
Citation: Trad, F.; Hussein, A.;

Chehab, A. Leveraging Adversarial

Samples for Enhanced Classification

of Malicious and Evasive PDF Files.

Appl. Sci. 2023, 13, 3472. https://

doi.org/10.3390/10.3390/

app13063472

Academic Editor: Luis Javier

García Villalba

Received: 5 February 2023

Revised: 24 February 2023

Accepted: 27 February 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Leveraging Adversarial Samples for Enhanced Classification of
Malicious and Evasive PDF Files
Fouad Trad * , Ali Hussein and Ali Chehab

Electrical and Computer Engineering, American University of Beirut, Beirut 1107-2020, Lebanon;
ah203@aub.edu.lb (A.H.); chehab@aub.edu.lb (A.C.)
* Correspondence: fat10@mail.aub.edu

Abstract: The Portable Document Format (PDF) is considered one of the most popular formats due
to its flexibility and portability across platforms. Although people have used machine learning
techniques to detect malware in PDF files, the problem with these models is their weak resistance
against evasion attacks, which constitutes a major security threat. The goal of this study is to introduce
three machine learning-based systems that enhance malware detection in the presence of evasion
attacks by substantially relying on evasive data to train malware and evasion detection models.
To evaluate the robustness of the proposed systems, we used two testing datasets, a real dataset
containing around 100,000 PDF samples and an evasive dataset containing 500,000 samples that
we generated. We compared the results of the proposed systems to a baseline model that was not
adversarially trained. When tested against the evasive dataset, the proposed systems provided an
increase of around 80% in the f1-score compared to the baseline. This proves the value of the proposed
approaches towards the ability to deal with evasive attacks.

Keywords: malicious documents; PDF malware detection; adversarial training; machine learning;
evasion attacks; model robustness; evasion detection; evasive data generation

1. Introduction

In recent years, the threat of cyberattacks has become an increasingly pressing issue
for businesses and individuals alike [1]. As we become more reliant on technology in
our daily lives, the potential for malicious actors to exploit vulnerabilities and disrupt
operations has increased as well, which makes it essential to ensure the security of different
systems. Cyberattacks come in many forms, from phishing and social engineering to
network intrusions and denial of service attacks [2]. However, one of the most common
forms of attacks is through the use of malicious files, which poses a significant risk to
cybersecurity since such files can be used to steal sensitive information, cause system
damage, and disrupt operations [3]. One of the most used file types for spreading malware
is the Portable Document Format (PDF).

The Portable Document Format (PDF) is a popular format used for electronic file
exchange across platforms and applications. The reasons behind this popularity include
the flexibility of the format, its multi-purpose usage, and its independence from operating
systems. Moreover, it supports multiple features like object embedding, system command
injections, and JavaScript functionalities. However, these characteristics offer attackers
additional options to spread malware [4]. Although traditional antivirus tools can detect
malware in PDF files, the fast-evolving nature of cyberattacks gives rise to new types of
attacks that cannot be detected using the traditional signature-based detection methods.
Attackers are constantly developing new tactics and techniques to evade detection, ren-
dering antivirus tools ineffective in detecting the newly emerging or previously unknown
malware signatures [5].

To address this issue, researchers started using machine learning techniques [6–8],
to extract features from PDFs that are useful to differentiate malware from benign files,

Appl. Sci. 2023, 13, 3472. https://doi.org/10.3390/app13063472 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13063472
https://doi.org/10.3390/app13063472
https://doi.org/10.3390/app13063472
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2241-8195
https://orcid.org/0000-0002-1939-2740
https://doi.org/10.3390/app13063472
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13063472?type=check_update&version=2

Appl. Sci. 2023, 13, 3472 2 of 16

and to use them in the training process of malware classifiers. Machine learning-based
security systems rely on statistical models and algorithms that can learn from data and
adapt to new and emerging attacks. However, machine learning-based security systems
also have their own challenges, as they are prone to adversarial attacks [9] where an attacker
can carefully modify the samples to trick the machine learning model into predicting the
wrong category. As such, the research is currently shifting into building malware classifiers
that are robust against adversarial attacks [10], which is the main objective of this work.

In the context of PDF, evasion attacks are the most popular ones. The use of evasion
attacks against machine learning models is fairly common. The idea behind evasion attacks
is to carefully modify samples’ features so that the model is tricked in the classification
process [11]. In the PDF context, the goal of evasion attacks is to design samples that can
trick the classifier into believing that a malicious file is a benign one or vice versa. A sub-
stantial amount of research has recently focused on making PDF malware classifiers more
robust to evasion attacks. The proposed techniques rely on improved feature engineering,
and on training more complex model architectures [9,12–14]. However, in these studies,
non-evasive data are used for training the models, and evasive data are used to evaluate
their robustness. Li et al. [15] tried to break the loop and performed active learning to deal
with evasion; they assumed that evasive samples cause uncertain malware predictions,
and hence, they require human labeling to check for malware content before retraining the
model on these samples.

In summary, previous works focused on making the malware detectors more robust
in terms of architecture, and some of them labeled the uncertain predictions—considering
that they originate from evasion attacks—and used them for retraining. However, there
are two issues with such an approach, (1) there is a need to identify the range of predicted
scores for the uncertain classification, and (2) there is no guarantee that evasive samples
are the ones falling in the uncertainty region.

To address these issues, we propose the idea of leveraging samples that are known
to be evasive and to perform adversarial learning instead of active learning, where we
train the malware classifier on data containing evasive and non-evasive samples. More-
over, instead of relying on the certainty of the malware classifier’s predictions to detect
evasion, we propose the idea of using this mix of evasive and non-evasive data to build
standalone models that detect evasion. These two missing pieces are the focus of this study,
and accordingly, we propose three approaches.

1. Building a robust malware classifier by performing the training on a mix of evasive
and non-evasive data.

2. Building a hierarchical system that first classifies if a PDF is evasive or not, and then,
checks for malware by forwarding the PDF to a model that deals exclusively with
evasive data or another model that deals only with non-evasive data.

3. Building a multi-label classifier that detects evasion and maliciousness simultane-
ously and independently instead of relying on two dependent models as in the
second approach. This classifier is also trained on a combination of evasive and
non-evasive data.

The building blocks of the three approaches are illustrated in Figure 1.
To implement these approaches, we collected training data from various sources,

and they fall under two categories: evasive and non-evasive.

• Evasive data: these were used for testing or performing attacks on PDF malware
classifiers in multiple previous studies [9,16–19].

• Non-evasive data: we used the Contagio dataset [20] along with the Surrogate dataset [18],
which include benign files from Google, and malicious files from VirusTotal [21].

Appl. Sci. 2023, 13, 3472 3 of 16

Figure 1. Building blocks of the three proposed approaches.

