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Abstract: Rock blasting is one of the most common and cost-effective excavation techniques. However,
rock blasting has various negative environmental effects, such as air overpressure, fly rock, and
ground vibration. Ground vibration is the most hazardous of these inevitable impacts since it has
a negative impact not only on the environment of the surrounding area but also on the human
population and the rock itself. The PPV is the most critical base parameter practice for understanding,
evaluating, and predicting ground vibration in terms of vibration velocity. This study aims to predict
the blast-induced ground vibration of the Mikurahana quarry, using Bayesian neural network (BNN)
and four machine learning techniques, namely, gradient boosting, k-neighbors, decision tree, and
random forest. The proposed models were developed using eight input parameters, one output,
and one hundred blasting datasets. The assessment of the suitability of one model in comparison
to the others was conducted by using different performance evaluation metrics, such as R, RMSE,
and MSE. Hence, this study compared the performances of the BNN model with four machine
learning regression analyses, and found that the result from the BNN was superior, with a lower
error: R = 0.94, RMSE = 0.17, and MSE = 0.03. Finally, after the evaluation of the models, SHAP was
performed to describe the importance of the models’ features and to avoid the black box issue.

Keywords: blasting; ground vibration; ppv; Bayesian neural network; machine learning regression

1. Introduction

Rock blasting is one of the most common and cost-effective techniques in mining
and civil engineering operations [1]. Blasting is a widely used mining technique for metal
and non-metal resources, such as hard rock mining excavation and quarrying. In quarry
operations, blasting requires drilling multiple rows of blast holes, with a specific spacing,
burden, stemming, sub drill, face angle, bench height, and hole diameter. According to
Xu et al. [2], around 30% of the energy from the whole explosion is effectively utilized
to break up the rock during rock blasting, whereas the remaining energy is wasted in
different ways, such as in blasting vibration, fly rock, back break, air overpressure, etc.
These activities have various environmental effects and create issues for those in close
proximity to the blasting zone [3]; ground vibration is one of the most severe environmental
effects of blasting. This can cause damage to structures and ultimately affect peoples’ lives
and possessions, particularly if the buildings and structures were not designed to resist
the blast’s enormous destruction. According to Komadja et al.’s [4] studies, blast-induced
ground vibration affects vegetation growth and can lead to deforestation. Moreover, it
causes ground and slope instabilities, affecting the safety of workers during loading,
drilling, and subsequent blasting activities. Additionally, people who live or work near
the explosion site may experience pain and discomfort because of ground vibrations [5–7].
The release of energy that occurs during the explosion is what causes ground vibration,
and the intensity of the vibration is determined by several parameters, including the
amount of explosive employed, the type of rock, which is blasted, and the distance from
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the source of the blast. According to Lawal et al. [7], the intensity of the blast-induced
ground vibration is associated with the controllable and uncontrollable parameters of
the blasting operations. The controllable blasting parameters, which include blast design
parameters such as the burden, spacing, blast hole depth, diameter of the hole, stemming
type and height, maximum charge weight used per delay (W), and specific charge, as
well as explosive parameters such as the explosive type, detonation velocity (VoD), and
powder factor, are all easy to modify, and planned based on the conditions; therefore,
the blasting engineer is responsible for modifying and planning the controllable blasting
parameters during the blasting design process. The uncontrolled parameters include the
mechanical and physical properties of the rock, as well as the geological characteristics of
the surrounding environment; the majority of uncontrolled aspects depend on the rock’s
natural formation.

The ground vibration movement is like a wave pattern, that travels in a circumferential
direction outward from the source of the blasting. This wave motion is analogous to the
ripples that travel in a circumferential direction outward when an item is thrown into a body
of water and causes an impact. The peak particle velocity (PPV) is the standard baseline
parameter for calculating the amount of blast-induced ground vibration, according to the
rules regulating the research into blasting practice and blast-induced ground vibration.
This is because the PPV is a measurement of the velocity of the most forward particles in
terms of transverse (T), vertical (V), and longitudinal (L) velocities.

Various researchers have developed empirical equations to predict the intensity of
blast-induced ground vibration, such as the equation that was the first meaningful PPV
predictor, suggested by the United States Bureau of Mines (USBM), Duvall, and Fogleson.
After a few years, different researchers modified the USBM formula, based on the scaled
distance and MIC. These techniques are mathematically expressed in Equations (1)–(4).
However, due to the accuracy of the predicting model, measuring the complexity of
the rock mass conditions and input data parameters, and other criteria, prediction and
estimation of the blasting vibration becomes a more challenging and time-consuming
process. Hence, conventional empirical models are insufficient, due to the limitations of
the empirical formulas.

Duvall and Fogleson (USBM) PPV = K
(

D
Q1/2

)−b
(1)

Ambraseys and Hendron PPV = K
(

D
Q1/3

)−b
(2)

Langefors and Kihlstrom PPV = K

(
D1/2

Q3/4

)b

(3)

Indian standards PPV = K
(

D
Q2/3

)b
(4)

where D is the distance from the blasting face to the monitoring station (m), PPV is the peak
particle velocity (mm/sec), and Q is the maximum instantaneous charge (Kg), whereas k
and b are the site constants; each site has its own site constants (K and b).

