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Abstract: In recent years, fire disasters caused by charging electric bicycles/moped (e-bikes) have
been increasing, causing catastrophic loss of life and property; Worse still, existing fire warning
systems are costly to install and maintain, and they work after the accident occurs. Some existing
works propose using power meters or similar sensors in the power grid to monitor e-bike charging
health. However, the use of additional equipment makes them challenging to deploy. Others can
use the sound or electromagnetic signals emitted by e-bikes for monitoring, but they suffer from
limited monitoring distance. To solve this problem, we propose SingMonitor, a scheme to remotely
monitor e-bike charging status using mobile devices’ microphones. The charging e-bike generates
a unique current signal, which is then transmitted through the power grid and drives the mobile
devices’ power supply to generate sound, which is then captured by a microphone. Based on this
principle and the proposed template matching method, SingMonitor can identify the e-bike charging
status. Experiments show SingMonitor achieves an F1 score of 0.94 in identifying 10 e-bikes’ charging
status, with a detection distance of 9m+.

Keywords: e-bike; power supply; power factor correction; template matching

1. Introduction

In recent years, electric bicycles/electric mopeds (here, both are referred to as
“e-bikes”) have become increasingly popular, corresponding with growing environmental
awareness and technological advances in the e-bike industry, with the global e-bike market
reaching USD 17.83 billion in 2021 [1]. Although e-bikes are convenient, they also provide
some safety threats. For example, there were nearly 18,000 fire disasters caused by charging
e-bikes in China in 2021 [2]. Similarly, in October 2022, the USA recalled about 22,000
e-bikes, whose lithium batteries could ignite, explode, or spark, posing fire, explosion,
and burn hazards to consumers [3]. Low-quality batteries or chargers are some of the
main reasons for these disasters [4,5]. Furthermore, in Section 3.1, we show how charger
or battery quality issues can influence a battery’s capacity and even increase the risk
of fire while charging. Worse yet, over time and with improper use (charging immedi-
ately after parking, etc.), even high-quality chargers and batteries can develop issues and
become unreliable [6,7].

To prevent these disasters, many systems are dedicated to fire detection and alert,
which can significantly reduce the damage caused by e-bike fires. For example, the Fire
Alarm Control Unit (FACU) [8] is the mainstream commercial fire warning system. FACU
consists of three parts: initiation devices (including various sensors and pull stations), the
control panel, and sirens and fire suppression devices. Refs. [9–15] focus on improving
FACU systems with IoT technology. Such studies need to deploy many sensors or commu-
nication nodes with integrated sensors for rapid fire detection and alarm. They differ in
the hardware and communication protocols used. Refs. [16,17] analyze data captured by
closed-circuit television or webcams using image processing technology to detect and track
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fires. However, these methods are costly to install and maintain and only work after a
fire hazard occurs.

Some appliance detection methods can also monitor the charging health of e-bikes. For
example, some of them use sensors to directly obtain the operating current, voltage, and
load consumption of the appliances in the circuit [18–24]. Others use side-channel methods
to identify appliances and their operating status by the electromagnetic [25,26] or acoustic
signals [27,28] generated when the appliance is in operation. However, most of these
methods require extra hardware, which makes them difficult for large-scale deployment,
and some have limited monitoring distances.

Some battery monitoring methods [29,30] use sensors to obtain information such as the
voltage and current of the battery to monitor the battery. Ref. [31] trains an LSTM model
with voltage, temperature, and other information to monitor and protect the battery. Ref. [32]
predicts the battery status through an electrochemical model. These methods require extra
hardware devices to obtain information such as current and voltage, which increases the
system’s cost.

To solve this problem, in this paper, we propose SingMonitor, a scheme to remotely
monitor e-bike charging health using mobile devices’ microphones. SingMonitor can
monitor the charger or battery for faults during daily charging, slowing battery capacity
loss and thus preventing potential fire hazards. We create the SingMonitor system based
on observations that: (1) The charging e-bike can inject unique current signals into the
power grid. Currently, e-bikes commonly use three-stage battery chargers [33]. At different
charging stages, the power factor correction (PFC) circuit inside the e-bike charger can
inject different feedback currents, i.e., PFC signals, into the power grid; (2) The PFC signals
can transmit through the power grid. As shown in Figure 1, PFC signals can be propagated
along wires throughout the power grid. A detailed explanation can be found in Section 3.3;
(3) The PFC signals can drive the power supply at the other end of the grid to generate
sounds. When the power supply of another appliance connected to the same distribution
system receives this signal, it will emit a sound under electromagnetic forces; (4) and the
sounds can be captured by nearby mobile devices and used to monitor the e-bike’s charging
health. By analyzing this sound signal, SingMonitor can obtain the current charging stage
of the e-bike, as well as the charge duration. After comparing with the normal charging
pattern (see Section 3.1), the system can determine whether there is a problem with the
charger and battery, thus monitoring the e-bike’s charging health.

Room B

PFC signals PFC signals

Room A

9m

Figure 1. Diagram of signal propagation process. PFC signal generated by charger travels along grid
and affects power supply to smart speaker, causing it to emit sound.