To assess the capabilities of the proposed approaches to detect malware under normal
circumstances, as well as when dealing with evasive PDF files, we evaluated two datasets.
The first one contains more than 100,000 samples collected from the network of a large
university campus for 6 days [22]. The second one contains 500,000 evasive samples that
we generated using a Tabular Variational AutoEncoder (TVAE) model [23] by relying on
the Synthetic Data Vault (SDV) library [24]. Both test cases confirmed the robustness and
reliable performance of the proposed approaches on all metrics. We compared the results
with a baseline model that was trained on non-evasive samples only. The three approaches
performed similarly to the baseline when tested against the university dataset: f1-score of
95% and AUC 0.99. On the other hand, the approaches provided an increase of 80% in the
f1-score and an increase of 0.8 in the AUC compared to the baseline when tested against
the generated evasive dataset. The f1-score of the baseline model is 15.32% and its AUC
is 0.13, while the f1-score of our approaches is 95%, and the AUC is 0.95–0.97. Note that
approaches 2 and 3 provided an accuracy of 88.29% and 94.23%, respectively, in detecting
evasion when tested against the generated evasive dataset.

The contributions of this work are listed below:

• To the best of our knowledge, this work is the first (1) to apply adversarial retraining
for PDF malware classifiers to enhance their robustness against evasion attacks and (2)
to develop a standalone model capable of detecting evasion attacks in PDF files with a
high accuracy, which lays the foundation for future extensions.

• We proposed two systems that can simultaneously detect evasion and maliciousness
in PDF files.

• We generated a large dataset of 500,000 PDF samples with evasive-like signatures and
made it publicly available, providing researchers with a valuable resource for building
and testing evasion detection systems, as well as enhancing the robustness of malware
detection systems.

The rest of the paper is organized as follows: some preliminaries and background
information about the topic are presented in Section 2, along with the previous work that
has been done, and how it differs from what is being proposed in this study. In Section 3, we
introduce the adopted methodology to build the three systems along with the experimental
setup, and Section 4 discusses the experiments conducted along with their results. Finally,
Section 5 concludes this study and highlights potential future works.

2. Background and Preliminaries

In this section, we describe how a Portable Document Format could be used by
attackers to inject malicious parts. Moreover, we discuss the basic concepts behind evasion
attacks and how they can fool existing trained classifiers. We review some related works
that target evasion attacks in the context of PDF files.

Appl. Sci. 2023, 13, 3472 4 of 16

2.1. Portable Document Format

PDF has become the industry standard for document exchange since its inception by
Adobe Systems in 1993. The format is light, easy to use, and most importantly, independent
of hardware, software, and operating systems. In 2008, it became an open standard released
as ISO 32000-1 [25]. PDF allows for the embedding of text, images, JavaScript, and Flash,
as well as the opening of external resources from a local computer or the Internet [26].
Although these factors, among many others, contributed to the popularity of the format, yet
they enabled attackers to exploit vulnerabilities in PDF document viewers. To understand
how this can be done, we must look at the structure of a PDF file.

A PDF file is mainly composed of four parts as shown in Figure 2: the header, the main
body, the cross-reference table, and the trailer [27].

• The Header: it is the first line of a PDF. It specifies the version of the PDF used when
the document was produced. The format of the header is given by %PDF-a.b where
a.b represents the version.

• The Body: it holds the main content of the PDF file represented as objects, which are
the basic building blocks of a PDF, with multiple types depending on the element
they hold. Note that any type of object can be obfuscated in the file structure and
only de-obfuscated at runtime. This makes obfuscation an option that attackers could
exploit to evade classic signature-based malware detection software.

• The cross-reference table (xref table): it lists the byte offsets of all the objects in the
main body. The xref table is used to quickly access a certain object without having to
search.

• The trailer: it gives the location of the xref table and the root object in the body.
The trailer ends with the format %%EOF, which marks the end of the document as well.

When a reader parses a PDF file, it starts by parsing the trailer to get the reference of
the root object in the file structure. Then, it uses the xref table to traverse the objects in the
PDF body and render them.

Figure 2. Structure of a PDF file.

2.2. PDF to Deliver Malware

Given that a PDF file is a great way to deliver malware, a malicious PDF exploits the
vulnerabilities in the PDF reader to carry out malicious actions. There are many places
where an attacker might inject malicious code. For example, she could use JavaScript func-
tions to execute snippets of code to perform specific API calls. These functions are usually
embedded in /Javascript or /JS objects [28]. In such a case, the attack code can be contained
within one object, and it can span across multiple objects for the purpose of confusion.
Another way would be to make use of action-based malware, where the malicious code is
executed after being triggered by a specific action. The /OpenAction object, for example,
would contain code that executes once the PDF is opened [29]. Moreover, there is another
way to exploit vulnerabilities, by embedding other files within the PDF. These files can
have various formats like tiff, bmp, exe, or even other PDF files [30].

Appl. Sci. 2023, 13, 3472 5 of 16

Therefore, an attacker has multiple options to consider when trying to spread malware
through a PDF file, and thus, machine learning techniques will almost certainly use features
related to the structure of the PDF to classify whether a file contains malware.

2.3. PDF Evasion Attacks

Evasion attacks performed against machine learning models are very popular. The idea
is to carefully manipulate the features of a sample belonging to a particular class in a way
to trick the model into considering it part of another class [11]. The literature contains
examples of evasion attacks against machine learning and deep learning models. Some
of these attacks include the auto-projected gradient-descent attack [31], the boundary
attack [32], the Brendel & Bethge adversarial attack [33], the DeepFool attack [34], the Elastic
Net attack [35], the HopSkipJump attack [36] and many more. In recent years, several
techniques have been proposed to improve the adversarial robustness of machine learning
models. These include adversarial training, where models are trained on adversarial
examples to improve their robustness against similar attacks [37], and defensive distillation,
which involves training a model to mimic the output of an ensemble of models to improve
its generalization performance [38]. Other techniques include input transformations, such
as image randomization and feature squeezing [39], and model-based defenses such as
gradient masking [40].

In the context of PDF files, evasion attacks are very popular. The most known attacks
aim at making a malicious file look benign for a classifier while maintaining its malicious
behavior. Some of these attacks include:

(a) EvadeML [16]: this is an evasion technique that allows object insertion, deletion,
and swapping. It is stronger than other realizable attacks in the literature, which
normally just permit insertion to ensure that malicious functionality is kept. This
technique assumes that the adversary has black-box access to the classifier, and can
only obtain the classification scores of PDF files provided as input. This technique
uses genetic programming to automatically find instances that can evade the classi-
fier while maintaining the malicious behavior, and all of this by adding, removing,
and swapping objects.

(b) Mimicry [18]: this attack presupposes that an attacker is fully aware of all the
features that the target classifier is using. A malicious PDF file is then modified as
part of the mimicking attack to closely resemble a selected, benign PDF. Mimicry
can be applied easily and without the use of a specific classification model.