To address the limitations of the conventional empirical equations, researchers over
the years have used different advanced soft computing analytics to describe complicated
real-world occurrences, by interrelating the characteristics that have been determined to
cause such limitations. Khandelwal et al. [8], Mohamad [9], and Alipour et al. [10] predicted
blast-induced ground vibration using artificial intelligence techniques, mainly artificial
neural networks (ANNs). Based on the number of parameters employed to generate an
ANN, their proposed models are divided into two (i.e., training and test) categories. In
addition to the ANN technique, different researchers have developed a variety of artificial
intelligence methods, such as the fuzzy model [11,12], linear regression, decision tree [13],
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random forest [14], and deep learning, to predict and estimate blast-induced vibrations.
The review study by Dumakor-Dupey et al. [15] revealed an excessive number of ML
approaches being used to predict the PPV, with artificial neural network (ANN), support
vector machine (SVM), and the adaptive neuro-fuzzy inference system (ANFIS) being the
most frequently used algorithms (ANFIS). The interaction between the algorithms and the
variables determines the efficiency of the models. Combining two or more machine learning
(ML) algorithms has led to the creation of hybrid models, which improve the accuracy
of stand-alone ML approaches. Nevertheless, these hybrid models provide impractical
mathematical formulations, which are difficult to interpret. Table 1 summarizes the relevant
research on blast-induced vibration prediction using artificial intelligence (AI) approaches
in tabular form.

Table 1. Summary of selected previous studies that integrate artificial intelligence (AI) techniques for
the prediction of blast-induced ground vibration. The table includes the models, input parameters,
performance index, and number of datasets for each selected research.

Authors Number of Datasets Input Parameters Models Performance
Index

Taheri et al. [16] 89 MCPD, D ANN, ABC-ANN,
empirical model R2 = 0.92

Arthur et al. [17] 101
MCPD, D, PF, SL

B, S, AD
GPR, BPNN, MARS, ELM,

MVRA

R2 = 0.99
MSE = 0.09

R = 0.99
VAF = 99.17%

Khandelwal and Singh [8] 150 B, S, MCPD, HD, D
V, E, Pv, BI, VoD

ANN, MVRA, empirical
model MAE = 0.24

Khandelwal [18] 128 B, S, D, CL, MCPD ANN, empirical model MAE = 0.18
CoD = 0.91

Bakhshandeh et al. [19] 30 S, D, T, N, MCPD ANN, MVRA, empirical
model

R2 = 0.977
Error = 0.088

Saadat et al. [20] 69 D, MCPD, HD ANN, MLR, empirical
model

R2 = 0.95
MSE = 0.00072

Lawal [21] 100 D, MCPD ANN, MLR R2 = 0.988, RMSE = 2.90,
VAF = 98.74 MAPE = 7.14

Zhang [22] 175 PF, T, B, S
H, D, MCPD

PSO-XG Boost, empirical
models

R2 = 0.96
RMSE = 0.58,

MAE = 0.34 VAF = 96.08

Rana et al. [23] 137
MCPD, HDM, CPH, HD,

TC, D, NH, TS
ANN, MVRA, CART,
empirical predictor

RMSE = 1.56
R2 = 0.95

Verma and Singh [24] 127
MCPD, TC
HD, B, S, T,

GA, ANN, MVRA,
empirical predictor

R2 = 0.99
MAPE = 0.088

Ghasemi et al. [25] 120
B, S, T, NH,
MCPD, D ANFIS-PSO, SVR R2 = 0.96

RMSE = 1.83

Iphar et al. [26] 44 MCPD, D ANFIS, MLR R2 = 0.98
RMSE = 0.80

Saadat et al. [20] 69
MCPD, D

SL, HD
ANN, empirical models R2 = 0.95

RMSE = 0.88

Peng et al. [27] 93
S, D, PF, RQD
SD, B, MCPD,

ANN, ANN-PSO,
ANN-GA,

R = 0.945
RMSE = 0.68

Amini et al. [28] 51 TC, D, Ve, B, S, pe ANN R2 = 0.96

Hajihassani et al. [29] 95 B/S, T, MCPD
P-wave, E, D ANN, ICA-ANN, MLR R2 = 0.97

Faradonbeh et al. [30] 102 D, T, PF, HD,
MCPD, B/S NLMR, GEP R2 = 0.87

Vasovic et al. [31] 32 D, TC, MCPD Empirical predictor, ANN R2 = 0.9
RMSE = 0.018
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Therefore, in this study, a total of 100 datasets, from Mikurahana quarry in Japan,
have been examined to develop a Bayesian neural network (BNN) prediction model and
four machine learning regression techniques. Each dataset consists of different parameters
such as monitoring the distance from the blasting face (D), maximum instantaneous charge
(MIC), scaled distance (SD), elevation (E), blast longitudinal, blast latitude, measured
longitudinal, and measured latitude. The Bayesian neural network (BNN) model, and the
four machine learning techniques, are evaluated using different evaluation metrics, such
as R, RMSE, and MSE. In consideration of the number of factors and assessment criteria,
it was found, via the evaluation of these metrics, that they are remarkably accurate. The
findings indicate that the four machine learning relationships have weak PPV estimation
capabilities. However, due to its nonlinear structure, great flexibility, and low error, the
BNN is much more capable of estimating the PPV compared to the other models.

