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Abstract: The Midyan Terrane (northwest Saudi Arabia) is characterized by the presence of a massive
belt of radioactive granitic rocks and thick sedimentary cover near the coastal areas. The area is greatly
influenced by the tectonic activities of the Red Sea and Gulf of Aqaba, implying its high potentiality
of geothermal energy. In the present work, geophysical surveys, including audio magnetotelluric and
gravity methods, were integrated to investigate the subsurface structural pattern of the study area, which
identified regional deep and shallow fault systems and detected the subsurface geometry/extension
of the granitic rocks as well as detecting the thickness of the sedimentary basins near the coastal area.
A total number of 80 audio magnetotelluric and 246 gravity stations were recorded, analyzed, and
interpreted. Two high-potential geothermal targets were indicated: high-heat-generating granites and
thick anomalous sedimentary basins near the coastal areas. High-heat-generating granites are significant
in terms of enhanced geothermal systems (EGSs) whereas sedimentary basins play a crucial role in the
formation of conventional geothermal systems. Both areas require more exploration plans to evaluate
the energy potential of geothermal reservoirs. The results also contribute to the identification of the
subsurface orientation and geometry of radioactive granites, providing the necessary parameters to
enhance a volumetric estimation for geothermal reserves.
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1. Introduction

Saudi Vision 2030 sets a target to transform from an oil-based economy to a diversified
economy based on renewable and sustainable energy to offer a supply of 9.5 GW by 2030 [1].
Thus, the Saudi government introduced several initiatives for investment in renewable
energy such as wind, solar, and geothermal [2–5]. Saudi Arabia has a series of hot springs
(hydrothermal systems) and volcanic basaltic fields along the Red Sea coast that can be
used for conventional geothermal systems. These resources are associated with tectonic (or
volcanic) heating, which is related to the opening of the Red Sea/Gulf of Aqaba [6,7]. An
excellent ridge of hot dry rock (e.g., high-heat-generating granites) is also recognized in
the Arabian shield and northwestern parts, which can be considered to be hot dry rocks
(HDRs) that are good for enhanced geothermal systems (EGSs).

EGSs, sometimes called hot dry rocks (HDRs), have been verified for 40 years [8].
The idea of an EGS is the use of hydraulic fracturing to create an artificial geothermal
reservoir at deep depths (3–5 km). The technology of EGSs has been verified and is still
under development all over the world. A total number of 18 sites of EGSs around the
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world (e.g., United States, Australia, the EU, South Korea, and Japan) are operating and
under development [9]. The advantages of EGSs are that these technologies can function
as baseload resources that produce power 24 h/day and they are available anywhere in
the world. Good locations are over deep granite covered by a 3–5 km layer of insulating
sediments that slow heat loss. An EGS plant is expected to have an economical lifetime of
20–30 years using current technology [10]. A global review of EGSs can be found in [9].

Worldwide, many authors have investigated geothermal resources, including EGSs,
using a variety of geological, geochemical, and geophysical techniques in the last few
years [11–14]. More specifically, geophysical methods such as gravity, electromagnetic, and
magnetotelluric have been regionally applied to explore geothermal HDRs at different
basins in the world such as the Cooper Basin, Australia, and the Gonghe Basin, China.

The geophysical resistivity method is one of the methods that can be used to explore
and investigate geothermal resources. It provides information about the rock properties
(e.g., porosity and permeability) and the degree of hydrothermal alteration, which can
be used to determine the geometry and depths of geothermal reservoirs and to locate
the fracture zones by means of resistivity contrasts [15,16]. The electrical resistivity of
geothermal reservoir rocks is associated with porosity, water, and the exchange capacity,
and is strongly controlled by temperature. Therefore, exploring low-resistivity areas by
geophysical methods based upon electric resistivities plays a significant role in identifying
high-temperature zones related to geothermal reservoirs [11,17].

One of the most important geophysical methods to map resistivity is the audio mag-
netotelluric (AMT) method. It is a natural source method that uses a frequency range
from 1 Hz to 20 kHz (audio frequencies) and higher. It is commonly used in geothermal
exploration. On the other hand, the gravity method, based on measuring the differences
in the Earth’s gravitational field at different locations, is usually used to understand the
subsurface geological features on various scales [18]. The density models obtained from
gravity data are non-unique solutions. However, gravity information can be successfully
used in conjunction with AMT data by using integrated inversion procedures [19]. The final
geological models represent the solution of a joint minimization process of both datasets.