(c) Reverse Mimicry [17]: this attack assumes that an attacker has zero knowledge
(knows nothing) about the malware classifier. The goal of this attack is to create
malware samples that have a structure similar to benign ones (which we call targets).
To reduce the structural difference between the produced samples and targets,
the primary idea is to inject malicious payloads into target benign files.

(d) Parser Confusion Attack [19]: this attack simply consists of obfuscating malicious
Javascript code inside a PDF. This way, PDF malware classifiers would be evaded
and the malicious behavior would still be executed when the files are opened.

Evasion attacks are diverse, and some of them are targeted toward a specific model
(like EvadeML), while others are model-independent (like mimicry and reverse mimicry).
However, in all cases, evasion attacks are transferable; an attack against a specific ML
model has a high chance of being effective against a different model performing the same
task [41,42]. Hence, it is essential to provide countermeasures to deal with evasion, which
is what many researchers are trying to do in the context of PDF files, and we will discuss
the adapted approaches in the related work section.

2.4. Related Work

The various studies that target malware detection in PDF files fall under two categories:
Static Analysis and Dynamic Analysis [43].

Appl. Sci. 2023, 13, 3472 6 of 16

Static analysis is the most widely used method, and it has significant benefits, including
faster detection speed, lower implementation costs, and ease of use [44]. Researchers
typically extract and process specific features from input files [12]; these features could
be generic attributes (metadata) like the PDF size and the number of pages or retrieved
from the internal structure of the PDF document (structural features). Then, these features
are fed to machine learning or deep learning models to classify the corresponding files as
malicious or benign. The main problem associated with static analysis is that it is prone
to evasion attacks. On the other hand, the dynamic analysis examines the code’s activity
in real-time. Hence, the input files are run on a Virtual Machine to prevent damage to
the host computer [43]. In general, dynamic analysis is more reliable than static analysis,
and attackers have a harder time evading it. It is particularly beneficial for detecting
malicious JavaScript code embedded in PDF files because malicious JavaScript code is
frequently obfuscated, making static detection less effective.

The main disadvantage associated with dynamic analysis is that it cannot be performed
directly on a personal computer because it might execute malicious behavior, and this
allowed static analysis to be the preferred technique of choice. To overcome the drawbacks
of static analysis, researchers resorted to enhancing feature engineering and training more
complex model architectures [9,12–14]. In these studies, non-evasive data are used for
training the models, and evasive data are used to evaluate their robustness. On the
other hand, Li et al. [15] performed active learning to deal with evasion; the authors
assumed that evasive samples cause uncertain malware predictions, and hence, they
require human labeling to check for malware content before retraining the model. In fact,
associating evasive samples with uncertain predictions started with the study of Smutz and
Stavrou [45], which leveraged the mutual disagreement analysis between base learners in a
random forest malware detector to sense the presence of an evasion attack. This method
has two major drawbacks. First, we must specify the standard of uncertainty according
to the prediction score (such as scores falling between 25% and 75% are uncertain and we
might consider another interval as well). Second, we cannot guarantee that the samples
falling in the uncertainty region are evasive because sometimes evasion attacks are strong
and let the classifier predict the wrong class with high confidence. Moreover, uncertain
predictions might originate from non-evasive samples. A famous example that proves these
ideas is the one presented by Goodfellow et al. in [46] where an original image of a panda is
correctly classified as a panda by GoogLeNet [47] with only 57.7% confidence. Then, when
this image was manipulated by adding some noise to it, it was wrongly classified with a
confidence of 99.3% as a gibbon, which confirms that uncertainty is not always associated
with evasion. To deal with these issues, we propose the idea of leveraging samples that are
known to be evasive to:

• Perform adversarial learning instead of active learning for PDF malware detectors, where
we train the malware classifier on data containing evasive and non-evasive samples.

• Build standalone models that detect evasion instead of relying on the certainty of the
malware classifier’s predictions.

The way we can apply these two ideas will be presented in the Methodology section.

3. Materials and Methods
3.1. Methodology

To deal with the issues presented in the previous section, we propose three approaches,
as shown in Figure 1. The training process is illustrated in Figure 3.

Appl. Sci. 2023, 13, 3472 7 of 16

Figure 3. Training in the three approaches.

3.1.1. Approach 1

We perform adversarial training by combining the evasive and the non-evasive
datasets to train a PDF malware classifier. This enables the classifier to learn the rep-
resentation of evasive samples as well as normal samples to make it robust against evasion
attacks, especially if they come from a distribution similar to the one it has been trained
on. Although such a system can perform well on evasive data, the only disadvantage is
that we cannot know if a sample is evasive or not. This information is crucial because
after deploying the model, we need to retrain it on new evasive samples that it receives
constantly. Having a model that detects evasion will help us know which samples are
evasive and which ones are not. It will not fully automate the classification process, but it
would help in reducing the human intervention for continuous retraining.

3.1.2. Approach 2

The system consists of three separately trained models operating hierarchically. At the
first level, we want to detect whether a PDF is evasive or not, and at the second level, we
want to detect whether it is malicious or not. The models are as follows:

1. Evasion Classifier: This model is trained on a dataset containing evasive and non-
evasive samples. The goal is to detect whether a PDF is evasive or not by analyzing
its features.

2. Evasive Malware Classifier: This model is trained on the evasive dataset solely, and,
therefore, it expects to receive an evasive sample to classify whether it carries malware
or not.

3. Non-evasive Malware Classifier: This model is trained using only the non-evasive
dataset and it expects to receive a non-evasive sample to classify whether it carries
malware or not.

We hierarchically combine these three models to form a system that receives a PDF file
as input, extracts its corresponding features, and then feeds them to the Evasion Classifier.
If the PDF is evasive, features are passed to the Evasive Malware Classifier to check for
malware. If the PDF is not evasive, features are passed to the Non-evasive Malware
Classifier to check for malware. The advantage of this system over the first one is that we
can detect evasion in addition to detecting maliciousness. Even though in this approach
the training happens separately for each model, during inference, the models depend
on each other as the prediction of maliciousness is depending on whether the file was
predicted to be evasive or not. For example, if an evasive PDF sample is wrongly classified
as non-evasive, then it would be forwarded to the Non-evasive Malware Classifier, which
might not be able to guess if it contains malware or not.

Appl. Sci. 2023, 13, 3472 8 of 16

3.1.3. Approach 3

To address the problem presented in the previous approach, we use one multi-label
system that predicts at the same time whether a PDF sample is evasive or not, and malicious
or not. The training includes a mix of evasive and non-evasive data. The first advantage
is that this system is equivalent to training two separate classifiers independently, one for
evasion detection and one for malware detection. Then, during inference time, the two
models will also operate independently, which means that the evasion prediction will not
affect the malware prediction. The second advantage of this method over the previous one
is that we are using two models instead of three. This would result in less consumption of
computational resources.