The major contribution of this study is as follows: first, the study introduces a new
prediction methodology using the Bayesian neural network (BNN). Second, the study
introduces SHAP, and utilizes this as a feature extraction of the study; this system aids in
understanding the model, the evaluation of the importance of the models’ features, and in
avoiding the issues of the black box. Third, new input parameters have been introduced.
The overall analysis of this study with the model execution and prediction is depicted in
Figure 1.
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Figure 1. Flow chart of the overall analysis of the study, with model execution and prediction of PPV.

The rest of the paper is organized as follows: Section 2 provides the Materials and
Methods and outlines the background on the study area, blasting vibration monitoring tech-
niques, and details regarding the datasets and preprocessing. The proposed artificial neural
network, results of the evaluation metrics, and explanation of the model’s performance
metrics used to assess the accuracy of the results, are presented in Section 3. Section 4
outlines the result of the BNN and the four proposed machine learning techniques. The
importance of the model in the future is discussed in Section 5. The key conclusions from
the research and their implications are presented in Section 6.
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2. Materials and Methods
2.1. Description of the Study Area

In this study, the Mikurahana quarry site, owned and maintained by Toseki material
Co., Ltd., in Hachirogata town, Akita prefecture, Japan, was selected as the target location
for this research. The Mikurahana quarry can produce roughly 2000 tons of rock daily,
the primary rock type being rhyolitic andesite. Figure 2 is a map that illustrates how the
Mikurahana quarry is situated concerning its surroundings. As seen from the picture, there
is a town, and roads that are classified as national highways, close to the quarry site. Based
on this information, it was determined that the location was an appropriate target site for
this research, because the inhabitants of the village live in an environment that is vulnerable
to ground vibrations induced by the blasting that takes place at the Mikurahana quarry.
Using the collected data on the ground vibration caused by blasting, a blasting prediction
model for the quarry was developed.
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Figure 2. Demonstrates (a) the Mikurahana quarry site, which is located in Hachirogata town, Akita
prefecture, and (b) a map of Akita prefecture.

The blasting design parameters from the Mikurahana quarry are as follows. The
diameter of vertical and horizontal holes is 65 mm, the space between vertical holes is
2–2.4 m, the length of the vertical hole is 9–9.5 m, the bench height is about 10 m, and
the inclination of the vertical hole is 80◦–85◦. Explosives such as ANFO, water-containing
explosives, and electric detonators are the most common type of explosives used in the
quarry. All the blasting design parameters of the quarry site are depicted in Figure 3.
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height, stemming, face angle, burden, spacing, diameter of the hole, and charge column).

2.2. Blasting Vibration Monitoring at Mikurahana Quarry Site

Monitoring equipment for the blasting vibration is necessary to measure the vibration
and air blast caused by quarry blasting. Locating the monitoring equipment is the first
step of installation. Before doing so, the quarry management team evaluated the quarry
size, blasting method, and nearby structures. After deciding on the location, we set up
and calibrated the equipment, according to the manufacturer’s instructions; we used a
variety of vibration-measuring equipment at the Mikurahana quarry site and installed
them as we had prepared. The main pieces of equipment we used were a laptop computer,
seismographs, geophone, and data recorders. All the equipment is depicted in Figure 4.
Seismographs monitor the frequency and amplitude of the ground vibrations induced by
blasting and are used to assess whether the blast exceeds the regulation limit. On the other
hand, accelerometers determine the direction and length of the vibration, by measuring the
acceleration of the ground induced by the explosion. Data loggers are used to gather and
store the data acquired by the seismographs and accelerometers, which may subsequently
be examined and utilized to modify the blasting process, to reduce the environmental
effects. Utilizing the correct technology for the monitoring of blasting vibration is crucial
for maintaining the safe and effective operation of quarries.
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Figure 4. Ground vibration monitoring instruments (a) laptop computer, (b) geophone, (c) data
logger, and (d) seismograph.

2.3. Dataset and Pre-Processing

The ground vibration dataset consists of 100 data points. There are eight inputs: the
MIC, SD, distance, elevation, blast longitudinal, blast latitude, measured longitudinal, and
measured latitude, while the PPV is the output. Table 2 indicates the descriptive statistical
analysis of the dataset, and Figure 5 illustrates the frequency histogram of the dataset. The
dataset was split into training dataset (80% of the total dataset) and testing dataset (20%
of the total dataset). Due to the variation in the dataset in Figure 5, normalization was
applied, to avoid overfitting and to increase the model’s learning performance. Equation
(5) expresses the formula of normalization.

xnormalised=
(x− xminimum)

(xmaximum − xminimum)
(5)

where x represents the initial value, xminimum represents the minimum value in the dataset,
xmaximum represents the highest value in the dataset, and xnormalized represents the normalized
value. Normalization is typically between 0 and 1.
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Table 2. Descriptive statistics of the input and output variables.

