing and variable virtual waiting
zones. The CAV group turning left then follows the CAV group moving straight into the
passing zone. There are two cases, depending on the time of the signal.

Case 1: Two queues. As seen in Figure 10a, a stop-and-wait situation will result if
the first left-turn CAV follows the final CAV in the straight-ahead group because of the
extended red light time. The group moving straight ahead and the group making a left
turn through the intersection can be thought of as two queues in one barrier group to
prevent a prolonged stopping time for the left-turn group. The queue can be optimized by
Section 4.3.2. The vehicle-following model is determined by Section 4.3.3.
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Case 2: A single queue. The first left-turn CAV will not stop at the virtual left-turn
waiting zone if it follows the final straight CAV, according to Figure 10b, allowing the
entire left-turn CAV group to travel through the junction without stopping. As a result, the
convoys making a left-turn and going straight ahead can be thought of as one convoy in
one barrier group as they pass through the intersection.

Similar to case 1, the passage time tω
j can be calculated for the vehicles in the following

queue of the straight-ahead CAV group and the left-turn CAV group. For the CAVs in
barrier group j that cannot cross the intersection, the passage time is set to tω

j = tω
f ree.

4.3.2. First Vehicle Trajectory Planning in the CAV Queue

The acceleration profile of the first CAV ω at the front of the CAV queue in the passing
zone and variable virtual waiting zone is optimized to minimize the trip delay. Similar to
the research ideas of Ma and Feng [11,46], this study continues to simplify three-segment
trajectory planning, as shown in Figure 11. To ensure that the CAV moves through the
passing zone and changeable virtual waiting zone without halting, three portions of the
trajectory are identified, with the CAV running at maximum deceleration a1, constant
velocity (acceleration of a2), and maximum acceleration a3. T3 is the optimized model.
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xω(tω
2 )− xω(tω

1 ) =

(
tω
2 − tω

1
)(

vω(tω
2 ) + vω

(
tω
1
))

2
(37)

xω
(

tω
pass

)
− xω(tω

2 ) =

(
tω

pass − tω
2

)(
vω
(

tω
pass

)
+ vω(tω

2 )
)

2
(38)

tω
pass ≥ tω

2 ≥ tω
1 ≥ tω

0 (39)

tω
pass − tω

2 = twaiting−j (40)

tg
p,j + gp,j∆t ≥ tω

pass ≥ tg
p,j (41)

where tω
0 indicates when CAV ω has just reached the passing zone; tω

1 and tω
2 indicate

the end points of the trajectory of lead CAV ω during the deceleration phase and the
uniform speed phase, respectively; tω

pass is the moment when lead CAV ω crosses the stop
line ahead of the variable virtual waiting zone; vω(t) and xω(t) are lead CAV ω at time
point t; aω

i is the acceleration of lead CAV ω during the deceleration phase, the uniform
velocity phase, and the acceleration phase; and aL is the maximum deceleration. The term
aU is the maximum acceleration of lead CAV ω during the acceleration phase; vω

0 is the
initial velocity of lead CAV ω; when the phase index is P in group j, the starting time
point of CAV ω crossing the intersection is tg

p,j; decision variables include tω
i (i = 1, 2), tω

pass,
aω

i (i = 1, 2, 3), vω(t), and xω(t). The passing zone length is LP, and the variable virtual
waiting zone length is LC. The other parameters are known.
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In Equation (27), the objective function is minimizing tω
pass since the vehicle arrival

time has been determined. It is important to note in this study that, as shown in Figure 12,
there may be multiple optimal solutions tω

pass for the same amount of time to cross the
passing zone and the variable virtual waiting zone. For the selection of the optimal solution,
preference is given to the trajectory plan that passes the stop line in front of the virtual wait-
ing zone at a higher speed because this will enable a CAV to pass the intersection at a higher
safe speed; thus, maximizing the passing speed also becomes the optimization objective,
which is Equation (28). The moment tω

0 at which CAV ω enters the passing zone is re-
lated to the rolling repetition barrier scheme described previously. Equations (29) and (30)
define the moment tω