3.2. Experimental Setup
3.2.1. Dataset

We gathered data from multiple sources including evasive and non-evasive samples.
For the non-evasive data, the sources are

1. The Contagio malware dump dataset [20]
2. The Surrogate dataset used in [18] which contains benign files from Google, and mali-

cious files from VirusTotal [21].

For the evasive data, the sources are

• Public datasets that were the result of different evasion attacks in previous studies:
evadeML [16], mimicry [18], reverse mimicry [17], and the parser confusion attack [19].
The common about these datasets is that they only contain evasive samples that are
malicious. Even though some of these datasets targeted the evasion of a particu-
lar classifier (like evadeML for instance), these datasets can conserve their evasive
characteristics when dealing with other models because of the evasion transferability
discussed in Section 2.3.

• EvasivePDFMal2022: a real evasive dataset that was used to test the robustness of
a malware detection model in [9]. This dataset is not focused on a specific kind of
attack like the previous ones. It contains real samples that hold an evasive signature.
Moreover, the difference about this dataset is that it contains some samples that are
evasive, yet benign, which means that these benign files will trick a classifier into
considering them malicious. The kind of attack used to create such samples is not
provided by the authors, but such attacks can increase the false positive rate of a
malware detection system, which makes it less reliable in practice.

For the rest of the paper, these datasets would be referred to respectively as “evasive
dataset” and “non-evasive dataset”. The numbers of benign and malicious samples in the
datasets are summarized in Table 1.

Table 1. Data Characteristics.

Evasive Data Non-Evasive Data Total

Malicious 15,723 9624 25,347
Benign 4336 11,023 15,359
Total 20,059 20,647 40,706

Since the gathered data comes from multiple sources, we preprocessed the data to
make it consistent. Moreover, we dropped all duplicate samples across the combination of
different datasets, and we ended up with an evasive dataset that contains 20,059 samples
and a non-evasive dataset that contains 20,647 samples. Next, we divided each of these
datasets between training (80%) and validation (20%). For reproducibility of the results,
while dividing the original data, we set the random_state parameter to 2, and we stratified
it according to the class label (that determines if a PDF file is malicious or not).

Appl. Sci. 2023, 13, 3472 9 of 16

3.2.2. Machine Learning Models

To obtain the best model (or models) for each of the proposed approaches, we tested
in each case multiple ML algorithms (e.g., Logistic Regression, Support Vector Machine,
Naïve Bayes, Random Forest Classifier, AdaBoost, LightGBM) and compared their out-
comes. The process of selecting the appropriate models for each approach will be further
discussed in the Training and Validation Experiments section, but as a final outcome,
to train all individual models in the first two approaches, we used the same algorithm
(LightGBM [48]) with the same hyperparameters: 500 base estimators with a max_depth
of 7 and a max_leaf_nodes of 2. In the third approach, we used the LightGBM algorithm
with 300 decision trees, each of them having a max_depth of 20 and a max_leaf_nodes of
5. The other parameters were kept as default, as provided by the sci-kit learn python’s
library [49]. We used the Python language (version 3.7.13) for programming on a Google
Collaboratory environment.

4. Results and Discussion
4.1. Training and Validation Experiments

In this section, we describe the training experiments, starting from an initial experiment
to assess the effect of evasive data on a classifier that was trained only on non-evasive data.
Then, the next experiments will address the problem by applying the proposed approaches.
The experimental results include the following classification metrics: accuracy, confusion
matrix (TPR, TNR, FPR, FNR), and the f1-score.

4.1.1. Experiment 0: Illustrating the Problem and Establishing a Baseline

To illustrate the main problem in question, we present this experiment where we
train several malware classifiers on the non-evasive training set. We trained 8 different
models, selected the one that performs best, and fine-tuned it to consider it as a baseline.
The algorithms we tried are Logistic Regression, Support Vector Machine (with RBF and
Polynomial kernels with degrees of 1 and 2), Naïve Bayes, Random Forest Classifier, Ad-
aBoost, and LightGBM. We first used these algorithms with their default hyperparameters
as set by the sci-kit learn python’s library. The performance of the resulting models on the
non-evasive validation set is shown in Table 2. The results show an excellent performance
of the different chosen models, with a slight improvement for the tree-based ensemble
models (Random Forest, AdaBoost, and LightGBM). As such, we deferred the choice of
the model to adopt. To evaluate the robustness of these models, we test each of them
against the evasive validation set, and the results are reported in Table 3. We can see that
the performance dropped significantly, and the classifiers that performed well on the non-
evasive data, were “fooled” by the evasive data, and this can be seen from the high FNR.
In the next three experiments, we implement the proposed approaches where we adopt
LightGBM since it was the most robust model with an FNR of 41.14%, while the others
had an FNR higher than 67.92%. We fine-tuned the hyperparameters of LightGBM using a
5-fold cross-validation method to obtain the best possible performance on the non-evasive
validation data. The final hyperparameters are the ones mentioned in the Experimental
Setup section. We will refer to this model as “the baseline”, which we will use to compare
against the outcomes of the other approaches. We evaluated this model (after fine-tuning)
on the evasive and non-evasive validation sets, and the results are shown in Figure 4.

Table 2. Performance of the tested models on the non-evasive validation data.

Logistic
Regression SVM (RBF) SVM

(Poly 1)
SVM

(Poly 2) Naïve Bayes Random
Forest AdaBoost LightGBM

Accuracy 94.43% 98.74% 92.32% 96.03% 82.81% 99.66% 99.32% 99.32%
TNR 91.97% 98.96% 88.30% 94.74% 79.14% 99.95% 99.55% 99.55%
FPR 8.03% 1.04% 11.70% 5.26% 20.86% 0.05% 0.45% 0.45%
FNR 2.75% 1.51% 3.06% 2.49% 12.99% 0.68% 0.94% 0.94%
TPR 97.25% 98.49% 96.94% 97.51% 87.01% 99.32% 99.06% 99.06%

F1 Score 94.21% 98.65% 91.71% 95.81% 82.51% 99.63% 99.27% 99.27%

Appl. Sci. 2023, 13, 3472 10 of 16

Table 3. Performance of the tested models on the evasive validation data.

Logistic
Regression SVM (RBF) SVM

(Poly 1)
SVM

(Poly 2) Naïve Bayes Random
Forest AdaBoost LightGBM

Accuracy 37.73% 44.99% 38.53% 39.15% 34.47% 39.66% 39.96% 66.28%
TNR 80.62% 91.81% 81.55% 87.20% 88.70% 97.00% 94.58% 93.19%
FPR 19.38% 8.19% 18.45% 12.80% 11.30% 3.00% 5.42% 6.81%
FNR 74.09% 67.92% 73.32% 74.09% 80.48% 76.15% 75.10% 41.14%
TPR 25.91% 32.08% 26.68% 25.91% 19.52% 23.85% 24.90% 58.86%

F1 Score 39.48% 47.76% 40.49% 40.03% 31.84% 38.26% 39.40% 73.23%

Figure 4. Performance of the baseline on the non-evasive and evasive validation datasets.