Descriptive MIC
(kg)

Distance
(m)

Elevation
(m)

Blast
Longitudinal

Blast
Latitude

Measured
Longitudinal

Measured
Latitude

SD
(m/kg1/2)

PPV
(mm/s)

Count 100 100 100 100 100 100 100 100 100
Mean 26.1 350.01 19.1 39.98 140.0 39.98 140.0763 68.64 0.62

Std 2.13 70.77 9.03 0.000709 0.00058 0.0015 0.001312 13.8 0.36
Min 23 206.64 1 39.98 140.1 39.98 140.0744 40.5 0.18
25% 24.42 296.067 15 39.98 140.07 39.98 140.0752 58.06 0.365
50% 25.5 348.6715 18 39.986 140.07 39.98 140.0763 68.3 0.53
75% 28.5 400.12 26 39.98 140.08 39.9 140.0771 78.4 0.77
Max 32.5 482.18 44 39.987 140.08 39.9 140.081 94.5 1.87
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3. Proposed Artificial Neural Network (ANN) Model

Artificial neural networks, often known as ANNs, are artificial intelligence (AI) tech-
nology capable of handling complex problems in a manner similar to that of humans.
Multiple applications have used ANNs as a tool, including image recognition, audio
recognition, and natural language processing [32,33].

To solve a problem, the ANN does not need prior knowledge of the relationships be-
tween the variables involved, unlike many statistical and probabilistic techniques. Similar to
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nonlinear regression models, ANNs can precisely solve nonlinear regression problems; the
similarity in structure between ANNs and the human brain makes this possible [22,34,35].

Some researchers, such as Moyadei and Rezaei [33], believe that the feed-forward
back propagation (BPNN) algorithm is the most efficient learning technique for multilayer
neural networks, among the several algorithms that may be utilized in an ANN (Figure 6).
The learning process may be either unsupervised or supervised. Unsupervised is the most
common approach for regression and classification problems, and it is used to predict the
peak particle velocity (PPV) in this study. The ANN must be trained by analyzing many
input and output patterns. The ANN then interprets the observational data into the hidden
layer. First, a layer, or layers, of hidden neurons create the weights transmitted by the
transfer function of the neurons in the input layer, and then the output layer performs the
desired output prediction.
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3.1. Network Training

Before analyzing new input data, a network must be trained. There are a number
of methods for training neural networks, but the back propagation algorithm is the most
flexible and efficient. This is the most effective way for multilayer neural networks to learn.
In addition, the extensive application of back propagation algorithms results from their
efficiency in resolving prediction issues. Three layers are always included in feed-forward
back propagation neural networks (BPNNs): input, hidden, and output. Thus, the feed-
forward back propagation neural network consists of input, hidden, and output layers
(BPNN). Each layer contains several neurons, the fundamental processing units, and each
neuron is connected to the next layer through weights. The neurons in the input layer
transmit their output to the neurons in the hidden layer. The number of input and output
neurons corresponds to the input and output variables.

Training a network involves sending data from the input layer to the hidden layers,
and then to the output layer (forward pass). The output is then compared to the recorded
values (the “true” output). To change connection weights, the network adjusts the difference
or error, and each neuron biases input–output training pairs. This procedure is repeated for
each training pair in the dataset until the network error converges to a function; typically,
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the root-mean-square error (RMSE), or sum of the squared errors, is used to determine the
convergence (SSE).

3.1.1. Bayesian Neural Network (BNNs)

A Bayesian neural network is a form of artificial neural network (ANN) that combines
the flexibility and versatility of ANNs, with the ability to handle the uncertainty of the
model’s parameters. It establishes the probability distribution of the model’s parameters
using Bayesian inference, as opposed to point estimations, unlike conventional ANNs.
This enables BNNs to incorporate uncertainty into their predictions and provide more
accurate results. BNNs have been implemented in a variety of applications, including
image classification, natural language processing, and reinforcement learning [36].

Murat [37] explains the Bayesian framework for neural networks; his Bayesian research
approach focuses on the probabilistic interpretations of network architectures. In contrast to
conventional network training, in which the optimum weights are obtained by minimizing
the error function, the Bayesian approach employs a probability distribution of the network
weights. Therefore, the general network’s prediction is based on a probability distribution.
In the Bayesian concept, the network weights are random variables, and their posterior
distribution may be modified according to Bayes’ rule [38].

Therefore, the equation is as follows.

k (ω |C, α, β, L ) =
K(C |ω, β, L)K(ω |α, L)

K(C |α, β, L)
(6)

where the main neural network model is represented as K, the training sample is represented
as C, the distribution of the weights is described as k ( ω |αL ) =

(
α

2π

)m/2 exp
{
− α

2 ω1ω
}

, L is
one of the particular ANNs, and ω represents the vector of the network with their weights.
K ( ω |α, L ) describes the main state of knowledge before the target data are collected, and
K(C |ω, β, L) is a similar function, which is the probability of the data occurring given the
weights. The posterior equation for the BNN network is stated in Equation (7).