In developing the proposed SingMonitor, we encountered several challenges:
(1) Interference of noises. The PFC signals are exposed to background noise interfer-
ence from the power grid, environment, the power supply’s internal components, and
the sound acquisition equipment during propagation and conversion to sound signals.
PFC signals generated by other appliances can also interfere with the e-bike’s PFC signal.
(2) It is difficult to distinguish different e-bikes and their charging stages in a complex ap-
pliance environment. Considering that the types, numbers, and combinations of appliances
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in different homes vary, we need to design a method that can be trained with only e-bike
data and still perform well in complex appliance environments to improve our system’s
usability. (3) It is also difficult to define a healthy charging status.

We then proposed many schemes to solve these problems: (1) We propose a noise
cancellation method based on Variational Mode Decomposition (VMD), periodicity detection,
and spectral subtraction. We adopted VMD and periodicity detection to eliminate the aperiodic
background noise. To obtain clean e-bike charge-stage templates (see Section 5), we employed
spectral subtraction to remove the interference of other appliances. (2) We proposed a template-
matching-based scheme and designed a new distance metric to distinguish different e-bikes
and their charging stages. We defined a new similarity metric by compared the differences
in center frequency and bandwidth based on the characteristic that the center frequency and
bandwidth of PFC signals generated by different appliances and e-bikes’ different charging
stages are different. (3) We propose to build the normal charging pattern by calculating the
duration of different charging stages in the registration phase (see Section 5). The system
compares the charge duration measured during the health monitoring phase with the normal
charging pattern. If the gap between the two exceeds a threshold (which is dynamically
adjusted), the system considers the e-bike to be in an unhealthy charging status.

Our contributions can be summarized as follows:

1. We propose and implement a system that uses sound emitted by the power supply to
monitor e-bike charging health;

2. We propose a noise cancellation scheme using VMD, periodicity detection, and spectral
subtraction to cancel both background noise and interference from other appliances;

3. We propose a template-matching-based scheme and designed a new distance metric
to distinguish different charging stages;

4. We define healthy charging states by comparing the duration of each charging stage
measured by the system with the normal charging pattern;

5. We evaluate SingMonitor in real-world scenarios, and our experiments show SingMonitor
achieves an F1 score of 0.94 in identifying 10 e-bikes’ charging stages, with a detection
distance of 9m+.

2. Related Work

In this section, we review techniques in four areas relevant to this paper, i.e., fire alarm
systems, electrical appliances detection, battery monitoring, and PFC and switching-mode
power supply (SMPS).

2.1. Fire Alarm System

There are many existing studies that focus on improving fire alarm systems to prevent
fire disasters. For example, refs. [9–15] improve the FACU’s performance by changing the
sensors and boosting communication efficiency between sensor nodes. Refs. [16,17] use
image-processing technology to enable the rapid detection and treatment of fires. Ref. [34]
employs a camera with an optical and thermal lens for kitchen fire warnings. However,
a common problem with these methods is the high installation and maintenance cost;
additionally, camera-based methods may raise privacy concerns.

2.2. Electrical Appliance Detection

Many studies in appliance detection can also monitor the charging health of e-bikes.
We split such research into two categories based on the channel they used.

Direct load monitoring: Such studies install sensors directly in the circuit to obtain
current and voltage information. Intrusive appliance monitoring installs sensors near
each appliance. Ref. [18] integrates several types of sensors within the socket, which is
used to collect the usage of nearby appliances, as well as environmental data. Ref. [19]
chooses to use smart plugs. However, intrusive methods are costly due to the extensive
use of sensors. There are also many methods using non-intrusive load monitoring (NALM)
instead. NALM [20] typically employs only one sensor to monitor the circuit’s total power
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consumption. This information is utilized to analyze the power consumption pattern of
individual appliances and other information, such as appliance usage time. Ref. [21] can
estimate the number and energy consumption of the individual loads by analyzing the
voltage and current waveform of the total load. Ref. [22] analyzes household appliances’
power consumption patterns using a single sensor to obtain real power data. Refs. [23,24]
employ current harmonic as the core feature to identify load types. Nevertheless, NALM is
also difficult for large-scale deployment because it requires extra hardware.

Side-channel: Side-channel technology uses the various physical signals generated by
appliances during their operation to enable appliance detection. For example, ElectriSense [25]
utilizes electromagnetic interference (EMI) from the switching-mode power supply to obtain
individual appliance usage information. Ref. [26] collects power-draw information using a
mobile electromagnetic field (EMF) sensor. Ref. [27] recognizes appliances by the sound users
make when using the appliance and the sound produced by the appliance itself. Ref. [28]
correlate an appliance’s inherent acoustic noise with its energy consumption pattern and collect
ambient sound to obtain its energy consumption pattern. However, this method has a limited
monitoring range. Besides, all these works rely on extra sensors, making them hard for large-scale
deployment.

2.3. Battery Monitoring

Many studies focus on battery monitoring. For example, ref. [29] measures the battery’s
voltage and temperature by installing wireless sensors inside each cell to assess the battery’s
state of health. Ref. [30] designs an IoT system to obtain information such as battery voltage
and upload it to the control interface to facilitate the user to know and deal with the abnormal
status of the battery in time. Ref. [31] designs a battery management system using sensors to
obtain parameters such as battery voltage, current, and temperature. These parameters are
used to train an LSTM model to monitor and protect the battery status. Ref. [32] proposes
an electrochemical model that monitors the cell state by calculating parameters such as open-
circuit voltage, liquid-phase diffusion, etc. The calculation of these parameters relies on the
reading of current, voltage, and other data. However, these methods require extra hardware
to obtain data, such as current and voltage, which raises the system cost. Compared with
these direct-style monitoring methods, We propose a side-channel method that does not
require current and voltage. Also, these methods are mainly for electric vehicles or lithium
batteries, which are not necessarily applicable to our target.