4.1.2. Experiment 1

In this experiment, we implement the first approach introduced in the Methodology
section. We combine the evasive training set along with the non-evasive training set, and we
train the baseline model on this mix of data to detect malware. Then, we evaluated the
malware detection on the evasive validation set and the non-evasive validation set, and we
obtained: accuracy = 99.48%, TNR = 99.48%, TPR = 99.49%, and f1-score = 99.59%; an
excellent performance compared to the baseline.

4.1.3. Experiment 2

In this experiment, we implement the second approach, and we train and validate
each of the models separately. We use the same naming convention we followed in the
Methodology section.

1. Evasion Classifier: The goal of this classifier is to detect whether a PDF sample is
evasive or not. Thus, this classifier would be trained on a mix of evasive and non-
evasive data. To select a suitable model that can detect evasion, we test multiple
algorithms. As an initial step, we keep their default hyperparameters as set by the sci-
kit learn python’s library. We train the models on the mix of evasive and non-evasive
training sets and then evaluate each of them on the mix of evasive and non-evasive
validation sets. The results are summarized in Table 4.
We can see that not all models perform very well on this data, and this is expected, be-
cause detecting evasion is not an easy task with the limited features we have, and this
is what explains the low performance of simple models and the good performance
of the more powerful models (Random Forest, AdaBoost, and LightGBM) that are
based on ensemble techniques. From the results, we can see that the most promising
models to detect evasion are the Random Forest Classifier and the LightGBM. We fine-
tune both and we achieve the best performance (accuracy = 96.84%, TNR = 97.97%,
TPR = 95.69%, and f1-score = 96.76%) using the LightGBM algorithm with the set of
hyperparameters as described in the Experimental Setup section.

Appl. Sci. 2023, 13, 3472 11 of 16

2. Evasive Malware Classifier: We trained the same baseline architecture on the evasive
training set only. We evaluated this model on the evasive validation set, and the
results we obtained are: accuracy = 99.45%, TNR = 99.31%, TPR = 99.49%, and f1-
score = 99.65%.

3. Non-evasive Malware Classifier: Here we simply used the baseline that has been
trained and evaluated on the non-evasive training set and the non-evasive validation
set, respectively.

After training the models individually, we combine the evasive validation set along
with the non-evasive validation set and feed them to the pipeline. The malware detection
metrics of the system are the following: accuracy = 99.44%, TNR = 99.45%, TPR = 99.43%,
and f1-score = 99.55%. We see a slight decrease in performance compared to the first
approach, but this is expected because the Evasion Classifier can make mistakes and
accordingly, forward an evasive PDF to the Non-evasive Malware Classifier and vice versa.

Table 4. Performance of the Evasion Classifiers.

Logistic
Regression SVM (RBF) SVM

(Poly 1)
SVM

(Poly 2) Naïve Bayes Random
Forest AdaBoost LightGBM

Accuracy 76.53% 80.59% 77.12% 78.75% 73.97% 96.28% 84.48% 95.19%
TNR 93.34% 98.18% 97.70% 96.88% 83.10% 97.82% 90.32% 97.82%
FPR 6.66% 1.82% 2.30% 3.12% 16.90% 2.18% 7.99% 2.18%
FNR 40.78% 37.51% 44.07% 39.91% 35.42% 5.31% 23.28% 7.53%
TPR 59.22% 62.49% 55.93% 60.09% 64.58% 94.69% 76.72% 92.47%

F1 Score 71.31% 76.04% 70.67% 73.60% 70.98% 96.17% 82.86% 94.98%

4.1.4. Experiment 3

In this experiment, we train a multi-label model that detects evasion and maliciousness
concurrently. We test multiple models to select the best one and fine-tune it. Again, we
start by using the algorithms with their default hyperparameters, then after selecting
the best model, we fine-tune it accordingly. The accuracy, macro-precision, macro-recall,
and macro-F1 score for each of the models are summarized in Table 5.

Table 5. Performance of each multilabel model to detect evasion and maliciousness.

Logistic
Regression SVM (RBF) SVM

(Poly 1)
SVM

(Poly 2) Naïve Bayes Random
Forest AdaBoost LightGBM

Accuracy 66.37% 79.01% 69.26% 69.55% 51.29% 95.87% 82.66% 94.77%
Macro-Precision 85.04% 97.38% 90.91% 89.54% 77.74% 98.71% 95.24% 98.65%

Macro-Recall 78.57% 79.71% 77.02% 79.17% 78.91% 96.95% 86.32% 95.90%
Macro-F1 Score 79.82% 86.67% 81.13% 82.13% 74.09% 97.82% 90.34% 97.24%

We can see that the Logistic Regression, SVM and Naïve Bayes models achieve a
lower performance compared to Random Forest, AdaBoost, and LightGBM. This is ex-
pected after the results we obtained in Experiment 2, which showed the weakness of
these models to detect evasion. We can clearly see that the Random Forest and LightGBM
models outperformed the others. This is why, we fine-tune both and we achieve the best
performance (accuracy = 96.23%, macro-precision = 98.89%, macro-recall = 97.21%, macro-
f1-score = 98.04%) using the LightGBM algorithm with the hyperparameters as mentioned
in the Experimental Setup section.

The results associated with each of our approaches for malware prediction and eva-
sion prediction are summarized in Table 6 for easier comparison. We also include the
performance metrics of the baseline when tested against the mix of evasive and non-evasive
validation sets.

Appl. Sci. 2023, 13, 3472 12 of 16

Table 6. Results of Experiments 0, 1, 2 and 3.

Task Accuracy TNR FPR FNR TPR F1-Score

Baseline Malware Pred. 83.21% 97.95% 2.05% 25.72% 74.28% 84.64%
Approach 1 Malware Pred. 99.48% 99.48% 0.52% 0.51% 99.49% 99.59%
Approach 2 Malware Pred. 99.44% 99.45% 0.55% 0.57% 99.43% 99.55%

Evasion Pred. 96.84% 97.97% 2.03% 4.31% 95.69% 96.76%
Approach 3 Malware Pred. 99.48% 99.48% 0.52% 0.51% 99.49% 99.59%

Evasion Pred. 96.60% 98.21% 1.79% 5.06% 94.94% 96.49%

4.2. Testing Experiments

After building the three approaches, we assess how well they perform in the real
world where they might receive data coming from a distribution different than the one
initially trained on. Accordingly, we perform two test cases, one against a real dataset and
one against an evasive dataset. Since evasive datasets are difficult to find, we generate our
own dataset and then test our approaches against it.