Posterior =
Likelihood× prior

Evidence
(7)

A BNN can create probabilistic commitments for its predictions, and the distribution
of the parameters it has learned from the observations. Hence, one may derive the type
and form of the neural network’s learned parameters from the parameter space. These two
aspects make them BNNs attractive to both theorists and practitioners. Hence, due to its
performance and accuracy of the as a predictive model, we have proposed a BNN in this
study, to predict the blast induced ground vibration of Mikurahana quarry site, based on
the eight input parameters, one output parameters and one hundred blasting datasets. The
overall flow of a Bayesian neural network (BNN) is summarized in Figure 7.
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3.1.2. Levenberg–Marquardt Algorithm (LMA)

Levenberg–Marquardt was developed to estimate the speed of second-order training
without requiring the Hessian matrix to be calculated. Using the sum of the squares perfor-
mance function, one may generate the Hessian matrix for training feed-forward networks.

Levenberg [39], in his research, optimized nonlinear least squares problems using
gradient descent and an inversion of the Hessian matrix. LMA is often used to train feed-
forward neural networks using back propagation. The gradient descent approach converges
slower than the algorithm. Many disciplines use the Levenberg–Marquardt algorithm.

In most cases, Levenberg–Marquardt uses the approximation of the Hessian matrix
shown in Equation (8).

Xk+1 = xk −
[
JTJ + µI

]−1
JTe (8)

When the scalar, µ, is 0, this is Newton’s approach, using the estimated Hessian matrix.
When µ is big, this becomes gradient descent, with a short step size. As soon as it is
feasible, Newton’s approach should be switched to, as it is quicker and more accurate,
in terms of keeping errors to a minimum. Thus, µ is dropped after each successful step
(reduction in the performance function) and raised only when a tentative step will enhance
the performance function. This reduces the performance function with each iteration of
the algorithm.
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3.1.3. Log-Sigmoid Function

The log-sigmoid function (logistic function) represents the binary outcomes in statis-
tics and machine learning (Figure 8). The odds ratio of success to failure is its logarithm.
Log-sigmoid functions convert real-valued inputs to probabilities between 0 and 1. Gra-
dient descent optimization strategies leverage the function’s differentiability and unique
derivatives in all places. Artificial neural networks employ them in the output layer of
binary classification problems. The function for log-sigmoid is shown in Equation (9).

b =
1

1 + e−1 (9)
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3.1.4. Linear Function

A linear system’s input–output relationship is often expressed as a polynomial equa-
tion, with the input variable acting as the independent variable and the output variable
functioning as the dependent variable (Figure 9). The coefficients, commonly known as
transfer function coefficients, determine the system’s behavior in the polynomial equation.
Control systems, signal processing, and other branches of engineering and physics em-
ploy linear transfer functions extensively, to describe and analyze the behavior of linear
systems. In addition, they are used to develop control systems capable of reaching certain
performance targets. The function for the linear function is shown in Equation (10).
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3.2. Evaluation Metrics

The proposed models were evaluated using the different performance metrics; R
(Pearson’s correlation coefficient), RMSE (root-mean-square error), and MSE (mean squared
error). The BNNs model is compared to four traditional machine learning models, to show
its strength in predicting ground vibration. Sections 3.2.1–3.2.3 explain the evaluation
metrics in detail.

3.2.1. Pearson’s Correlation Coefficient

Measuring the degree of correlation between two or more variables is one of the most
used statistical methods, with the product–moment correlation coefficient, generally known
as Pearson’s correlation coefficient (r), being one of the most commonly used statistics.
Richard [40], in his research, described the correlation in terms of its application in a wide
variety of statistics. Such as, first, establishing if two or more variables have a statistically
relevant positive or negative correlation, and second, determining the level of statistical
significance that may be assigned to an association.

r =
∑
(

xi −
−
x
)(

yi −
−
y
)

√
∑
(

xi −
−
x
)2

∑
(

yi −
−
y
)2

(11)

where r = Pearson’s correlation coefficient, m = total number of observations, yi = y variable

sample,
−
y = mean of values in y variable,

−
x = mean of values in x variable, and xi = x

variable sample.

3.2.2. Root-Mean-Square Error

There are several techniques which can be used to evaluate the performance of a regres-
sion model, but the most frequent is to compute the root mean square error (RMSE). The
root-mean-square error (RMSE) is a parameter that can be used to assess the performance
of a model, by determining the amount of deviation that exists between the predicted
value and the observed value [41]. The unit of the error score is the same as that of the
predicted value, which is an advantage of the RMSE. The root-mean-square error (RMSE)
can measure the evaluation of the matrix performance, which corresponds to the predicted
value of the squared (quadratic) error or loss [42]. If yi is the corresponding true value and
ŷi is the predicted value of the ith sample, the RMSE is defined as in Equation (12).

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (12)

where RMSE = root-mean-square error; m = total number of observations; yi = actual
observations time series y; and ŷi = estimated time series y.

