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Abstract: The current study aims to study the drill string–casing system operating in an inviscid
fluid under imbalanced and rubbing damage types. The Navier–Stokes equations were linearized to
establish the hydrodynamic forces surrounding the drill string and resulted in a five-dimensional
system of nonlinear differential equations. To ensure the accurate acquisition of friction characteristics
in a fluid medium, a nonlinear wavelet synchronized transform (NWSST) technique was enhanced
based on the denoised wavelet hard thresholding algorithm to extract the features of the rubbing
system. The developed model was verified through various test conditions, and the extracted
data tests show that the frictional impact proves sufficient to modify the dynamic behavior of the
drill string throughout the energy concentration with a slight shift above and below the resonant
frequency. It was shown by simulation that the vibration of the submerged drill string system
potentially enhanced highly undesirable hidden vibrational frequencies that led to a disturbed and
chaotic 3D orbit pattern vibrational response. The experimental results show how vibration analysis
combined with the synchrosqueezed technique can identify the condition of the drill string system
even under harsh operating conditions and demonstrate that fluid enables the drill string system to
rotate with minimum friction.

Keywords: axial, lateral, and torsional vibration; fluid–drill string interaction; 3D rubbing-caused
impact; rotary drill string systems; wavelet synchrosqueezed

1. Introduction

Drill string machines are typically used to drill up to several hundred meters into the
ground as well as into the sea. The vibrations of the drill string due to recurrent contact
with an external element disturb the optimal control of the pressure at the drill head and
considerably compromise the quality of the drilling, in particular in the upper tens of
meters. The drill string system, typically used in a non-Newtonian fluid (mud) where the
viscosity can change with applied shear, is also used in a Newtonian fluid such as inviscid
water (sea). Different fluid models, namely, the Navier–Stokes equations, have been used
to describe the interaction of Newtonian fluids with various structures. The industry is
constantly researching new techniques to predict and estimate the remaining useful life
of machinery operations based on newly developed monitoring technologies. Most of
the techniques used to extract distinguishing features from rotating machinery models
consist of classifying different types of faults based on the available system information.
An important study conducted by Ibrahim (2010) assessed the relationship between head
loss and the rotation speed of the well according to the geometry of the well and the flow
regime [1].

According to research in the literature, premature wear of rotors such as drill strings is
a predominant cause of mechanical failure as well as the geological environment of marine
structures, which can significantly alter the mechanical properties of the fluid interacting
with the rotor mass of the rotor, making the fluid density near the working area extremely
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uneven. Drill strings are designed for tight, hard-to-reach access. In addition, strong
vibrations and axially induced bit excitations cause early deterioration of the drill string.
The structural durability and degradation of a drilling system operating in a fluid medium
are influenced by the characteristics of the fluid. The unwanted drill string vibrations
waste some of the energy that should be sent to the drill bit [2]. Monitoring the condition
of drill rods is difficult due to their size and accessibility; therefore, failure prediction is
one of the most complicated and misunderstood difficulties a drilling operator can face.
Although the drill string system normally operates in a non-Newtonian fluid medium, there
is little research on the behavior of the drilling system operating in a Newtonian fluid [3].
Modeling and monitoring a drill string interacting with an inviscid fluid are two of the
most challenging topics in mechanical science that have piqued the interest of professionals
in the field. Mud damping, drill–wellbore contact, stochastic bit–rock interaction forces,
and various external sources all contribute to the complexity of the dynamic responses of
the drill string [4]. Unfortunately, due to their use in a variety of locations and accessibility
issues, drilling parameters (such as feed force, drill bit diameter, rotational speed, etc.)
significantly affect the torque of the drill, and the underlying mechanisms have not yet been
studied in depth. However, further research is needed to determine how torque responds
to changes in these mechanical characteristics. Many field applications relying on vertical
rotors have been deployed in a variety of industries, including oil and gas exploration and
petroleum drilling engineering. Any exciting force can cause a vertical drilling system to
vibrate and react. The drill rods are always in a state of longitudinal compression and
inclination at parametric resonance under axial excitation. As a result, the impact of these
drill strings on the borehole wall is substantially increased. Impact force fluctuates rapidly
during a collision. Thus, a lateral stress wave will arise and propagate in the drill string. In
practice, there is a high risk of friction between the rotor stabilizer and the static section
of the machine for machines such as a rotating drill string [5]. Friction causes mechanical
deformation of the rotor at the point of contact in this state. More intense contact, on
the other hand, causes the drill string to heat up and lose stiffness over time, which can
lead to catastrophic machine failure. As a result, condition monitoring of such a system is
required, which is often focused on feature extraction for fault identification in the time
or frequency domain. Gulyayev et al., studied the quasistatic stability of an elongated
drill string while subjected to torque, axial load, rotational inertial force, and internal mud
flow [6]. The inherent frequencies and mode forms of the elongated drill string were
presented in their model. Additionally, these features are often load and speed sensitive,
and they cannot reliably provide any information about the component problem that has
occurred. To address vibration problems in vertical rotors, numerical simulation is essential
as it pinpoints the root cause of problems in complex machinery and helps identify parts
that need special attention. Therefore, minimizing downtime and maximizing equipment
life can be monitored. However, since the majority of signals in mechanical engineering are
transient and nonstationary, it also helps in discovering suitable solutions for a variety of
nonlinear parameter applications by influencing structural resonance and achieving the
best possible results.