2.4. PFC and Switching-Mode Power Supply

Many other works use PFC or SMPS signals. For example, ref. [35] found that PFC
signals can precisely reveal information about devices’ power-draw, they implemented a
power side-channel attack by utilizing this trait to infer computer application launching.
Changes in the computer’s power consumption can affect rhe high-frequency voltage
ripple generated by its PFC circuits, and NoDE [36] exploits this phenomenon to achieve
data exfiltration. Ref. [37] attacks air-gapped, audio-gapped systems by planting malware
to manipulate the computer’s SMPS to emit specific frequency sounds. CapSpeaker [38]
employs the capacitor’s inverse piezoelectric effect to issue malicious voice commands to
attack nearby smart speakers. Ref. [39] uses the sound from the SMPS and other noises
produced by appliances to identify different appliances and use their location for indoor
localization. We are inspired by these works.

3. Background

In Section 1, we described how SingMonitor works: The charging e-bike can inject
unique PFC signals into the power grid. The PFC signals are then transmitted through
the power grid. The transmitted PFC signals can drive the power supply at the other
end of the grid to generate sound. The sounds can be captured by nearby mobile devices
and be used to monitor the charging health of e-bikes. In this section, we first discuss the
causes and effects of e-bike overcharging; second, we describe why e-bikes can generate a
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unique PFC signal when charging; then, we describe why this PFC signal can propagate
through the grid; and finally, we describe why this PFC signal can drive the power supply
to produce sound.

3.1. E-bike Overcharging and Its Causes

E-bike overcharging: E-bikes are mainly powered by lead-acid and lithium batteries,
which have current market shares of 30.83% and 46.41%, respectively [40]. Overcharging
can cause e-bike battery capacity loss or even fire. Overcharging for lead-acid batteries
raises the internal temperature, producing harmful gases and drying out the electrolyte,
ultimately leading to positive grid corrosion. Grid corrosion can significantly shorten
battery life, but lead-acid batteries are generally less susceptible to fire [41]. Fires caused by
overcharging typically occur on lithium batteries. Lithium batteries usually consist of a
positive and negative pole material and a separator that divides the two. Overcharging
can cause severe side reactions within the lithium battery, which can cause the internal
separator to rupture, resulting in severe thermal runaway and, eventually, a fire [42].

Causes of e-bike overcharging: E-bike chargers mainly use three-stage charging:
constant current, constant voltage, and float charging. Figure 2 shows that the charger
indicator is red during the constant current and constant voltage stages. In the experiments,
we use an ammeter to measure the change in current to distinguish between these two
stages. When the battery is charged to 80∼95%, the charger enters the float stage, and
the indicator light turns green. The charger monitors the charging current and the battery
voltage via an internal feedback circuit, which decides when to switch charging stages.
When the charger charges the battery with a high current or voltage for a long time due
to quality problems, it cannot switch to the float stage in time and the battery will be
overcharged, resulting in a loss of capacity or even a fire. Also, when the battery is faulty
and thus cannot reach its rated voltage during charging, the charger will continue to supply
power at a high current, thus causing the battery to overcharge. The duration of each stage
varies depending on the charger and the battery. SingMonitor calculates the duration of each
charging stage during initialization (see Section 5) to build the normal charging pattern for
the corresponding e-bike. Long-term float charging is generally harmless, and SingMonitor
is more concerned with the duration of the constant-current and constant-voltage stages.

Red Green

Constant Current Constant Voltage Float

Charge Voltage

Charge Current

Indicator Light

Figure 2. 3-stage charging.

3.2. E-Bike Charging Generates Unique Power Factor Correction Signals

In this section, we explain why e-bike charging can generate unique PFC signals.
Power factor (PF): In electrical engineering, the power factor is defined as the ratio

between real power consumed by a load and the total real-plus-reactive power, which is
also known as the total apparent power [43], i.e., PF = Preal/Papparent. Figure 3 shows that
PF can reach 1 when the input current can follow the instantaneous line voltage without
distortion. This means that the total apparent power is the lowest while consuming the
same real power, thus realizing the most efficient use of electrical energy. In other cases,
PF is less than 1, meaning electrical energy is wasted in the distribution system.

Power factor correction (PFC): PFC circuits [44] can increase PF to reduce power losses
by eliminating high harmonics through low-pass filters or by shaping the input current.
Therefore, PFC circuits are required in many types of electrical appliances according to
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the IEC61000-3-2 standard [45]. The PFC circuit in e-bike chargers is implemented by a
pulse width modulator (PWM). A PWM modulates current by periodically generating
high-frequency ripple to make the input current follow instantaneous line voltage. The
modulation of the input current by PFC circuits injects feedback currents into the grid,
i.e., PFC signals. The research [35] shows that load power consumption information can
modulate the amplitude and frequency of PFC signals. The features of PFC signals can also
be affected by the design and manufacturing process of PFC circuits. Therefore, as shown
in Figure 4, there are obvious differences in the spectrum of the PFC signals generated
by different e-bikes, appliances, and charging stages of the same e-bike. Because of the
difference between PFC signals, SingMonitor can accurately analyze whether e-bikes are
charging and which charging stage they are in from the mixed PFC signals generated by
multiple appliances.
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Figure 4. PFC signals generated by different e-bikes and appliances. (a–c) are generated by the XDAO
(160 W) e-bike during different charging stages. (d) is generated by the NIU (160 W) e-bike during the
constant current stage. (e) is the superimposed signal generated when YADEA (180 W) and XDAO
work simultaneously. (d–f) are PFC signals generated by Redmi K20Pro (27 W), Dell desktop (360 W),
Projector (225 W), PHILIPS Light (18 W), and Hp Laptop (90 W), respectively.