3.2.3. Mean Squared Error (MSE)

The MSE is a common regression model evaluation approach (Equation (13)). It
averages the squared differences between predicted and actual values. The mean squared
error is calculated by summing the squared differences between predicted and actual values
and dividing them by the number of observations. The model predicts the target variable
more successfully with a lower MSE. Therefore, they were considered when evaluating the
findings. Optimization- and gradient-based techniques benefit from MSEs differentiability.

MSE =
1
m

m

∑
i=1

(
yi − ŷi)

2 (13)

where MSE = mean squared error; m = total number of observations; yi = actual observations
time series y; and ŷi = estimated time series of y.
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4. Results

The Bayesian neural network model’s performance was computed utilizing the MSE,
RMSE, and R evaluation metrics. Figure 10 demonstrates the regression model’s actual
and predicted data distribution. Figure 11 illustrates the model’s learning curve with 1000
epochs; the best performance is at epoch 62, based on the mean squared error. Figure 12
indicates the model prediction error histogram. The proposed Bayesian neural network
model was compared with the random forest regression, gradient boosting, decision tree,
and k-neighbors regression models, to outline the performance of the BNN model. Table 3
presents the results of the comparison between the models, based on the evaluation metrics.
The proposed model is superior to the traditional machine learning methods.
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Table 3. Model comparison based on the R, RMSE, and MSE evaluation metrics.

Model R RMSE MSE

Bayesian neural network 94 0.17 0.03
Random forest regressor 76 0.23 0.06

Gradient boosting regressor 74 0.23 0.06
Decision tree regressor 70 0.26 0.82
k-neighbors regressor 67 0.25 0.07

Based on the results, considering the root-mean-square error, Pearson’s correlation
coefficient, and the mean squared error, the proposed BNN model outperformed the four
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traditional machine learning methods. The proposed BNN model obtained a Pearson’s
correlation coefficient of 94%, a mean squared error of 0.03, and a root-mean-square error
of 0.17%. The k-NN regression model had the lowest correlation coefficient (67%), while
the random forest model provided the highest correlation coefficient (76%), among the
traditional machine learning models. In summary, the proposed model outperforms
traditional machine learning models, making it superior in predicting ground vibration in
mining blasting operations.

5. Discussion

Due to the accuracy of the predicting model, measuring the complexity of the rock
mass conditions and the input data parameters, as well as the criteria, prediction, and
estimation of the blasting vibration, becomes a more challenging and time-consuming
process. Hence, conventional empirical models are insufficient, due to the limitations of
the empirical formulas. To tackle this challenge, researchers over the years have used
different machine learning techniques to describe complicated blasting vibration studies,
by interrelating the characteristics that have been determined to cause such vibrations, as
demonstrated in the works of Wang et al. [43], Guo et al. [44], Al Bakri et al. [45], and Chen
et al. [46], who conducted different research projects using soft computing intelligence
for predicting the blast vibration and understanding the wave formation associated with
the blasting.

The main contribution of this research is to introduce a new prediction model, based
on the Bayesian neural network (BNN), and four machine learning models (random forest,
gradient boosting, decision tree, and k-nearest). Over the last few decades, researchers such
as Lawal [21], Shang et al. [47], and Khandelwal [18] have used the Levenberg–Marquardt
neural network for the prediction of blast-induced ground vibration. However, due to its
superior accuracy, this study utilized the Bayesian neural network (BNN) rather than the
Levenberg–Marquardt neural network.

In addition, this study introduced new input parameters; however, this study did not
incorporate the geological features of the study area, due to limited resources, nor did we
carry out experimental work related to rock properties.

Finally, after assessing the results of the models’ evaluation, SHAP was performed, to
understand the importance of each of the models’ features and to avoid the issue of the
black box. When using SHAP, it is easy to understand how each parameter contributes to a
model’s prediction for a particular instance. Based on the comprehensive SHAP analysis,
this study shows the distance has more future importance when compared to the other
input parameters. However, in this study, the spacing, diameter of the hole, burden, and
bench height are not included in the study, because they each have the same value, so,
based on the standard deviation, the statistical findings from the spacing, burden, bench
height, hole diameter shows that there is no value, in terms of deviation, that improves
the model for a better prediction, hence the BNN and four machine learning models are
developed without the above listed input parameters.

Figure 13 demonstrates the importance of the input parameters for the ground vibra-
tion. Based on the SHAP analysis, this study shows the distance have the higher future
importance when compared to the other input parameters.
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6. Conclusions

Ground vibration has a negative impact not only on the environment of the surround-
ing area, but also on the rock itself, and the surrounding human population. The release
of energy that occurs during an explosion is what causes ground vibration; the intensity
of the vibration is determined by several parameters, including the amount of explosive
employed, the type of rock that is blasted, and the distance from the source of the blast. The
PPV is the most important principal base parameter practice for understanding, evaluating,
and predicting ground vibration, in terms of the vibration velocity. This is because the PPV
is a measure of the most forward particles, in terms of the transverse (T), vertical (V), and
longitudinal (L) velocities. This study aims to predict the blast-induced ground vibration of
the Mikurahana quarry, using a Bayesian neural network (BNN) and four machine learning
techniques, including random forest, gradient boosting, decision tree, and k-neighbors.