Geophysical exploration methods have contributed to the development of geothermal
energy in Australia. One of the first successful projects for the exploration of HDRs using
geophysical techniques was that undertaken by Geodynamics Limited (GDY) in the Cooper
Basin in South Australia [20]. The project site was selected where high-temperature granites
were located at relatively shallower depths, as estimated by a temperature distribution map
and a seismic reflection as well as the gravity survey results. An electromagnetic survey was
conducted to evaluate the underground resistivity structure. A number of injections and
production wells were drilled, tapping the geothermal reservoir. Water circulation through
the reservoir was successfully conducted, and produced electricity of 1 MW in 2013.

He et al. [21] investigated geothermal HDRs in the Gonghe Basin, China, using gravity
data to delineate a shallow underground fault and basement structure using a gravity anal-
ysis. Based on the interpretation of the gravity section inversion and Euler deconvolution,
they concluded that the study area was in a high-heat-flow spot, and fitted well with the
regional geological structure. A more recent study was performed by Zhao et al. [22] in
the Gonghe Basin. They applied the 3D inversion method to satellite gravity data of the
Gonghe Basin to analyze the underground structure and the mechanism of the geothermal
system. They identified an internal heat source and a heat transfer channel, and concluded
that crustal high-temperature partial molten mass was likely to be the main heat source for
the hot dry rock geothermal resources in the Gonghe Basin.

In Saudi Arabia, EGSs are mainly encountered in the northwestern parts of the
Midyan Terrane. A massive belt of high-heat granitic rocks that attains anomalously
high-radioactive elements (U, Th, and K) are recognized [23]. It mainly consists of intrusive
alkali, peralkaline granitic, and granodiorite rocks, along with a few extrusive rhyolites
and dykes with high-radioactive magmatic sources. The heat-generation capacity of these
granites varies from 2 to 134 µWm−3. Merely 1 cubic meter of such granites can generate
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10 MWe for 30 years. Assuming at least 2% of energy is extracted from such granites, on a
conservative amount, 120 × 106 TWh electricity can be generated [24].

Generally, there is a big gap in the knowledge and information concerning the potential
of geothermal resources in Saudi Arabia. During the last decade, a few studies have been
made regarding the geothermal resources of Saudi Arabia; among them, [23–30] are the
most important. Good work has been achieved by Aboud et al. [29], who built a database
of the available geothermal resources in the kingdom and produced the first geothermal
favorability map for the kingdom. However, more detailed and much more comprehensive
exploration studies are required to evaluate the geothermal resources in Saudi Arabia, with
a special emphasis on EGSs.

In this regard, audio magnetotelluric (AMT) and gravity geophysical measurements
were obtained for a geothermal exploration of the Midyan area. The aims of this study were
to investigate the subsurface structural pattern affecting the EGSs, describe the regional
deep and shallow fault systems, characterize the thicknesses of the sedimentary cover,
and detect the subsurface geometry/extension of the high-production granitic rocks; this
will help to enhance detailed volumetric estimations, which are necessary for further
geothermal reserve studies.

2. Geological Setting

The study area covered the whole of the Midyan Terrane in the northernmost part
of Saudi Arabia (Figure 1). It extends from the Duba area at the southern part to the
extreme northern part of the Al Bad’ area. The area is exposed to a huge series of hard
rocks, mainly meta-luminous, alkali, peralkaline granitic, and granodiorite rocks, and
constitutes the north-western part of the Arabian–Nubian Shield, formed by the accretion
of island arc terrain between 850 and 500 Ma [31,32]. These series are aligned along a
northwest–southeast direction following the main trend of the Red Sea rift. The peralkaline
granites (Midyan) constitute the last granitic phase of the Pan-African thermal event and the
development of the Arabian Shield [33–35]. The area of interest also comprises sediments
and rocks ranging in age from Quaternary to Precambrian. The Late Cretaceous to Tertiary
deposits that exist in the study area are also well-exposed at the Midyan Peninsula, which
fell within the study area [36].