3.3. Propagation of PFC Signals in the Power Grid

This section explains how PFC signals propagate through the grid. A typical house-
hold grid consists of a distribution box and multiple distributed sockets with appliances
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connected in parallel. Figure 5 is an abstract illustration of a typical household grid. For
the convenience of discussion, we assume that two sockets are connected to the e-bike
battery or the smart speaker. The following will explain how the current I0 containing
the PFC signal affects the input current Ix of the smart speaker. Where Vs denotes the
source voltage of the grid, Ii is the input current of each branch, Rs is the resistance of the
common wire through which all currents flow, Rx is the resistance of the wire connected to
the smart speaker, Ra is the internal resistance of the smart speaker. Note that each branch
has its line resistance, we have labeled only the line resistance Rx used in Equation (1). The
relationship between the input current of the smart speaker, the source voltage, and the
current of each branch is as follows:

Vs = (
n

∑
i=0

Ii + Ix)Rs + Ix(Ra + Rx)

Ix =
Vs

Rs + Rx + Ra
− Rs

Rs + Rx + Ra

n

∑
i=0

Ii

(1)

Obviously, the input current of the smart speaker Ix is influenced by the current of the
other branch Ii. As mentioned in Section 3.2, PFC signals (feedback current) is part of Ii.
When the input current of the smart speaker Ix is influenced by Ii, it is influenced by the
PFC signals generated by other branches.

Distribution Box
��

��

�0 �� ��

��

��

Figure 5. Illustration of the household grid.

3.4. Transmitted PFC Signals Can Drive Power Supply to Generate Sounds

This section explains how Ix, which contains the PFC signals, causes the power supply
to emit sound. A typical power supply contains multiple capacitors and inductors inside.
When current flows through the power supply, these capacitors and inductors generate
sound signals under the action of the current. For example, Figure 6 shows a typical
inductor, which consists of a magnetic core and a coil wound on it. A changing current
produces a changing magnetic field, and the core is repeatedly stretched in the direction of
magnetization to produce sound, a phenomenon known as magnetostriction [46]. Figure 7
shows a capacitor. When a high-frequency current acts on the capacitor, the capacitor
deforms. This phenomenon is called the inverse piezoelectric effect. The deformation of
the capacitor acts on the circuit board to produce sound. In a preliminary study, we also
observed that the sound generated by the power supply is consistent with the PFC signals
in terms of features (see Section 4.3).



Appl. Sci. 2023, 13, 3087 8 of 20

Alternating 
Current

Magnetic Core

Coil

Mother Board

Figure 6. Magnetostriction of magnetic core under influence of alternating current.

Figure 7. Capacitor exhibits inverse piezoelectric effect due to electric field.

4. Preliminary Study

In Section 3, we showed that e-bike charging can generate a special PFC current which
can drive the power supply in the grid to generate sound from a distance. Before we can
use this principle for e-bike charging health monitoring, we need to verify the following
inferences: (1) The differences between the PFC currents are sufficient to distinguish each
other. (2) The PFC currents is time invariant. (3) The transmitted PFC currents can generate
sounds of the same frequency.

We conducted a preliminary study in two rooms (rooms A and B, see Figure 1) under
a household grid to verify these inferences. In Room A, we connected different appliances
or e-bikes to the grid (listed in Tables 1 and 2, correspondingly) In Room B (see Figure 8),
we connected a Tmall smart speaker to the grid and used a sound card with a maximum
sampling rate of 192 kHz to receive the sound signal from the smart speaker’s power
supply. At the same time, we captured the PFC signal (current) with an ACS712 current
sensor and Analog Discovery2 (AD2).

Figure 8. Illustration of data collection equipment.
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Table 1. E-bikes used in preliminary study (marked with *) and evaluation.

Brand Model Battery Type Power Rating (W)

YADEA (a) * DE2 Lithium 180
YADEA (b) TDT1241Z Lithium 160

AIMA * D260TZA-L4812 Lithium 110
NIU * UQis Lithium 160

FOREVER * Sport Lead-acid 120
XDAO * XiaoK Lead-acid 160
PALLA K11 Lithium 210
SUNRA TDT4960Z Lead-acid 110
AiSUN LOLLIPOP Lead-acid 120
Lvliang TDR183Z lead-acid 175

Table 2. Appliances used in preliminary study and evaluation.