4.2.1. Experiment 1: Testing on a Real Dataset

We test the proposed approaches against a dataset containing 110,844 samples that
were collected by monitoring the network of a large university campus for six days [22].
Since we do not have information about the evasive aspect of these samples, we will only
test our approaches regarding their ability to detect malware. The results are reported
for the three approaches along with the baseline in Table 7 and Figure 5. We can see that
all approaches have similar performance (accuracy and f1-score are almost the same and
around 95%) and provide almost the same AUC (around 0.99). The same is true for the
ROC curve as shown in Figure 5. This confirms that the approaches preserve good malware
detection functionality when it comes to real data.

Figure 5. ROC curves for the baseline and the three approaches in the first test case.

Table 7. Classification metrics for the baseline and the three approaches in the first test case.

Accuracy TNR FPR FNR TPR F1-Score

Baseline 95.51% 99.26% 0.74% 9.02% 90.98% 94.84%
Approach 1 95.73% 98.90% 1.10% 8.09% 91.91% 95.13%
Approach 2 95.32% 98.84% 1.16% 8.93% 91.07% 94.64%
Approach 3 95.26% 98.94% 1.06% 9.19% 90.81% 94.55%

4.2.2. Experiment 2: Generating an Evasive Dataset

Since evasive datasets are rare, we generated our own evasive dataset, as described
below, and we made it publicly available on GitHub for other researchers to use (it is

Appl. Sci. 2023, 13, 3472 13 of 16

available at https://github.com/fouadtrad/Leveraging-Adversarial-Samples-for-Enhanc
ed-Classification-of-Malicious-and-Evasive-PDF-Files, accessed on 4 February 2023).

• We feed all the evasive data collected to the baseline model. This classifier will correctly
classify a portion of this data and will wrongly classify the other.

• We select the misclassified samples, and we consider them the most evasive samples.
• We train a Tabular Variational AutoEncoder (TVAE) model [23] on the most evasive

dataset we obtained in the previous step. To do this, we rely on the Synthetic Data Vault
(SDV) library [24]. The training happened for 500 epochs, with an embedding_dim
of 256.

• We used this model to generate 500,000 samples of evasive data out of which 450,000
samples are malicious and 50,000 samples are benign.

• To verify that the samples provided have a real aspect, we used TensorFlow Data
Validator to make sure that the generated samples adhere to the original evasive
dataset schema.

At this stage, the evasive dataset is ready, and we can use it for testing our approaches.

4.2.3. Experiment 3: Testing on the Generated Evasive Dataset

The generated data are fed to the three systems and to the baseline. The results
are shown in Table 8 and Figure 6. We can see that the baseline did not perform well
against these samples (AUC = 0.13, accuracy = 9.69%, f1-score = 15.32). On the other
hand, the proposed systems resulted in good outcomes (AUC 0.95–0.97, accuracy 91–92%,
f1-score 95%). The little drop in performance compared to the validation sets is expected
since the generated samples do not conform to the same distribution as the training sets,
and this is an essential test case to assess how a system would behave with real scenarios.
Since in this test case, all our samples are evasive, we wanted to assess the evasion detection
capabilities of approaches 2 and 3. For approach 2, the evasion detection rate was 88.29%
and in approach 3, the rate was 94.23%. In summary, and in terms of malware detection,
the first and the third approach perform slightly better than the second one, having a
superior AUC value. As for evasion detection, we can see that the model in approach 3 is
performing better than the model in approach 2.

Figure 6. ROC curves for the baseline and the three approaches in the second test case.

Table 8. Results of the second test case.

Accuracy TNR FPR FNR TPR F1-Score

Baseline 9.69% 15.18% 84.82% 90.92% 9.08% 15.32%
Approach 1 92.37% 91.93% 8.07% 7.58% 92.42% 95.61%
Approach 2 92.36% 86.46% 13.54% 6.99% 93.01% 95.63%
Approach 3 92.49% 91.52% 8.48% 7.40% 92.60% 95.68%

https://github.com/fouadtrad/Leveraging-Adversarial-Samples-for-Enhanced-Classification-of-Malicious-and-Evasive-PDF-Files
https://github.com/fouadtrad/Leveraging-Adversarial-Samples-for-Enhanced-Classification-of-Malicious-and-Evasive-PDF-Files

Appl. Sci. 2023, 13, 3472 14 of 16

5. Conclusions

In this paper, we leveraged adversarial samples that are usually designed to “fool”
existing models and used them to build robust systems capable of detecting maliciousness
and evasion associated with PDF files. We introduced three approaches that showed
robustness against attacks, and two of them had the ability to detect evasion as well. We
tested our systems and they achieved great performance. We also generated a dataset
containing 500,000 evasive samples and made it available to the research community.

Despite the remarkable results we achieved, this study has some limitations, and the
main one is the data availability. Although we were able to find datasets that have been
used by previous studies, these datasets were just about CSV files that contain pre-extracted
features of PDFs, and having the actual PDF files to perform better feature engineering
was not an option in most of the cases. Thus, we were limited by the available set of
features. Yet, despite this limitation, we were able to establish a proof of concept that can
further be enhanced in future works. Another limitation is that although the proposed
systems worked well in the tested scenarios, they might not perform well under some
new emerging evasion attacks if they are significantly different than the ones considered
during the training phase. In other words, just like any machine learning model, when a
data drift is encountered, the model’s performance is expected to drop. In our case, and to
enhance the robustness of the proposed systems against all existing adversarial attacks, we
incorporated samples related to all of them during the training phase. Moreover, when
new attacks emerge and result in a distribution drift, the proposed approach will undergo
adversarial retraining with these samples to keep the systems up to date. Moreover, if we
have limited data when such attacks emerge, we can overcome this problem by generating
data as discussed in the paper.

The encouraging results we obtained pave the way for an extension to supplement
the previous works of researchers: we plan on performing better feature engineering along
with using more complex model architectures while using adversarial learning, which is
expected to further enhance the performance. In addition to our proposed adversarial
retraining approach, we plan to investigate other adversarial robustness techniques to
further enhance the resilience of PDF malware classifiers against evasion attacks. More-
over, we will investigate other methods to generate evasive data such as by performing
real attacks against our systems, towards enhancing the robustness of existing malware
detection systems. Another direction is to perform reverse engineering to generate real
PDF files having the specifications of the evasive dataset we generated. This would allow
researchers to use even more features that they can directly extract from typical PDF files.

Author Contributions: F.T.: Conceptualization, methodology, software, visualization, validation,
data curation, writing—original draft preparation; A.H.: methodology, supervision, project adminis-
tration; A.C.; writing—review and editing, supervision, project administration. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors would like to acknowledge that this work has been supported by the Maroun
Semaan Faculty of Engineering and Architecture (MSFEA) at the American University of Beirut
(AUB), and the APC was funded by MSFEA.