Northwest–southeast-aligned granite mountains covered a wide part of the study
area; however, thin stratigraphic units were recognized in the wides, represented mainly
by Wadi fills and eroded materials. A seaward thickening towards the sedimentary cover
is well-recognized, especially in the Neom area. Excepting the areas where granitic rocks
were exposed, the lithological column of the area as detected from the few drilled shallow
wells in the study area (MEWA, 2014) could be summarized as:

• Thin sedimentary cover, represented mainly by Wadi fills and eroded materials ranging
in depth from 0 to 40 m in the valley’s areas.

• Massive Precambrian granite rocks, from 40 m and decreasing.
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Figure 1. Geological map of Midyan Terrane showing the distribution of massive granites and other
different rock units (after Faisal et al. [30]).

3. Material and Methods

AMT and gravity methods are commonly used in geothermal explorations where
resistivity and density can be mapped, respectively. Resistivity and density play an im-
portant role in finding the permeability and porosity, which are directly associated with
geothermal reservoirs [37–39].

In this study, first, the AMT method was utilized to image the subsurface resistivity
structure. A KMS-820 instrument was used to record the AMT data. The data-acquisition
system was developed for EM and seismic applications to obtain the subsurface resistivity
and velocity, respectively. This method is commonly used in oil and gas exploration as well
as geothermal studies. By using KMS-820 units, we collected AMT data at 80 stations.
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Second, a gravity survey was utilized to delineate the subsurface structure in terms
of the density variation. A special emphasis was given to the subsurface imaging of the
extension of the granitic rocks that were exposed at the surface, forming a massive regional
belt. A total number of 246 gravity stations were collected using a CG5 gravimeter. The
gravity method has been successfully used to describe regional faults, fracture zones, and
the thickness of sedimentary layers [37]. However, the ambiguity of gravity data is still an
issue in all gravity surveys. It can be reduced by high-level overlap-acquired datasets.

After obtaining high-resolution data (e.g., relatively dense gravity stations), detailed
density profiles could be utilized with the AMT data to perform a joint inversion. Figure 2
shows the locations of the AMT and gravity stations.

Figure 2. Yellow-filled triangles show the location of the AMT stations; black-filled red squares are
the gravity stations. P1–P15 are the selected profiles for modelling; DEM is the background.

3.1. AMT Data

AMT data were acquired with a 3–5 km station interval. A KMS-820 recording
system was used with 4 non-polarized electrodes (LEMI-701; Ag-AgCl + Pb-PbCl) and
2 high-frequency magnetic induction coils (LEMI-118; 1–70,000 Hz). The non-polarized
electrodes were spread out on the ground at the recording site at a 50 m distance from
the center in north–south and east–west directions. The recording unit and induction-coil
magnetometers were located at the center in north–south and east–west directions (10 m
away from the data logger). A total of 3 frequency bands were recorded at 80 kHz, 20 kHz,
and 4 kHz for 3 min 57 s, 5 min 16 s, and 13 min 10 s, respectively.

By using the above configuration, the AMT data at 80 sites were measured during the
fieldwork using the time-varying of natural electrical and magnetic fields. The relationship
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between the EM field components was represented in the frequency domain as a four-
element impedance tensor. The AMT data were acquired in a passive mode using a
combination of electrodes and induction-coil magnetometers. The electrodes were used
to determine the electric field, which was derived from the measurements of the voltage
difference between electrode pairs Ex and Ey. The induction coils were used to measure the
magnetic field components (Hx and Hy) in orthogonal directions. The ratio of the recorded
electric and magnetic fields in the frequency domain (Ex/Hy) provided an estimate of the
apparent resistivity of the subsurface at depth.

The AMT data were recorded in a binary format, and then KMS pro software [40] was
used to display, edit, filter, and sample the time series. Finally, a statistical means tool was
used to estimate the impedance tensor from the spectra. The data were then ready to be
imported into WinGLink software for the inversion [41].

The inversion algorithm strategy was based on analyzing the AMT data by the com-
parison of different geothermal benchmark modelling and inversion try-out results using
a variety of inversion methods. Before that, the AMT stations were rotated by 45◦ to be
a normal to regional geological strike (northwest). To image the subsurface resistivity
structure in two dimensions, the AMT data were inverted using the algorithm of Rodi and
Mackie [42] within the WinGLink software. This routine finds a regularized solution to the
2D inverse problem by using the non-linear conjugate gradients method [42].

3.2. Gravity Data

The gravity data were collected using a CG5 gravimeter with a ~2.5 km station interval.
The gravity data were acquired along east–west profiles, which were almost at the same
locations as the AMT, in order to detect fault systems below the surface and to facilitate the
integration of both datasets in the interpretation.