0 at which CAV ω enters the passing zone and the moment tω
pass at

which it leaves the stop line of the variable virtual waiting zone. Equation (31) sets the
upper and lower speed limits of CAV ω during its operation. Equation (32) constrains
the values of acceleration, aU , 0, aL, that is, the maximum deceleration process, the acceler-
ation of the uniform process, and the maximum acceleration of the acceleration process.
Equations (33)–(35) define the deceleration, uniformity, and acceleration of the three pro-
cesses in the velocity–acceleration formula. Equations (36)–(38) define the deceleration,
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uniformity, and acceleration of the three processes of the velocity-displacement formula.
Equation (39) specifies the division of time. Equation (40) is used to calculate the holding
time of the variable virtual waiting zone. Equation (41) ensures that CAV ω can cross the
junction within the period of time when there is a green light for that phase. It should be
noted that the velocity vω

0 of CAV ω at the time of entering the passing zone is not known,
and the magnitude of its value is between the minimum vL

0 and the maximum vU
0 . In actual

operation, since vehicles prefer to operate at a faster speed, vω
0 is probably equal to vU

0 in
the trajectory planning. The trajectory optimization model T3 can be solved by the method
in the Appendix A of this paper, as shown in Figure 12, when the CAV enters the passing
zone at time tω

0 . The trajectory planning of the fleet will be adjusted according to the actual
entry speed.
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4.3.3. CAV Queue-Following Model

Given the simplification of the three-stage trajectory planning in this study, for the
sake of simulation, the CAV queue-following model only needs to consider vehicle perfor-
mance. Therefore, the NGSIM vehicle-following model in Feng’s paper [46] is adopted and
described as following:

xω(t + ∆t) = max
{

xU
ω(t + ∆t), xL

ω(t + ∆t)
}

(42)

where xU
ω(t) and xL

w(t) represent the upper and lower limits of xω(t), respectively.
xU

ω(t + ∆t) can be stated using the following equation:

xU
ω(t + ∆t) = min

{
xω∗(t + ∆t− τω)− lω∗ − dω

jam, xω(t) + vω(t)∆t
+aU∆t2, xω(t) + vmax∆t, xω(t) + ∆xω(t + ∆t)

} (43)

∆xω(t + ∆t)

= ∆t

(
aLτω +

√
(aLτω)

2 − 2aL
(

xω∗(t)− xω(t)− lω∗ − dω
jam −

(xω∗ (t))2

2aL

))
(44)

where the CAV convoy’s lead vehicle is ω∗, CAV ω’s reaction time is τω, the distance
between CAV ω and other CAVs is dω

jam, lω∗ is the vehicle length of CAV vehicle ω∗, aU is
the maximum CAV acceleration, the greatest headway safety time distance that CAV ω
must travel to avoid a collision at time t + ∆t is ∆xω(t + ∆t), and aL is the maximum CAV
deceleration.

The lower limit distance xL
ω(t) is related to the current position that prevents the

CAV from backing up and the maximum acceleration/deceleration of the vehicle, so that
xL

ω(t + ∆t) can be expressed as follows:

xL
ω(t + ∆t) = max

{
xω(t), xω(t) + vω(t)∆t + aL∆t2

}
(45)
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4.4. Determination of the Passing Zone Length

It is possible to regulate the moment the CAV queue enters the adjustment zone’s
passing zone. If the CAV queue enters the passing zone within limited speed range

[
vL

0 , vU
0
]
,

the size of the passing zone must be set reasonably in conjunction with the length and
direction of the variable virtual waiting zone in order to protect the CAVs’ capacity to
pass the stop line of the variable virtual waiting zone without stopping, all the while
maintaining the speed limit. In this study, we refer to Feng’s research results on the impact
of travel distance on the design of CAV trajectories. It should be emphasized that CAV
queue adjustment in the adjustment zone, especially lane-changing behaviour, crowds the
HV lane under oversaturated traffic conditions, and thus may cause delays in HV passage.
The adjustment zone will lead to inaccurate HV delay prediction in 4.2.1, especially close
to the HV stop line. The CAV trajectory planning approach, however, may and will lead to
an unrealistic passing zone. Therefore, the following equation can be used to determine the
passing zone’s maximum length LP−max:

LP−max =
v2

max − vL2

0
2aU +

(
Xmin

j −
vmax − vL

0
aU

)
vmax − LC (46)

This research focuses on cooperative control of signals and car movements at lone
intersections, and makes the assumption that there are enough lane lengths for zoning
in the problem at hand. The minimum passing zone length must also be quantified in
addition to the maximum passing zone length study. If the passing zone is long enough to
provide the proper trajectory planning model, the CAV queue should be allowed to pass
without halting at the stop line in front of the variable virtual waiting zone. Equation (47)
can be used to express LP−min:

Lmin =
vU2

0
2 ∗ aL (47)

5. Simulation Study
5.1. Simulation Settings

To systematically analyse the properties of the recommended model, a single classic
four-way intersection with a left–centre–right direction of travel is used, as shown in
Figure 2, where there are no traffic lights to manage right-turning vehicles. The passing
zone is 500 m long, and the variable virtual waiting zone length is 20 m for the straight-
ahead and 35 m for the left-turn. Combined with the three-layer optimization model
introduced in Chapter 4, the shortest period of time during which there is a green light
Gmin

p,r,j =15 s, the longest possible period of time for the green Gmax
p,,j = 40 s, and the spacing

time Rp,j = 5 s are set in the upper-layer model. In the model of the middle layer, the
saturated left-turn HV flow (when m is 2, 4, 6, and 8) is 1550 veh/h, and the direct saturated
flow of HVs (when m is 1, 3, 5, and 7) is 1650 veh/h. In the model of the base layer, the
maximum rate of acceleration aU of CAVs is 2 m/s2, the greatest rate of slowdown aL is
−2 m/s2, the maximum CAV speed limit is 14 m/s, the total distance djam

ω and body-fixed
length lω of the front end are 6 m, and the car’s response time is 0 s. The beginning speed
of the first CAV stepping into the passing zone is generated at random between vL

0 (3 m/s)
and vU

0 (14 m/s). VISSIM 4.3 (PTVAG, 2008) was selected as the simulation software, and
Wiedermann 74 was chosen as the CAV-following and lane-change models, which can
collect the HV driving behaviour in the simulation.

Each arm sees an average of 2250 vehicles every hour. The vehicle arrivals during
the simulation are divided into uniform distribution and Poisson distribution, where the
proportions of vehicles turning left, right, and straight ahead are, respectively, 0.4, 0.2, and
0.4, and 50% of the population are CAVs. The straight and left-turn ahead CAVs operate in
a dedicated CAV lane consisting of a passing zone and a variable virtual waiting zone. The
prediction range T is set to 2 min. The sake of simplicity and the frequency of HV arrival
obtained from the previous prediction within the prediction horizon T are considered as
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the average HV arrival rate. The arrival information of each CAV within the predicted
range is available through communication methods.

The model for managing traffic at a single crossroads with a dedicated CAV lane
in a mixed-traffic environment based on shared-phase dedicated lanes (SPDL) proposed
by Ma [11] is used as a benchmark for evaluation. The model proposes that CAVs use a
dedicated CAV lane in a queue. The model plans the intersection signal phase and signal
duration as well as the vehicle trajectory collaboratively, as shown in Figure 13; however,
the model does not fully utilize the space within the intersection area.
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A desktop PC equipped with an Intel 2.6 GHz CPU and 16 GB of RAM is used for all
experiments in this study, and the simulation model is constructed in Python 3.7.4. Five
threads are utilized in parallel computation to increase the computing performance. During
the simulation of each trial, five random seeds are employed to account for the ambiguity
of vehicle arrival and HV driving behaviour. With a forecast time T of 2 min and a time
step ∆t =1 s, every simulation was run for 1000 s.

5.2. Simulation Results and Analysis

This study is concerned with the cooperative control problem of oversaturated hetero-
geneous traffic flow at a single intersection. Therefore, minimizing delay and maximizing
throughput are used as metrics to evaluate and analyse the performance advantages and
disadvantages between the oversaturated heterogeneous traffic flow signal control model
(VVWL) based on the variable virtual waiting zone of the dedicated CAV lane and the
SPDL-based control model suggested in this study. As seen in the preceding section, the
optimal control objective in this study is the minimum vehicle delay, which is equivalent to
the period that separates the moment that a vehicle actually travels from the time that it is
free to move. The simulation results are displayed in Figures 14 and 15.
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Figure 14 compares the vehicle volumes of heterogeneous traffic flows under control
based on both VVWL and SPDL in relation to both uniform and Poisson distributions.
As seen in Figure 14a, the VVWL-based control mode increases the total volume of all
vehicles, CAVs, and HVs, respectively, by 3%, 4.5%, and 0.9%, as opposed to the control
based on SPDL mode, when a uniform distribution of vehicles arrive at the intersection.
As seen in Figure 14b, whenever a Poisson distribution of vehicles arrive at the crossroads,
the vehicle capacity increases by 2.8%, 4%, and 1.2%, respectively. The proposed variable
virtual waiting zone helps to improve the intersection capacity and has a greater impact on
the improvement of CAV capacity. The main reason to explain this is that the proposed
variable virtual waiting zone allows more CAVs into the intersection at the same time,
which increases the capacity of CAVs in the same signal control cycle, and this advantage
will be more obvious if the demand for passing vehicles is higher.