What follows is a few of the conclusions that can be derived from the research that
was presented:

1. The proposed model was developed using eight input parameters (MIC, SD, dis-
tance, elevation, blast longitudinal, blast latitude, measured latitude, and measured
longitude) and one hundred recorded blasting datasets. The data are divided into
two parts: the training data (80% of the total dataset) and the test data (20% of the
total dataset).

2. The assessment of one model over the other was tested by using different perfor-
mance evaluation metrics, such as mean squared error (MSE), root-mean-square error
(RMSE), and Pearson’s correlation coefficient (R). Additionally, SHAP (Shapley addi-
tive explanation) was performed, after the evaluation of the model, to understand the
feature importance of the model and avoid the issue of the black box.

3. The results obtained from the BNN model are compared with four machine learning
regression analyses, and we found that the performances of the BNN model are
superior to those of the traditional models, and the BNN model outperformed other
models, with a lower error (RMSE = 0.17, MSE = 0.03, and R = 0.94). In consideration
of the number of factors and the assessment criteria, these findings can be regarded as
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remarkably accurate. For the estimation of the PPV parameters, four machine learning
algorithms were evaluated. The findings indicated that these relationships have weak
PPV estimation capabilities. Due to its nonlinear structure, great flexibility, and low
error, a BNN is much more capable of estimating the PPV than other models.

4. By adopting the BNN technique, we can predict the PPV before a blast occurs. Adjust-
ments may be made to the blast design so that blast disturbances are reduced, and
more explosive energy will be utilized effectively and efficiently.
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Abbreviations

ABC-ANN Artificial bee colony-artificial neural network
AD Average depth
ANN Artificial neural network
AMR Angle of minimum resistance line to measured point
ANFO Ammonium nitrate fuel oil
ANFS Adaptive neuro fuzzy model
B Burden
BI Blastability index
BPNN Back propagation neural network
CL Charge length
CoD Coefficient of determination
CPH Charge per hole
D Distance
Dh Horizontal distance
E Young’s modulus
ED Elevation difference
ELM Extreme learning machine
F Frequency
FRRL Front row resistance line
GA Genetic algorithm
GEP Gene expression programming
GPR Gaussian process regression
HD Hole depth
HDM Hole diameter
IC Integrity coefficient
ICA Imperialist competitive algorithm
MAE Mean absolute error
MAPE Mean absolute error percentage
MARS Multivariate adaptive regression splines
MCPD Maximum charge per delay
MIC Maximum instantaneous charge
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MLR Multiple linear regression
MSE Mean squared error
MVRA Multivariate regression analysis
N Number of holes
NLMR Nonlinear multiple regression
PF Powder factor
Pv P-wave
PPR Presplit penetration ratio
PPV Peak particle velocity
PSO Particle swarm optimization
Qtoat Total amount of charge
R2 Coefficient of determination
RMSE Root-mean-square error
RQD Rock quality designation
S Spacing
SHAP Shapley additive explanation
SL Stemming length
SVR Support vector regression
T Stemming
TC Total charge
TS Tunnel cross section
VAF Variance accounted for
VoD Velocity of detonator
XGBoost Extreme gradient boosting machine
ρe Explosive density
Ve Volume of extracted block
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32. Tuan Hoang, A.; Nižetić, S.; Chyuan Ong, H.; Tarelko, W.; Viet Pham, V.; Hieu Le, T.; Quang Chau, M.; Phuong Nguyen, X. A
Review on Application of Artificial Neural Network (ANN) for Performance and Emission Characteristics of Diesel Engine
Fueled with Biodiesel-Based Fuels. Sustain. Energy Technol. Assess. 2021, 47, 101416. [CrossRef]

33. Xu, A.; Chang, H.; Xu, Y.; Li, R.; Li, X.; Zhao, Y. Applying Artificial Neural Networks (ANNs) to Solve Solid Waste-Related Issues:
A Critical Review. Waste Manag. 2021, 124, 385–402. [CrossRef] [PubMed]

34. Moayedi, H.; Rezaei, A. An Artificial Neural Network Approach for Under-Reamed Piles Subjected to Uplift Forces in Dry Sand.
Neural Comput. Appl. 2019, 31, 327–336. [CrossRef]

35. Bahrami, A.; Monjezi, M.; Goshtasbi, K.; Ghazvinian, A. Prediction of Rock Fragmentation Due to Blasting Using Artificial Neural
Network. Eng. Comput. 2011, 27, 177–181. [CrossRef]

36. Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; Wierstra, D. Weight Uncertainty in Neural Networks. In Proceedings of the 32nd
International Conference on Machine Learning, Lille, France, 6–11 July 2015.