The gravity data were processed by applying the most common corrections (e.g.,
tidal, instrument drift, latitude, free air, and Bouguer corrections). After removing the
regional trend [43,44] from within the gravity data, the residual Bouguer anomaly map
was displayed (Figure 3). It showed that the average anomaly values ranged from −60 to
42 mGal. Low- and high-gravity anomalies matched well with the surface geology.

Figure 3. The Bouguer anomaly map of the study area. Dimmed squares show the location of the
recorded gravity stations.
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4. Results
4.1. AMT Data Analysis

The AMT data were analyzed to extract the subsurface structure and to determine the
high-permeability fracture zones and up-flow zones of hydrothermal systems [15].

To image the subsurface resistivity structure in two dimensions, the AMT data were
inverted [13,42]. In the inversion procedure, we used a smooth model inversion routine in
which regularized solutions for the 2D inverse problem using a non-linear conjugate gradient
could be obtained. The program inverted the 2D mesh, extending laterally and downward
beyond the core region and incorporating the topography into the 2D mesh. The error floors
were set to 5% for TE and TM (Rho and Phase). The inversion routine assumed that the
profiles were perpendicular to the electrical strike (e.g., the geoelectric strike after rotation).
Figures 4–6 show the 2D inversion results of a few selected profiles after 100 iterations. In the
same figure, the results of gravity modelling for the same profiles are displayed.

Figure 4. Profile-2 cross-section derived from (A) 2D modeling of AMT data (upper panel) and
(B) density modelling (lower panel).
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Figure 5. Profile-4 cross-sections derived from (A) 2D modeling of AMT data (upper panel) and
(B) density modelling (lower panel).

4.2. Gravity Data Analysis

In a geothermal context, the optimal temperature for electricity generation is between
120–170 ◦C where the rock permeability is low [45]. In this case, it is important to character-
ize tectonic features such as faults and fractures that could act as permeable zones.

In this study, the subsurface density distribution beneath the Midyan region was
predicted based on gravity data modelling. As no deep wells were drilled in the study
area, the density models of the granite rocks were matched as much as possible with the
available analyses of several exposed granite rocks in addition to the information provided
from nearby drilled wells penetrating similar granitic rocks in the Arabian shield [46].

The resistivity curves and gravity modelling were overlapped for a clear interpretation.
The inversion results of the AMT and gravity data were evaluated in terms of relatively low
resistivity/density zones, which might have indicated a thermal variation. Accordingly,
15 profiles (Figure 2) were selected for inversion process (AMT and gravity).

4.3. Interpretations

Integrating the AMT and gravity data provided a more robust interpretation. The 2D
inversion of the AMT data imaged the potential targets from the 2D resistivity inversions
that were supported by the gravity-derived interpretations (e.g., low-density fracture/fault
zones). The cross-sections showed the 2D-jointly interpreted AMT and gravity sections.
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These sections were selected to demonstrate the different structural patterns and the
geometry and extension of high-heat granites.

Figure 4 displays the 2D cross-section of Profile-2, extending along the east–west direc-
tion with a total length of 26 km. The section demonstrated the presence of low-resistivity
subsurface anomalies (5–29 ohm.m), indicating a thick sedimentary cover (~3–3.5 km).
On the other side, the 2D gravity model showed a similarity with the AMT section, and
indicated that the relief of the basement was deeper towards the west.

Figure 6. Profile-13 cross-sections derived from (A) 2D modeling of AMT data (upper panel) and
(B) density modelling (lower panel).

Figure 5 shows the cross-section of Profile-4, extending 48 km in length and aligned along
almost an east–west direction. The section showed a highly resistive region (347–685 ohm.m)
sandwiched by two low-resistive anomalies (40–97 ohm.m). This region was associated with
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granitic rocks and bounded by faults parallel to the Red Sea (shown by black lines in Figure 5).
The 2D gravity model also showed a high-density massive granitic rock in the middle of the
modeled density section. The basement rocks appeared with an irregular relief at a depth of
around 3000 m, with its main massive body extending downward (>5000 m).