Figure 15 compares the average vehicle passage delay of heterogeneous traffic flow
under control based on both VVWL and SPDL from both the uniform and Poisson distribu-
tion perspectives. The results in Figure 15a show that when all types of vehicles conform
to a uniform distribution, all vehicles’ delays are reduced by the control based on VVWL
mode, CAVs, and HVs by 11.5%, 23.2%, and 4.3%, respectively, compared to the control
mode that is based on SPDL. The results in Figure 15b show that when all types of vehicles
conform to a Poisson distribution, the control based on VVWL mode cuts down on all
vehicles’ delays by 10.7%, 21.3%, and 4.4% for CAVs and HVs, respectively, in contrast to
the control mode based on SPDL. Obviously, the proposed variable virtual waiting zone
effectively reduces the vehicle delays regardless of the distribution, and the CAV delay
reduction is more significant. The main reason is that the variable virtual waiting zone
improves the average speed of CAVs passing through the intersection. For the sake of
illustration, the complete process of CAVs passing through the intersection is taken as an
example, as shown in Figure 16, because the variable virtual waiting zone is inside the
intersection. When CAVs are performing trajectory planning, the passing zone and the
variable virtual waiting zone are connected, causing the average speed of CAVs in the
variable virtual waiting zone to be high relative to the average speed after leaving the
variable virtual waiting zone; as a result, CAVs traverse the intersection at a faster average
speed and experience less traffic congestion.

5.3. Sensitivity Analysis
5.3.1. Oversaturation Demand Analysis

To deeply analyse the effect of the VVWL control mode when addressing the problem
of oversaturated heterogeneous traffic flow, nine different levels of traffic demand with a
progressive relationship are tested in this study, using Table 1′s fundamental traffic demand
as a foundation, and the demand coefficients range from 0.5 to 4.5 in incremental steps
of 0.5. These nine traffic demands contain three categories: unsaturated heterogeneous
traffic flow, saturated heterogeneous traffic flow, and oversaturated heterogeneous traffic
flow. When the demand coefficient is less than 1.5, the traffic demand is in the unsaturated
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heterogeneous traffic flow stage; when the demand coefficient is equal to 1.5, the traffic
demand is in the saturated heterogeneous traffic flow stage; and when the demand coeffi-
cient is greater than 1.5, the traffic demand is in the oversaturated heterogeneous traffic
flow stage. Control based on VVWL method is used as the basic control group. The CAV
percentage is set to 50% during the simulation.
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Table 1. Fundamental traffic demand.

Traffic Demand in pcu/h

Left-Turn Through Right-Turn

CAV HV CAV HV

Arm 1 200 200 200 200 100
Arm 2 200 200 200 200 100
Arm 3 200 200 200 200 100
Arm 4 200 200 200 200 100