Type Brand-Number (Power Rating)

Light Xiaomi-2 (9 W, 9 W); PHILIPS-1 (18 W)
Projector Sony-1 (225 W)
Monitor PHILIPS-1 (21 W); Dell-1 (50 W)
Laptop Hp-2 (65 W, 90 W); Lenovo-1 (65 W)

Phone charger Huawei-1 (40 W); Xiaomi-2 (33 W, 35 W)

4.1. Difference

To verify Inference 1, we used AD2 to collect multiple data segments at the different
charging stages of each e-bike, with each lasting for 20 s. Similarly, we also collected the
PFC signals of the remaining 12 electrical appliances. We performed 2D correlation analysis
on the spectrograms of these data [47]. Figure 9 shows the cumulative distribution function
(CDF) of the correlations. The correlation between different e-bikes and different appliances
does not exceed 0.69, and the correlation between different charging stages of the same e-bike
does not exceed 0.77. Experiments have shown that the differences between PFC signals are
sufficient to distinguish the different appliances and e-bikes charging stages.

0 0.2 0.4 0.6 0.8
Correlations

0

0.2

0.4

0.6

0.8

1

C
D

F

diff appliances & e-bikes
diff charging states

Figure 9. Blue is the CDF of 2D correlation between different appliances and e-bikes (including different
charging stages). Orange is the CDF of 2D correlation between different charging states of the same e-bike.

4.2. Invariance

To verify Inference 2, for each e-bike, a set of data was collected every 5 days using
AD2, with each set containing multiple data segments from three charging stages and each
segment lasting 20 s, and we collected such data over 1 month. We then performed a 2D
correlation analysis between the same charging states of the same charger by using the first
set of data as a benchmark. We averaged the correlations for the different charging stages
of the same e-bike and also averaged the correlations for other appliances. Figure 10 shows
that the correlation between PFC signals can always be maintained above 0.94 within a
month, which suggests that the PFC signals remained stable over time.
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Figure 10. 2D correlation of 5 rounds over period of 30 days.

4.3. Consistency

To verify Inference 3, in Room A, we connected an HP laptop to the grid. Then, in
Room B, we simultaneously measured the sound signal generated by the power supply
and the PFC signal (current). Figure 11 shows the power spectrum of the current and the
corresponding sound signal, both of which have identical frequency spikes at 21.28 kHz.
To better present the information in the power spectrum, we took the logarithm of the
vertical axis in conjunction with the definition of decibels (NdB = 10 lg(Px/P0), and P0 is
the custom reference value); therefore, the vertical axis unit in Figure 11 is dB. This shows
that the sound signal generated by the power supply is characteristically consistent with
the corresponding current signal.

Figure 11. Spectrum of simultaneously collected current and sound signal.

5. System Design

As shown in Figure 12, the proposed system comprises two phases: Registration Phase
and Health Monitoring Phase.

Each e-bike needs to be registered individually. During the registration phase, the
e-bike must undergo a complete charging cycle, during which the system continuously
collects the sound signals generated by the power supply. Because the background sound
can be collected before the e-bike is connected to power in the registration phase, the
registration phase can use spectral subtraction to weaken the background noise and the
interference from other appliances’ PFC signals. Combined with VMD and periodicity
detection, we can obtain a signal containing only information about the e-bike charging
stage. This signal will be used to generate the charging stage template. The system
compares the template information obtained at different times to determine the current
charging stage and calculates the duration of each charging stage, thereby generating the
normal charging pattern of the corresponding e-bike. The system can register different
models of e-bikes in the market in advance for users’ convenience.

In the health monitoring phase, the system first preprocesses to remove background
noise and then obtains a sound signal that may contain the PFC features of multiple
appliances and e-bikes. By matching the template information obtained in the registration
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phase, the system can determine which e-bikes are charging in the grid and what charging
stage they are in. The system can obtain the duration of the constant current and constant
voltage stages from the charging stage information collected many times. After comparing
it with the normal charging mode, the system can judge whether these two stages’ durations
are normal to analyze the e-bike’s charging health.

In the following sections, we will introduce these phases in detail.

Registration Phase

Health Monitoring Phase 

Template Matching

Preprocessing
Spectral Subtraction

VMD

Periodicity Detection

E-bike Charging Stage 
Template Generation

Preprocessing
VMD

Periodicity Detection

Charging Health 
Analysis

Normal Charging
Pattern Generation

Charging
E-bike

Sound
Recorder

Figure 12. System overview of SingMonitor.

6. Methodology

In this section, we will introduce the methods used by the system.

6.1. The Registration Phase
6.1.1. Spectral Subtraction

To generate a better e-bike charging stage template, our first step is to improve the
signal-to-noise ratio. Because the noise in the system changes relatively slowly and the tar-
get signals generated by other appliances can remain stable, it is well suited for processing
the signal by spectral subtraction [48] to obtain cleaner template information. The sound
signal Sr received by the microphone can be expressed as follows:

Sr = Sp f c(ω0) + Nbg+op f c (2)

where Sp f c(ω0) refers to the sound signal generated by the influence of the e-bike PFC
signal, and ω0 is the central frequency of the signal. Nbg+op f c is the background noise
(including ambient noise, the internal noise of the power supply, and the sound card’s
noise floor) and interference from other appliances’ PFC signals. Nbg+op f c is time-invariant
and follows a specific distribution. So we can attenuate Nbg+op f c with spectral subtraction:

|Ŝp f c|2 =

{
|Sr|2 − α× E[|Nbg+op f c|] |Sr|2 ≥ α× E[|Nbg+op f c|]
β|Ŝr|2 otherwise

(3)

where a is the over-subtraction factor; b is the gain compensation factor; E[|Nbg+op f c|]
represents the estimated background noise and interference; The estimation of the PFC
signal can be obtained by performing the inverse fast Fourier transform of |Ŝp f c|2.