37. Kayri, M. Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks:
A Comparative Empirical Study on Social Data. Math. Comput. Appl. 2016, 21, 20. [CrossRef]

38. Xu, M.; Zeng, G.; Xu, X.; Huang, G.; Jiang, R.; Sun, W. Application of Bayesian Regularized BP Neural Network Model for
Trend Analysis, Acidity and Chemical Composition of Precipitation in North Carolina. Water Air Soil Pollut. 2006, 172, 167–184.
[CrossRef]

39. Levenberg, K. A Method for the Solution of Certain Non-Linear Problems in Least Squares. Quart. Appl. Math. 1944, 2, 164–168.
[CrossRef]

40. Armstrong, R.A. Should Pearson’s Correlation Coefficient Be Avoided? Ophthalmic Physiol. Opt. 2019, 39, 316–327. [CrossRef]
41. Mei, X.; Cui, Z.; Sheng, Q.; Zhou, J.; Li, C. Application of the Improved POA-RF Model in Predicting the Strength and Energy

Absorption Property of a Novel Aseismic Rubber-Concrete Material. Materials 2023, 16, 1286. [CrossRef]
42. Moustafa, S.S.R.; Abdalzaher, M.S.; Yassien, M.H.; Wang, T.; Elwekeil, M.; Hafiez, H.E.A. Development of an Optimized

Regression Model to Predict Blast-Driven Ground Vibrations. IEEE Access 2021, 9, 31826–31841. [CrossRef]

http://doi.org/10.1007/s00366-016-0497-3
http://doi.org/10.3390/app12189189
http://doi.org/10.1007/s10706-011-9463-4
http://doi.org/10.1016/j.jrmge.2013.11.001
http://doi.org/10.1016/j.sciaf.2020.e00413
http://doi.org/10.1007/s11053-019-09492-7
http://doi.org/10.1007/s42461-020-00205-w
http://doi.org/10.1007/s00366-010-0193-7
http://doi.org/10.1007/s00366-016-0438-1
http://doi.org/10.1007/s00254-007-1143-6
http://doi.org/10.1007/s11053-021-09899-1
http://doi.org/10.1007/s00521-011-0631-5
http://doi.org/10.1007/s10064-014-0657-x
http://doi.org/10.1016/j.ijrmms.2016.07.028
http://doi.org/10.1007/s12665-014-3280-z
http://doi.org/10.1016/j.seta.2021.101416
http://doi.org/10.1016/j.wasman.2021.02.029
http://www.ncbi.nlm.nih.gov/pubmed/33662770
http://doi.org/10.1007/s00521-017-2990-z
http://doi.org/10.1007/s00366-010-0187-5
http://doi.org/10.3390/mca21020020
http://doi.org/10.1007/s11270-005-9068-8
http://doi.org/10.1090/qam/10666
http://doi.org/10.1111/opo.12636
http://doi.org/10.3390/ma16031286
http://doi.org/10.1109/ACCESS.2021.3059018


Appl. Sci. 2023, 13, 3128 21 of 21

43. Wang, Y.; Zheng, G.; Li, Y.; Zhang, F. Full Waveform Prediction of Blasting Vibration Using Deep Learning. Sustainability 2022, 14,
8200. [CrossRef]

44. Guo, J.; Zhang, C.; Xie, S.; Liu, Y. Research on the Prediction Model of Blasting Vibration Velocity in the Dahuangshan Mine. Appl.
Sci. 2022, 12, 5849. [CrossRef]

45. Al-Bakri, A.Y.; Sazid, M. Application of Artificial Neural Network (ANN) for Prediction and Optimization of Blast-Induced
Impacts. Mining 2021, 1, 315–334. [CrossRef]

46. Chen, L.; Asteris, P.G.; Tsoukalas, M.Z.; Armaghani, D.J.; Ulrikh, D.V.; Yari, M. Forecast of Airblast Vibrations Induced by Blasting
Using Support Vector Regression Optimized by the Grasshopper Optimization (SVR-GO) Technique. Appl. Sci. 2022, 12, 9805.
[CrossRef]

47. Shang, Y.; Nguyen, H.; Bui, X.-N.; Tran, Q.-H.; Moayedi, H. A Novel Artificial Intelligence Approach to Predict Blast-Induced
Ground Vibration in Open-Pit Mines Based on the Firefly Algorithm and Artificial Neural Network. Nat. Resour. Res. 2020, 29,
723–737. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/su14138200
http://doi.org/10.3390/app12125849
http://doi.org/10.3390/mining1030020
http://doi.org/10.3390/app12199805
http://doi.org/10.1007/s11053-019-09503-7

	Introduction 
	Materials and Methods 
	Description of the Study Area 
	Blasting Vibration Monitoring at Mikurahana Quarry Site 
	Dataset and Pre-Processing 

	Proposed Artificial Neural Network (ANN) Model 
	Network Training 
	Bayesian Neural Network (BNNs) 
	Levenberg–Marquardt Algorithm (LMA) 
	Log-Sigmoid Function 
	Linear Function 

	Evaluation Metrics 
	Pearson’s Correlation Coefficient 
	Root-Mean-Square Error 
	Mean Squared Error (MSE) 


	Results 
	Discussion 
	Conclusions 
	References