Figure 17 depicts the trends between the increase in intersection access demand and
the average intersection heterogeneous traffic flow vehicle arrivals for both the VVWL-
based and SPDL-based control modes. Figure 17a,b show the uniform arrival of vehicles
and Poisson arrival of vehicles, respectively. Based on Figure 17 as a whole, when there is
an unbalanced demand for transportation flow (there is no demand coefficient bigger than
1.5), the uniform vehicle arrivals and the demand under control based on both VVWL and
SPDL are almost identical, which indicates that the intersection can carry the full demand
until the junction is fully utilized. When oversaturated traffic flow (demand factor greater
than 1.5) occurs, the average intersection volumes under both VVWL-based control and
SPDL-based control begin to deviate from the demand curve, while continuing to go higher.
This means that some of the phases appear to be unable to keep up with the demand, and
some phases are oversaturated with traffic. However, compared to the VVWL control
mode, the average number of vehicles under control based on SPDL deviate more from
the demand curve. The demand factor is now rising from 1.5 to 3.5, the average capacity
of the intersection continues to increase up to the maximum for both control models, and
the two average capacity curves become flat. This is because the capacity under both
control models reaches the upper limit and cannot cope with the excessive throughput
demand. However, it is still evident that the intersection capacity based on VVWL control
is consistently greater than the intersection capacity based on SPDL control. After the two
average capacity curves become flat (the demand factor is greater than 3.5), the intersection
capacity based on VVWL control increases by 6% compared to the average capacity of the
intersection based on SPDL control, and the capacity of the dedicated CAV lane (with a
variable virtual waiting zone) and HV lane are 10% and 2% more, respectively. The reasons
for these changes are the same as those described in 5.2.
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The comparison in Figure 18 shows the trend between the increase in intersection
access demand and the average intersection heterogeneous traffic flow vehicle delay for
both the VVWL-based and SPDL-based control modes. Figure 18a,b shows the uniform
arrival of vehicles and Poisson arrival of vehicles, respectively. Figure 18 shows that
average vehicle delay across all vehicles under both the VVWL control and the SPDL
control increases slightly when there is an unbalanced demand for transportation flow.
(There is no demand factor bigger than 1.5.) The typical vehicle delay under VVWS-based
control decreases by 13% compared to the average vehicle delay under SPDL-based control,
which indicates that the intersection can carry the full demand until the capacity of the
intersection is reached, and the vehicle delay is closely related to the intersection control
method. When oversaturated traffic flow (demand factor greater than 1.5) occurs, the
average vehicle delay at the intersection increases significantly under both VVWL-based
and SPDL-based control, with demand factors equal to 1.5 and 4.5; for example, the average
vehicle delay increases by 92% and 127% under VVWL-based and SPDL-based control,
respectively. This indicates that the average vehicle speed at the intersection decreases
as the demand for access increases. However, the typical vehicle delay under control
based on VVWL is close to approximately 11% less than the typical vehicle delay under
control based on SPDL regardless of the demand factor, which implies that the average
intersection vehicle speed under VVWS-based control is greater than the typical intersection
vehicle speed under control based on SPDL. The proposed variable virtual waiting zone can
effectively reduce the typical intersection vehicle delay, which is consistent with the analysis
results in 5.2. To further verify the correctness of this conclusion, Figure 19 investigates the
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average heterogeneous traffic flow vehicle delay at intersections under different passage
demands from both CAV and HV perspectives. With the increase in demand factor, the
gap in CAV delay time enhancement under the two control modes is not consistent, and
the CAV delay enhancement under control based on VVWL is considerably less than that
under SPDL-based control, while the HV delay curves under the two control modes are
almost identical. This further confirms that the variable virtual waiting zone can effectively
improve the average speed of the CAV fleet and contribute positively to the problem of
oversaturated traffic demand at intersections.
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5.3.2. Analysis of CAV Permeability under Oversaturation

With an interval step of 10%, the simulation analyses the heterogeneous traffic flow
passage delays in ten different processes from 0% to 100% CAV penetration under different
control methods. Four traffic demands of 1 veh/s, 2 veh/s, 2.5 veh/s, and 3.75 veh/s are
used for comparison. The corresponding demand coefficients of the four traffic demands
are 1, 2, 2.5, and 3.75. The results in Figure 20 show that when vehicles arrive with a uniform
distribution, the average vehicle delay decreases, with increasing CAV penetration for all
four different traffic demands. Overall, increasing the CAV penetration in heterogeneous
traffic flows, whether based on the VVWL control approach or the SPDL control approach,
is beneficial for reducing vehicle delays. Comparing different traffic demands shows that a
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typical car delay also improves significantly with the increment of traffic access demand.
Unfortunately, regardless of the improvement, a typical car delay under control based
on VVWL is significantly lower as opposed to that of under control based on SPDL, and
this advantage becomes more obvious the larger the traffic demand is. In Figure 20d,
for example, the average vehicle delay decreases as CAV penetration increases under
oversaturated traffic demand, and the higher the CAV penetration is, the lower the average
vehicle delay control based on VVWL is, in contrast to the under control based on SPDL,
with CAV penetrations at 40% and 80%. For example, the reduction in delay is 6.35% and
14.08% for the two control methods, which reflects the advantage of the variable virtual
waiting zone in handling oversaturated heterogeneous traffic flows. A similar situation can
be seen in Figure 21 for the Poisson vehicle arrival distribution.
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5.3.3. Analysis of CAV Share for Left Turns