6.1.2. Variational Mode Decomposition

We further processed the signal to extract PFC features. Because the center frequency
of the PFC signals can remain stable, we can use Variational Mode Decomposition (VMD)
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to further process the data. VMD can decompose the estimate of the PFC signal (Ŝp f c)
obtained by spectral subtraction into K narrow band components (uk) with center frequency
(ωk), i.e., intrinsic mode functions (IMFs).

We first obtain the marginal spectrum of the IMFs using the Hilbert transform; then,
we modulate the spectrum of each IMF to the corresponding base band by mixing the
center frequencies; and finally, we estimate the bandwidth using Gaussian smoothing. To
ensure that the sum of the IMFs obtained from the decomposition is equal to the target
signal, we added a restriction: ∑k uk = Ŝp f c. So the objective function and constraints for
applying VMD to the PFC signal can be expressed as follows:

min
uk ,wk
{||∑

k
uk(t)− Ŝp f c||22 + α ∑

k
||∂(t)[uk(t)e−jwkt]||22]} (4)

s.t. ∑
k

uk = Ŝp f c (5)

where α is the penalty factor. The Lagrange multiplier method can transform the above op-
timization problem into an unconstrained one and guarantee accuracy when reconstructing
the original signal, which is followed by the Alternating Direction Method of Multipliers
algorithm to locate the saddle point [49].

6.1.3. Periodicity Detection

The collected sound signals are often mixed with background noise like human voices
and device operating sounds, which challenge generating charging status templates. Worse,
these noise signals are distributed on a broader frequency band after VMD decomposition;
therefore, band-pass filtering cannot remove them. We noticed that the background noise
is an aperiodic random signal, however, the PFC feature is periodic, which allows us to
reduce noise by periodicity detection further.

To determine the periodicity of IMFs, we first calculated the upper envelope of each
IMF and then derived the corresponding auto-correlation coefficient. Then, we divide each
IMF into segments, where the auto-correlation coefficient’s peak determines each segment’s
starting point. The length of each segment should exceed the fundamental period of the
corresponding IMF, which we set empirically to 0.05 s. Finally, we computed the Pearson
Correlation Coefficient (PCC) between segments, and we considered an IMF as periodic
when its average PCC reaches a set threshold.

6.1.4. Template Generation

After preprocessing, we obtained clean sound signals. For each charging stage k of
the e-bike l, the corresponding processed sound signal is denoted as signal Skl . We used
the short-time Fourier transform (STFT) with a Hanning window (4096 points) with a
shifting interval of 441 points. For window m, the corresponding spectrogram is denoted
as S′kl,m. We then generated a template for real-time traces to match with. The process can
be expressed as follows:

Tkl =
1
M

M

∑
m=1

(S′kl,m) (6)

where Tkl is the generated template and M is the number of windows. In this paper, the
time length M of the templates is set to 200 frames. The templates are then preserved for
matching real-time collected sounds.

6.1.5. Normal Charging Pattern Generation

The system records when the templates are generated and compares the templates
obtained at different times to obtain the duration of each charging stage (SingMonitor is
mainly concerned with the duration of the constant current and constant voltage stage). The
system uses the above information to build the normal charging mode of the corresponding
e-bike, which will be used for charging health analysis in the health monitoring phase.
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6.2. The Health Monitoring Phase

In the registration phase, we obtained templates for different charging stages of
various e-bikes under laboratory conditions and built the normal charging pattern of
the corresponding e-bike. In this section, we introduce the preprocessing of sound data
collected by the user, the template matching method, and how to use the normal charging
pattern to judge the charging health.

6.2.1. Preprocessing

As in the registration phase, the sound data captured by the user also contains noise
and, therefore, needs to be processed for noise reduction. However, unlike the registration
phase. We do not require users to collect background sounds in advance. Therefore, only
the VMD and periodicity detection will be used for noise reduction in the registration
phase. S′r represents the sound signal captured directly by the user, and the corresponding
sound signal after preprocessing is Ŝp f c(ω0)

′.

6.2.2. Template Matching

In developing this metric, we considered two factors in combination.
The center frequency similarity: The center frequency varies significantly between

different appliances and e-bikes (as mentioned in Section 3); Therefore, we developed the
measure D1. It considers the difference between the center frequencies of the target and
the template, measured using the Euclidean distance. Firstly, since different frequency
components in the template have different impacts on the matching, we construct a weight
for each frequency component, denoted as ω1. The weight function ω1 is defined as:

ω1 = FD( f )Tkl( f ) (7)

where Tkl is the template and FD is a filter function. Then, the distance can be determined
by integrating local distance γi in the time-frequency domain, weighted by ω1, which can
be expressed as:

D1i =
10

∑
t=1

2048

∑
f=1

ω1γi(t, f ) (8)

The frequency width similarity: During the experiments, we found that the similar-
ity of the central frequency is not the only factor that influences the template matching
procedure. For example, the difference between the different charging states of the same
e-bike is more obviously in bandwidth. To measure this metric, similarly, we developed
the evaluation metric D2, which is expressed as follows:

D2i =
10

∑
t=1

2048

∑
f=1

ω2widthi(t, f ) (9)

where widthi is the frequency width of each frequency band, defined as the frequency
components that are larger than 0.2× fmax(i), and fmax(i) is the max strength of the center
frequency of this frequency band. Ten frames (frame is the window size in the STFT) of
data are used for template matching.