Data Availability Statement: The data presented in this study is made publicly available on GitHub
(https://github.com/fouadtrad/Leveraging-Adversarial-Samples-for-Enhanced-Classification-of
-Malicious-and-Evasive-PDF-Files, accessed on 4 February 2023) for the research community.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kaur, J.; Ramkumar, K.R. The recent trends in cyber security: A review. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 5766–5781.

[CrossRef]
2. Li, Y.; Liu, Q. A comprehensive review study of cyber-attacks and cyber security; Emerging trends and recent developments.

Energy Rep. 2021, 7, 8176–8186. [CrossRef]
3. Aslan, O.A.; Samet, R. A Comprehensive Review on Malware Detection Approaches. IEEE Access 2020, 8, 6249–6271. [CrossRef]

https://github.com/fouadtrad/Leveraging-Adversarial-Samples-for-Enhanced-Classification-of-Malicious-and-Evasive-PDF-Files
https://github.com/fouadtrad/Leveraging-Adversarial-Samples-for-Enhanced-Classification-of-Malicious-and-Evasive-PDF-Files
http://doi.org/10.1016/j.jksuci.2021.01.018
http://dx.doi.org/10.1016/j.egyr.2021.08.126
http://dx.doi.org/10.1109/ACCESS.2019.2963724

Appl. Sci. 2023, 13, 3472 15 of 16

4. Blonce, A.; Filiol, E.; Frayssignes, L. Portable Document Format (PDF) Security Analysis and Malware Threats. In Proceedings of
the Europe BlackHat 2008 Conference, Amsterdam, The Netherlands, 24–28 March 2008; p. 20.

5. Fleury, N.; Dubrunquez, T.; Alouani, I. PDF-Malware: An Overview on Threats, Detection and Evasion Attacks. arXiv 2021,
arXiv:2107.12873.

6. Iwamoto, M.; Oshima, S.; Nakashima, T. A Study of Malicious PDF Detection Technique. In Proceedings of the 2016 10th
International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), Fukuoka, Japan, 6–8 July 2016;
pp. 197–203. [CrossRef]

7. Maiorca, D.; Biggio, B. Digital Investigation of PDF Files: Unveiling Traces of Embedded Malware. IEEE Secur. Priv. 2019,
17, 63–71. [CrossRef]

8. Torres, J.; De los Santos, S. Malicious PDF Documents Detection using Machine Learning Techniques—A Practical Approach
with Cloud Computing Applications. In Proceedings of the 4th International Conference on Information Systems Security and Privacy,
Funchal, Portugal, 22–24 January 2018; SCITEPRESS—Science and Technology Publications: Funchal, Madeira, Portugal, 2018;
pp. 337–344. [CrossRef]

9. Issakhani, M.; Victor, P.; Tekeoglu, A.; Lashkari, A. PDF Malware Detection based on Stacking Learning. In Proceedings of the
8th International Conference on Information Systems Security and Privacy, Online, 9–11 February 2022; pp. 562–570. [CrossRef]

10. Maiorca, D.; Biggio, B.; Giacinto, G. Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks. ACM
Comput. Surv. 2020, 52, 1–36. [CrossRef]

11. Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Šrndić, N.; Laskov, P.; Giacinto, G.; Roli, F. Evasion Attacks against Machine
Learning at Test Time. In Proceedings of the Machine Learning and Knowledge Discovery in Databases, Prague, Czech Republic, 23–27
September 2013; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; pp. 387–402. ._25. [CrossRef]

12. Zhang, J. MLPdf: An Effective Machine Learning Based Approach for PDF Malware Detection. arXiv 2018, arXiv:1808.06991.
13. Zhang, J. Machine Learning With Feature Selection Using Principal Component Analysis for Malware Detection: A Case Study.

arXiv 2019, arXiv:1902.03639.
14. Khorshidpour, Z.; Hashemi, S.; Hamzeh, A. Learning a Secure Classifier against Evasion Attack. In Proceedings of the 2016

IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15 December 2016; pp. 295–302.
[CrossRef]

15. Li, Y.; Wang, X.; Shi, Z.; Zhang, R.; Xue, J.; Wang, Z. Boosting training for PDF malware classifier via active learning. Int. J. Intell.
Syst. 2021, 37, 2803–2821. [CrossRef]

16. Xu, W.; Qi, Y.; Evans, D. Automatically Evading Classifiers. In Proceedings of the Network and Distributed System Security
Symposium, San Diego, CA, USA, 21–24 February 2016; p. 15. [CrossRef]

17. Maiorca, D.; Corona, I.; Giacinto, G. Looking at the bag is not enough to find the bomb: An evasion of structural methods
for malicious PDF files detection. In Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, Hangzhou, China, 8–10 May 2013; pp. 119–130. [CrossRef]

18. Šrndić, N.; Laskov, P. Practical Evasion of a Learning-Based Classifier: A Case Study. In Proceedings of the 2014 IEEE Symposium
on Security and Privacy, San Jose, CA, USA, 18–21 May 2014; pp. 197–211. [CrossRef]

19. Carmony, C.; Zhang, M.; Hu, X.; Vasisht Bhaskar, A.; Yin, H. Extract Me If You Can: Abusing PDF Parsers in Malware Detectors.
In Proceedings of the 2016 Network and Distributed System Security Symposium, San Diego, CA, USA, 21–24 February 2016.
[CrossRef]

20. Mila. 16,800 Clean and 11,960 Malicious Files for Signature Testing and Research. Contagio Dataset. 2013. Available online:
http://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html (accessed on 18 April 2022)

21. VirusTotal. Virus Total Home Page. Available online: https://www.virustotal.com/gui/home/upload (accessed on
23 April 2022).

22. Smutz, C.; Stavrou, A. Malicious PDF detection using metadata and structural features. In Proceedings of the 28th Annual
Computer Security Applications Conference—ACSAC ’12, Orlando, FL, USA, 3–7 December 2012; p. 239. [CrossRef]

23. Xu, L.; Skoularidou, M.; Cuesta-Infante, A.; Veeramachaneni, K. Modeling Tabular data using Conditional GAN. arXiv 2019,
arXiv:1907.00503.