In the heterogeneous traffic flow, the CAV percentage is set at 50%. The heterogeneous
traffic flow passage delay when the percentage of left-turn CAVs varies from 0% to 100%
under different control methods, while considering only straight-ahead and left-turns, is
simulated and analysed. Four traffic demands, 1 veh/s, 2 veh/s, 2.5 veh/s and 3.75 veh/s,
are used for comparison. The corresponding demand coefficients of the four traffic demands
are 1, 2, 2.5, and 3.75. The results in Figure 22 show that the typical vehicle delay under
control based on VVWL approach is always less than the typical vehicle delay under control
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based on VVWL approach, that is, when vehicles are arriving with a uniform distribution
for the four different traffic demands. Although the average heterogeneous traffic flow
arrival delay under both control methods shows a similar trend with the proportion of
left-turning CAVs in the CAV flow rising, that is, it decreases first and then increases,
the percentage of left-turning CAVs corresponding to the lowest delay is not the same
under both control methods. Under the SPDL-based control approach, the average vehicle
delay is minimized only when equal amounts of left-turning and straight-ahead traffic are
present, regardless of how the level of traffic has changed. However, the minimum value
of the average vehicle delay under VVWL-based control is not fixed at the point where
the ratio of through traffic to left-turn traffic is equal, but is slightly greater than 50%. The
larger the traffic demand is, the larger the relative value becomes. Taking Figure 22c,d as
examples, the left-turn CAV shares corresponding to the minimum average vehicle delay
are 55% and 56%, respectively. A further remarkable phenomenon that can be observed
is that while travel demand has increased, the lowest point of the typical vehicle delay in
the VVWL control mode shifts to the right, while the delay reduction in the control mode
based on VVWL becomes increasingly significant compared to the control based on VVWL.
The reason for these results is that the overall HV delay is minimized when the ratio of
straight-ahead HVs and left-turn HVs is the same. Due to the proposed variable virtual
waiting zone, the space resources of the intersection are fully exploited, which makes the
CAVs enter the intersection earlier. Given that the size of the left-turn virtual waiting zone
is large compared with that of the straight virtual waiting zone, the left-turn CAV running
time reduction at the intersection is larger than that of straight CAVs, resulting in a slightly
larger number of left-turn CAVs than straight CAVs when the average CAV delay at the
intersection is at its minimum, which in turn makes the overall percentage of left-turn
CAVs corresponding to the minimum average delay of vehicles slightly larger than 50%.
This reflects the advantage of the variable virtual waiting zone in reducing the overall
throughput delay and coping with the oversaturated heterogeneous traffic flow. A similar
situation is reflected in Figure 23 for the Poisson vehicle arrival distribution.
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than 50%. The larger the traffic demand is, the larger the relative value becomes. Taking 
Figure 22c,d as examples, the left-turn CAV shares corresponding to the minimum aver-
age vehicle delay are 55% and 56%, respectively. A further remarkable phenomenon that 
can be observed is that while travel demand has increased, the lowest point of the typical 
vehicle delay in the VVWL control mode shifts to the right, while the delay reduction in 
the control mode based on VVWL becomes increasingly significant compared to the con-
trol based on VVWL. The reason for these results is that the overall HV delay is minimized 
when the ratio of straight-ahead HVs and left-turn HVs is the same. Due to the proposed 
variable virtual waiting zone, the space resources of the intersection are fully exploited, 
which makes the CAVs enter the intersection earlier. Given that the size of the left-turn 
virtual waiting zone is large compared with that of the straight virtual waiting zone, the 
left-turn CAV running time reduction at the intersection is larger than that of straight 
CAVs, resulting in a slightly larger number of left-turn CAVs than straight CAVs when 
the average CAV delay at the intersection is at its minimum, which in turn makes the 
overall percentage of left-turn CAVs corresponding to the minimum average delay of ve-
hicles slightly larger than 50%. This reflects the advantage of the variable virtual waiting 
zone in reducing the overall throughput delay and coping with the oversaturated hetero-
geneous traffic flow. A similar situation is reflected in Figure 23 for the Poisson vehicle 
arrival distribution. 