Figure 6 shows the cross-section of Profile-13, extending north–south with a total
length of 92 km. It shows a highly oriented resistive area (790–1935 ohm.m) associated with
an intrusion of granitic rock into the sedimentary layer. Two east–west faults bounded this
massive granitic body. These faults most probably belonged to the east–west transform
faults that are common in the Arabian Shield. The gravity model showed that the basement
was shallow to the south (right side) and deep to the north (left side). The high-density
massive granitic body and its nearby low-density low-resistivity rocks was indicated well
in the middle of the modeled density section.

5. Discussion

The gravity and AMT data were jointly interpreted to delineate the subsurface struc-
ture, and image the extension and geometry of the granitic rocks. From the inversion results
of the AMT data, resistivity maps at various depths (1, 1.5, 2.5, 3.0, 3.5, and 4.0 km) were
extracted from 2D resistivity models, as shown in Figure 7.

Figure 7. Cont.
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Figure 7. Extracted resistivity maps from AMT data inversion at various depths.

In a geothermal context, the study area had two potential targets. The first was the
high-heat granites, which were well-delineated and mapped beneath the study area using
the geophysical methods; namely, the AMT and gravity methods. The second was the thick
sedimentary sections, which were mainly detected near the coastal parts of the study area.
These could act as hot sedimentary aquifers.

The resistivity maps presented in Figure 7 show that the granitic rocks exhibited a
good lateral and vertical extension, especially in the central and western parts of the study
area. By estimating the volume of these granitic rocks within the optimal range of the
cut-off temperature, a good reserve estimate could be executed. Assuming a cut-off grade
temperature of 150 ◦C, these granitic rocks could be used for possible energy production.
Chandrasekharam et al. [28] calculated the possible energy production.

The presence of good fracture and fault systems as well as medium-resistivity weath-
ered granitic rocks is a key factor in selecting the best locations for drilling wells (explo-
ration, injection, and production), which might suggest a full exploitation program of these
geothermal resources. An appropriate energy transfer medium such as supercritical CO2
can be injected into the fracture system of EGSs for possible energy production. However,
more detailed geomechanical measurements are required to understand the mechanical
properties of these granites.

Two important areas were deduced from the data analysis; i.e., areas with low resistive
values (e.g., the blue polygons in Figure 8) and areas of high resistive values (the red
crossed lines in Figure 8). Areas with low resistivity were considered to be hot sedimentary
aquifers whereas areas with high resistive values represented the extension of high-heat
granitic rocks.

The thicknesses of the sedimentary layers in these two areas were matched with the
seismic reflection data of Tubbs et al. [47], who concluded that a temperature of 150 ◦C
could be reached at a depth of 2500 m in the near-shore sections. Considering the thick
sedimentary section (up to 3000 m) and assuming the temperature regime provided by [47],
this area could be suggested as a good geothermal target (hydrothermal system).
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Figure 8. Final interpretation map showing the most promised zones (blue-filled polygons) for hot
sedimentary basins and high-heat granitic rocks (red crossed grid).

6. Conclusions

• This study aimed to investigate high-production granitic rocks in the Midyan Terrane
(northwest Saudi Arabia) through a joint analysis of audio magnetotelluric (AMT)
and gravity data. A total number of 80 AMT and 246 gravity stations were measured,
analyzed, and interpreted. A special emphasis was given to detect the subsurface
structural patterns, detect the thicknesses of the sedimentary cover, identify regional
deep and shallow fault systems, and clarify the subsurface geometry/extension of the
granitic rocks. The main concluded points of this study can be summarized as follows:

• Geophysical AMT and gravity methods were successfully used to image the sub-
surface structure of the granitic rocks in the study area. These contributed more to
the identification of the subsurface orientation and geometry of these granites, and
provided the necessary parameters to enhance the further volumetric analysis of the
geothermal potential.

• The area had a good geothermal potentiality, represented mainly by high-radioactive
granites (EGS) and hot sedimentary basins.

• High-heat granite can be utilized as a good EGS source for possible energy production
upon injecting an energy transfer medium such as CO2 (supercritical CO2). How-
ever, more detailed geomechanical measurements are required to understand the
mechanical behaviors of these granites.

• Near-shore thick sedimentary basins, with a temperature up to 150 ◦C, are a good
candidate for conventional geothermal energy (hydrothermal system). Two important
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geothermal areas were indicated and mapped; thick sedimentary basins and high-heat
granitic rocks.

• Both areas require more exploration activity in order to evaluate the geothermal energy
reservoir and estimate its reserves.
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