24. Patki, N.; Wedge, R.; Veeramachaneni, K. The Synthetic Data Vault. In Proceedings of the 2016 IEEE International Conference on
Data Science and Advanced Analytics (DSAA), Montreal, QC, Canada, 17–19 October 2016; pp. 399–410. [CrossRef]

25. ISO:32000-1:2008; Document Management—Portable Document Format—Part 1: PDF 1.7. ISO: Geneva, Switzerland, 2008.
Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/15/51502.html
(accessed on 20 April 2022)

26. Tzermias, Z.; Sykiotakis, G.; Polychronakis, M.; Markatos, E.P. Combining static and dynamic analysis for the detection of
malicious documents. In Proceedings of the Fourth European Workshop on System Security, Salzburg, Austria, 11 April 2011;
pp. 1–6. [CrossRef]

27. Adobe. Adobe® PDF (Portable Document Format) 1.7 Reference; 2006.
28. Corona, I.; Maiorca, D.; Ariu, D.; Giacinto, G. Lux0R: Detection of Malicious PDF-embedded JavaScript code through Discriminant

Analysis of API References. In Proceedings of the 2014 Workshop on Artificial Intelligent and Security Workshop, Scottsdale, AZ,
USA, 7 November 2014; pp. 47–57. [CrossRef]

http://dx.doi.org/10.1109/CISIS.2016.45
http://dx.doi.org/10.1109/MSEC.2018.2875879
http://dx.doi.org/10.5220/0006609503370344
http://dx.doi.org/10.5220/0010908400003120
http://dx.doi.org/10.1145/3332184
http://dx.doi.org/10.1007/978-3-642-40994-3_25
http://dx.doi.org/10.1109/ICDMW.2016.0049
http://dx.doi.org/10.1002/int.22451
http://dx.doi.org/10.14722/ndss.2016.23115
http://dx.doi.org/10.1145/2484313.2484327
http://dx.doi.org/10.1109/SP.2014.20
http://dx.doi.org/10.14722/ndss.2016.23483
http://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html
https://www.virustotal.com/gui/home/upload
http://dx.doi.org/10.1145/2420950.2420987
http://dx.doi.org/10.1109/DSAA.2016.49
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/15/51502.html
http://dx.doi.org/10.1145/1972551.1972555
http://dx.doi.org/10.1145/2666652.2666657

Appl. Sci. 2023, 13, 3472 16 of 16

29. Munson, M.; Cross, J. Deep PDF Parsing to Extract Features for Detecting Embedded Malware; OSTI: Oak Ridge, TN, USA, 2011.
[CrossRef]

30. Stevens, D. Malicious PDF Documents Explained. IEEE Secur. Priv. 2011, 9, 80–82. [CrossRef]
31. Croce, F.; Hein, M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. arXiv 2020,

arXiv:2003.01690.
32. Brendel, W.; Rauber, J.; Bethge, M. Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning

Models. arXiv 2018, arXiv:1712.04248.
33. Brendel, W.; Rauber, J.; Kümmerer, M.; Ustyuzhaninov, I.; Bethge, M. Accurate, reliable and fast robustness evaluation. arXiv

2019, arXiv:1907.01003.
34. Moosavi-Dezfooli, S.M.; Fawzi, A.; Frossard, P. DeepFool: A simple and accurate method to fool deep neural networks. arXiv

2016, arXiv:1511.04599.
35. Chen, P.Y.; Sharma, Y.; Zhang, H.; Yi, J.; Hsieh, C.J. EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples.

arXiv 2018, arXiv:1709.04114.
36. Chen, J.; Jordan, M.I.; Wainwright, M.J. HopSkipJumpAttack: A Query-Efficient Decision-Based Attack. arXiv 2020,

arXiv:1904.02144.
37. Shafahi, A.; Najibi, M.; Ghiasi, M.A.; Xu, Z.; Dickerson, J.; Studer, C.; Davis, L.S.; Taylor, G.; Goldstein, T. Adversarial training

for free! In Proceedings of the Advances in Neural Information Processing Systems; Wallach, H., Larochelle, H., Beygelzimer, A.,
d'Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32.

38. Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; Swami, A. Distillation as a Defense to Adversarial Perturbations Against Deep Neural
Networks. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016;
pp. 582–597. [CrossRef]

39. Xu, W.; Evans, D.; Qi, Y. Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks. In Proceedings of
the 2018 Network and Distributed System Security Symposium, Internet Society, San Diego, CA, USA, 18–21 February 2018.
[CrossRef]

40. Papernot, N.; McDaniel, P.; Sinha, A.; Wellman, M.P. SoK: Security and Privacy in Machine Learning. In Proceedings of the 2018
IEEE European Symposium on Security and Privacy (EuroS&P), London, UK, 24–26 April 2018; pp. 399–414. [CrossRef]

41. Papernot, N.; McDaniel, P.; Goodfellow, I. Transferability in Machine Learning: From Phenomena to Black-Box Attacks using
Adversarial Samples. arXiv 2016, arXiv:1605.07277.

42. Demontis, A.; Melis, M.; Pintor, M.; Jagielski, M.; Biggio, B.; Oprea, A.; Nita-Rotaru, C.; Roli, F. Why Do Adversarial Attacks
Transfer? Explaining Transferability of Evasion and Poisoning Attacks. arXiv 2019, arXiv:1809.02861.

43. Yusirwan, S.; Prayudi, Y.; Riadi, I. Implementation of Malware Analysis using Static and Dynamic Analysis Method. Int. J.
Comput. Appl. 2015, 117, 975–8887. [CrossRef]

44. Shafiq, M.Z.; Khayam, S.A.; Farooq, M. Embedded Malware Detection Using Markov n-Grams. In Detection of Intrusions and
Malware, and Vulnerability Assessment; Zamboni, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5137, pp. 88–107.
[CrossRef]

45. Smutz, C.; Stavrou, A. When a Tree Falls: Using Diversity in Ensemble Classifiers to Identify Evasion in Malware Detectors.
In Proceedings of the 2016 Network and Distributed System Security Symposium, San Diego, CA, USA, 21–24 February 2016.
[CrossRef]

46. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv 2015, arXiv:1412.6572.
47. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. arXiv 2014, arXiv:1409.4842.
48. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision

Tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran
Associates, Inc.: Red Hook, NY, USA, 2017, Volume 30.

49. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2172/1030303
http://dx.doi.org/10.1109/MSP.2011.14
http://dx.doi.org/10.1109/SP.2016.41
http://dx.doi.org/10.14722/ndss.2018.23198
http://dx.doi.org/10.1109/EuroSP.2018.00035
http://dx.doi.org/10.5120/20557-2943
http://dx.doi.org/10.1007/978-3-540-70542-0_5
http://dx.doi.org/10.14722/ndss.2016.23078

	Introduction
	Background and Preliminaries
	Portable Document Format
	PDF to Deliver Malware
	PDF Evasion Attacks
	Related Work

	Materials and Methods
	Methodology
	Approach 1
	Approach 2
	Approach 3

	Experimental Setup
	Dataset
	Machine Learning Models

	Results and Discussion
	Training and Validation Experiments
	Experiment 0: Illustrating the Problem and Establishing a Baseline
	Experiment 1
	Experiment 2
	Experiment 3

	Testing Experiments
	Experiment 1: Testing on a Real Dataset
	Experiment 2: Generating an Evasive Dataset
	Experiment 3: Testing on the Generated Evasive Dataset

	Conclusions
	References