Figure 21. Effects of CAV penetration rates on vehicle delay when the distribution of vehicle arrivals
is Poisson.
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Figure 22. Effect of left-turn proportions on vehicle delay when the distribution of vehicle arrivals is
uniform.
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Figure 23. Effect of left-turn proportions on vehicle delay when the distribution of vehicle arrivals is
Poisson.

5.3.4. Variable Virtual Waiting Zone Length Analysis

The variable virtual waiting zone makes it possible for CAVs to enter the crossing
early during a red light in a nonstop manner, which shortens the CAV passing time. To
analyse the effect of variable virtual waiting zone length variation on how well the control
model performs, this study sets the size of the left-turn virtual waiting zone and straight
virtual waiting zone to 50%, 75%, and 100% of the maximum length under the premise of
ensuring traffic safety. The passing zone is 300 m long. Four traffic demands of 1 veh/s,
2 veh/s, 2.5 veh/s, and 3.75 veh/s are used for comparison, and the corresponding demand
coefficients of the four traffic demands are 1, 2, 2.5, and 3.75. The comparison in Figure 24
shows the performance difference between the control model based on VVWL and the
control model based on SPDL in coping with the variable virtual waiting zone length
variation for when the vehicles arrive in an evenly distributed manner with different levels
of traffic demand. The variable virtual waiting zone length variation has no effect on the
control performance of the control model based on SPDL, and has a greater effect on the
control performance of the control model based on VVWL, and the longer the variable
virtual waiting zone, the smaller the vehicle delay. Comparing Figure 24a,d, it can be
further seen that the higher the pass saturation is, the greater the advantage of the variable
virtual waiting zone in reducing vehicle delays. Similar results are obtained in Figure 25
for a Poisson vehicle arrival distribution. There are two reasons for these results: (1) The
proposed variable virtual waiting zone allows CAVs to cross the intersection stop line at a
relatively high speed. CAV trajectory planning can be delayed inside the variable virtual
waiting zone at the intersection, resulting in a relatively high CAV speed in the passing
zone, which in turn reduces the delay time. This is shown in Figure 16. (2) The variable
virtual waiting zone is equivalent to extending the passing zone of the dedicated CAV lane,
providing more space for vehicle speed changes.
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Figure 24. A uniform distribution of vehicles arriving on time and the effect of a varied virtual
waiting zone duration on vehicle delay.
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6. Conclusions

In this paper, a VVWL-based cooperative control model for oversaturated heteroge-
neous traffic flow at single intersections is proposed. The model is built on the basis that
left-turning CAVs and straight-through CAVs form a CAV dedicated lane, and an overall
delay reduction is achieved by tapping the intersection space resources to form a variable
virtual waiting zone. A three-layer optimization model with cooperative signal control,
vehicle trajectory planning, and variable virtual waiting zone switching is constructed.
The upper layer of the model divides the signal control cycle using the standard NEMA
ring barrier structure and adopts a rolling time domain scheme to optimize the barrier
time. In the middle layer, the phase duration and switching time of the variable virtual
waiting zone are optimized based on the fixed phase sequence, and the vehicle delays are
returned to the upper optimization model. In the lower layer, CAVs are grouped and the
trajectory is planned in the dedicated CAV lane based on signal timing and variable virtual
waiting zone durations, and CAV delays are returned to the middle level. Simulations
verify that control based on VVWL is significantly better than control based on SPDL in
terms of intersection capacity and typical vehicle delay. Sensitivity analysis shows that
(1) control based on VVWL is significantly better than control based on SPDL under any
traffic demand; (2) control based on VVWL is extremely resistant to CAV penetration; and
(3) a longer length of the variable virtual waiting zone is more helpful to the model control.

In this study, only single-intersection access efficiency issues are considered. Passing
delays on road segments are not studied in depth. However, the problem of heterogeneous
traffic flow on a road segment road network level is worth studying. The optimization
of heterogeneous traffic flow on an entire road section and road network in an integrated
manner will be a very important research direction.
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Appendix A

The following procedures may be used to calculate the model T3 for planning trajec-
tories, a multi-objective hierarchical optimization framework coupled with a non-linear
planning model.

Step 1: Determine the range of the time tω
pass.