We then combined these two metrics to measure the similarity of the template and the
actually acquired signal:

Di = D1i + λD2i (10)

where λ is the penalty factor that ranges from 0 to 1. λ is tuned in the registration phase
and applied in the monitoring phase.

6.2.3. Charging Health Analysis

When the system starts, the duration of all charging states is set to 0. The system
collects sounds at time interval ∆T, obtains which e-bikes are charging and their charging
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stages by template matching, and then adds ∆T to the duration of the corresponding charging
stage. If a charging state has not been detected for a long time, its duration is reset to 0.

The system compares the duration of the constant current and constant voltage stage
with the normal charging pattern of the corresponding e-bike. Once the duration of the
constant current and constant voltage phase significantly exceeds the duration in the normal
charging pattern (in the actual experiment, the threshold is set to 30%), the system considers
that there is a fault with the e-bike battery or charger and provides a warning about its
charging health. The system will use the data measured during the health monitoring
phase to adjust the threshold of the corresponding e-bike.

7. Evaluation
7.1. Experiment Setup
7.1.1. Experiment Setup

As shown in Figure 1, We conducted experiments in two rooms under a distribution
box. The distance between the sockets in the two rooms is 9m. At the receiving end
(room B), We used the Tmall smart speaker’s power supply to generate the sound signal.
Since the smart speaker’s internal data is unavailable, we chose a sound card (connected to
an electret condenser microphone) with a maximum sampling rate of 192 kHz to capture the
sound signal (see Figure 8). At the PFC signals transmitting side (room A), We used a total
of 10 e-bikes and 12 other appliances for the experiment (see Tables 1 and 2). Furthermore,
we used an ACS712 current sensor to obtain the charging stage of the e-bike and used it as
the ground truth.

7.1.2. Dataset Preparation

A total of 3 datasets were generated in the experiments for micro benchmark, overall
evaluation, and robustness evaluation, correspondingly.

Registration Dataset: For the register phase, we used 10 e-bikes in the experiments.
We conducted multiple 30 s data collections for each charging stage of each e-bike, with a
total data length of 90 min, of which we chose the first 20 s to generate templates and the
last 10 s to perform template matching and obtain a micro-benchmark of the system.

Overall Dataset: For the health-monitoring phase, we conducted a real-world exper-
iment by randomly connecting multiple e-bikes and other appliances in Room A (up to
three e-bikes and four other appliances working simultaneously). To reduce the system
complexity, we collect 0.5 s of sounds every 15 min (as mentioned in Section 6.2.2, 0.25 s of
data is enough for the system to perform a template match). We experimented for 25 days,
and the total duration of data collected during the experiment is 381 s. These data were
used to evaluate the overall system performance (see Section 7.3).

Robustness Dataset: Similarly, to evaluate the robustness of SingMonitor (See Section 7.4),
five e-bikes were used in the experiment (e-bikes marked with ∗ in Table 1). we exper-
imented on each e-bike under different influencing factors and averaged the results to
measure the system’s performance. The corresponding total data length is 620s.

7.1.3. Evaluation Metric

As mentioned in Section 3.1, SingMonitor mainly uses the constant current/voltage
stage duration to determine whether the e-bike is in a healthy charging status. Therefore,
we mainly evaluate the accuracy of the system for classifying the different charging stages
of different e-bikes. F1i score is used to assess each class’s performance, and micro F1 score
is used to measure overall system performance. F1i can be computed as follows:

F1i =
2 · pi · ri
pi + ri

(11)

where pi and ri are the precision and recall for a particular charging state of an e-bike,
respectively. Essentially, F1i score and micro F1 score are positively correlated with the sys-
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tem’s classification performance. In addition, we evaluated the overall system performance
in Section 7.3 by counting the duration of the different charging phases.

7.2. Micro-Benchmark

This section evaluates how different parameters affect the SingMonitor performance.
The Registration Dataset is used for evaluation.

7.2.1. STFT Window Size

The window size in STFT determines the resolution of the spectrogram. The time
resolution of the spectrogram decreases as the window size increases, while the frequency
resolution does the opposite. The time-frequency resolution will affect the template genera-
tion and matching, thereby affecting the system performance. We experimented to select
the best window size. Figure 13a shows the micro F1 score for different window size, we
finally choose 4096 (micro F1 score is 0.97) as the window size for STFT.
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Figure 13. Performance of SingMonitor with different micro-benchmark.

7.2.2. Penalty Factor λ

The penalty factor (see Section 6.2.2) is used to adjust the weighting of the cen-
tral frequency similarity to the frequency width similarity. We experimented to deter-
mine the size of this value. Figure 13b shows that the system performed best when the
penalty factor is 0.41 (micro F1 score is 0.97), so we used 0.41 as the penalty factor in all
subsequent experiments.

7.2.3. Different Methods

Different noise reduction schemes and different classification methods will have
an impact on system performance. We changed the preprocessing method to wavelet
transform or empirical mode decomposition (EMD) combing wavelet threshold, which we
tested using the overall dataset. Figure 13c shows that the variational mode decomposition
(VMD) method performs best. We also used the SVM, multi-layer perceptron, and resnet-34
model to classify e-bikes and their charging stages. The registration dataset is used to
train and test these models, and the overall dataset is used for testing only. As shown in
Figure 13c, in the registration dataset, all of these models perform well. However, because
the overall dataset is interfered by the PFC signals generated by other appliances, the
performance of these models on the overall dataset degrades to varying degrees. The
template matching is designed based on the characteristic that the center frequency and
bandwidth of PFC signals generated by different appliances and e-bikes’ different charging
stages are different. So it is more resistant to interference and thus performs more stably.

7.3. Overall Performance

In this section, we evaluate the overall performance of SingMonitor. The Overall
Dataset is used for evaluation.
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7.3.1. Template Matching Evaluation

As mentioned in the evaluation procedure, during the experiment, the system collected
a 0.5 s sound signal every 15 min and performed a template matching to determine which
e-bikes were charging in the grid and what charging stage they were in. Figure 14a shows
that F1 score can reach above 0.94 for the different charging stages of different e-bikes.
This proves that the system can achieve high performance in a complex environment with
multiple e-bikes and other appliances.

7.3.2. Duration of Charging Stages

The system calculates the durations of different charging stages and compares them
with the normal charging pattern of the corresponding e-bike to judge charging health.
During the experiments, the duration of the constant current and constant voltage stages
was within the normal range for all 10 e-bikes, and the system judged the charging health of
these e-bikes to be fine. As shown in Figure 14b, we cumulated the duration of the different
phases of each e-bikes and compared with the real time (the system does not care about
the duration of the float stage, but it can also be calculated). The error between the system
calculation time and the real time does not exceed 9%. The time calculated by the system is
high compared to the real time because the system’s misjudgment of the charging stage
tends to increase the charging time.
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Figure 14. Overall performance of SingMonitor.

7.4. Robustness

In this section, we evaluate the robustness of SingMonitor under different influences.
The Robustness Dataset is used for evaluation.

7.4.1. Impact of Number of Appliances

We gradually increased the number of other types of appliances in the grid (1∼10)
to evaluate the system. Figure 15a shows that, as the number of appliances increases, the
system’s performance decreases. This is because the increase in the number of appliances
made the PFC signal generated by e-bikes more susceptible to interference in the frequency
domain, which affects template matching. When the number of appliances does not exceed
6, the micro F1 score can be maintained above 0.9.
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Figure 15. Robust performance of SingMonitor.

7.4.2. Impact of Distance

We increased the propagation distance of the PFC signals by extending the wires. As
shown in Figure 15b, the system performance decreases with increasing distance because
the strength of the PFC signal will gradually attenuate as the propagation distance increases.
However, micro F1 score can still be maintained above 0.91 in the range of 16 m.

7.4.3. Impact of Sound Sampling Rate and Environmental Noise

Aliasing errors occur when the sampling rate does not meet the Nyquist sampling
theorem. We varied the sample rate (192 kHz, 96 kHz, 48 kHz) of the sound card and
conducted experiments with different environmental noises (quiet, talking, playing music)
to verify the effects of the sample rate and noise on the system. Figure 15c shows that the
system’s performance deteriorates as the sampling rate decreases and the noise increases.
Because of the aliasing effect, we can extract distorted PFC features at low sampling rates,
so the system can still work at low sampling rates (the micro F1 score at 48 kHz is 0.89). At
low sampling rates, the effect of noise on the system is more pronounced because the noise
cannot be completely removed, and its frequency is lower, which is more likely to interfere
with the distorted PFC features.

8. Discussion

SingMonitor is limited by several issues.
First, the microphones of mobile devices, such as smartphones, often use low-pass

filtering, i.e., an anti-alias filter (AAF), before sampling the audio signals. Due to the AAF,
mobile devices may not be able to capture clear PFC frequencies, thus affecting SingMonitor
performance. However, existing studies attempted to recover the signals that underwent
AAF processing by methods such as non-linearity [50], and we will subsequently try
these methods.

Second, the center frequency of some electrical appliances is close to that of e-bikes,
which may affect the monitoring of e-bikes when these devices are in use. In particular,
some appliances (like the air conditioner, laundry, refrigerator) change the frequency when
operating, causing the appliance noise removal method based on spectral subtraction to fail,
reducing the system’s performance. However, these devices are few in daily life. Besides,
we can also use other methods (e.g., low-frequency sound) and the sound of the user
using the appliance, as compensation for classification or collect and analyze their signal
characteristics in advance to remove their interference to the system.

9. Conclusions

We proposed and implemented a system that uses sounds emitted by the power supply
to monitor e-bike charging health. Compared with existing fire warning systems or other
e-bike monitoring systems, SingMonitor uses power supplies everywhere for monitoring,
which can be implemented on mobile devices and achieve long-range monitoring.

A noise cancellation scheme combining VMD, periodicity detection, and spectral sub-
traction is used to cancel background noise and other appliances’ interference. We proposed a
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template matching based scheme and designed a new distance metric to distinguish different
charging stages. Experiments showed that SingMonitor could achieve an F1 score of 0.94 in
identifying 10 e-bikes’ charging stages, with a detection distance of 9m+.
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