When the passing zone length LP and variable virtual waiting zone length LC, maxi-
mum velocity vmax, maximum deceleration aL, and maximum acceleration aU are given,
the lower limit of CAV pass time tL

pass can be determined. Considering that this study
attempts to pass through the intersection with minimum delay, the upper limit of CAV
pass time tU

pass is not specifically calculated, and the value can be set to +∞. As shown
in Figure A1, based on the difference between the initial velocity vω

0 and the critical
velocity (

√
v2

max − 2aU(LP + LC)), the magnitude of tL
pass varies, and the constraints are

Equations (27)–(41). The lower bound tL
pass is determined as follows:
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tL
pass =


tω
0 +

vmax−vω
0

aU + LP+LC
vmax

− v2
max−(vω

0 )2

2aU vmax
, i f

√
v2

max − 2aU(LP + LC) < vω
0 ≤ vmax

tω
0 +

√
(vω

0 )2+2aU(LP+LC)−vω
0

aU , i f 0 ≤ vω
0 ≤

√
v2

max − 2aU(LP + LC)

(A1)
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Appendix A 
The following procedures may be used to calculate the model 𝑇ଷ for planning tra-

jectories, a multi-objective hierarchical optimization framework coupled with a non-linear 
planning model. 
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study attempts to pass through the intersection with minimum delay, the upper limit of 
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shown in Figure A1, based on the difference between the initial velocity 𝑣଴ఠ and the crit-
ical velocity (ඥ𝑣௠௔௫ଶ − 2𝑎௎(𝐿௉ + 𝐿஼)), the magnitude of 𝑡௣௔௦௦௅  varies, and the constraints 
are Equations (27)–(41). The lower bound 𝑡௣௔௦௦௅  is determined as follows: 

𝑡௣௔௦௦௅ = ⎩⎪⎨
⎪⎧𝑡଴ఠ + 𝑣௠௔௫ − 𝑣଴ఠ𝑎௎ + 𝐿௉ + 𝐿஼𝑣௠௔௫ − 𝑣௠௔௫ଶ − (𝑣଴ఠ)ଶ2𝑎௎𝑣௠௔௫ , 𝑖𝑓 ඥ𝑣௠௔௫ଶ − 2𝑎௎(𝐿௉ + 𝐿஼) < 𝑣଴ఠ ≤ 𝑣௠௔௫𝑡଴ఠ + ඥ(𝑣଴ఠ)ଶ + 2𝑎௎(𝐿௉ + 𝐿஼) − 𝑣଴ఠ𝑎௎ , 𝑖𝑓 0 ≤ 𝑣଴ఠ ≤ ඥ𝑣௠௔௫ଶ − 2𝑎௎(𝐿௉ + 𝐿஼)  (A1)

  
Figure A1. Feasible 𝑡௣௔௦௦௅  considerations. 

Considering the constraints together, the range of 𝑡௣௔௦௦ఠ  is as follows: 𝑡௣௔௦௦௅ ≤ 𝑡௣௔௦௦ఠ ≤ 𝑡௣௔௦௦௎  (A2)

Step 2: Calculate the optimization target. 

Figure A1. Feasible tL
pass considerations.

Considering the constraints together, the range of tω
pass is as follows:

tL
pass ≤ tω

pass ≤ tU
pass (A2)

Step 2: Calculate the optimization target.
Combining the signal intersection signal phase and the derivation of step 1, the range

of tω
pass can be expressed by the following equation:

max
(

tg
p.j, tL

pass

)
≤ tω

pass ≤ min
(

tg
p.j + gp,j∆t, tU

pass

)
(A3)

Given that the objective function minimizes tω
pass, two cases can be identified as follows:

Case 1: If tg
p.j ≤ tL

pass ≤ tg
p.j + gp,j∆t, then the objective function tω

pass exists at the

minimum value of tL
pass.

Case 2: If tL
pass < tg

p.j, then the minimum value of the objective function tω
pass exists

as tg
p.j.

Step 3: Determine the solution.
Situation 1: tg

p.j ≤ tL
pass ≤ tg

p.j + gp,j∆t
When tω

pass = tL
pass, the motion trajectory is shown in Figure A1(a), first accelerating to

the highest speed and then exercising at the highest speed at a uniform rate until passing
the variable virtual waiting zone stop line and entering inside the intersection. tω

pass can be
calculated directly by the constraints.

Situation 2: tL
pass < tg

p.j

When tω
pass = tg

p.j, there will be three different trajectory segments, each with accel-
eration, constant speed, and deceleration processes. Therefore, there are various ways of
collocation. However, the optimal solution must be the one with the maximum final CAV
velocity.
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