Methods such as the finite element analysis model of a rotating drill string [7], the Euler
finite difference technique [8], the method of disturbance [9], Fehlberg’s fourth-to-fifth-order
adaptive Runge–Kutta method [10,11], and the synchrosqueezing technique [12,13] were applied
to reduce and solve the resulting algebraic equations of the drill pipe model. However, a
comprehensive analysis of these issues remains a challenge due to their multidisciplinary nature.
Despite the challenges of drill string model formulation, modeling is still considered a powerful
method to study vibration propagation along the drill string and to analyze suspected vibration-
related failures by decreasing the unwanted string vibration of stems. However, the drill string
is not simply a bundle limited to vibrating in the air with mere external forces, but it is capable
of operating in a fluid medium with recurrent drill string–casing contact. Many other factors
such as fluid pressure, lateral torsional vibration of the drill string, axial vibration of the drill
string, the eccentricity of the drill rods, and friction due to the flexibility of the drill string
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affect the process of drilling. The extraction of drill string characteristics under such operating
conditions is usually not measurable in real time, which makes their study one of the difficult
and emerging problems in engineering fields. Several works have been conducted on drill string
vibrations, and various contributions and simulation techniques have been made regarding the
efficient operation of drilling under bit–rock interactions. Since the casing–drill string interaction
term is highly nonlinear and unpredictable, mathematical models have been proposed in the
literature for the rock–bit interaction, but they do not reflect the dynamics of the drill string
under vibration because the lateral/torsional and axial vibrations are strongly coupled.

Thus, the objective of this study is to functionally evaluate the effect of inviscid fluid
on the friction of a rotating drill string system during casing and bit–rock interactions. To
assess these effects, the model of [14] is adopted to compare the dynamic response with
and without the fluid–structure interaction mode. The drill string model is also improved
based on [15] to include the effects of higher borehole wall friction and fluid propagation
around the lateral/torsional/axial deflection of the train drilling. This work’s contribution
is considering a multi-degree-of-freedom forced excitation parametric drill string with dry
and wet friction-induced vibrations in coupled mechanical oscillators. The current study
results in original mathematical descriptions of the type of drill string systems and the
corresponding vibration analysis through numerical simulation methods and experimental
validation. The most important expected outcomes of this work include a fuller knowledge
of dynamic phenomena occurring in force-excited drill string systems with an account of
the energy source properties. This may require advanced and precise equipment to measure
and diagnose vibration parameters using an orbit model, frequency spectrum, and wavelet
synchrosqueezing techniques. The research conclusions of this work offer theoretical
guidance for detecting subterranean structures and preventing failures in rotating dynamic
systems. The results will also provide a reference for controlling drilling parameters in a
fluid medium.

The remainder of this paper is organized as follows: in Section 2, theory on the
modeling of the drill string system with a coupled axial/lateral/torsional displacement
is established in detail, and the review and the principles of nonlinear frictional drill
string–casing contact under the influence of full torque applied on the drilling system
are expressed. In Section 3, the mathematical model of the inviscid fluid is established
and coupled with the vertical rotor equation to generate the governing equations of the
fluid–rotor system. In Section 4, the practical implementation is described, and the impulse
extraction algorithm is presented. In Section 5, the performance of the method in terms of
orbit model, frequency spectrum, denoise robustness, and energy concentration is verified
by the drill string fault simulation signal. Real signal analysis is also extracted based on
the proposed method applied to complex drill string fault cases, such as variable speed
conditions and multipoint defects. Finally, the conclusion is obtained in Section 6.

2. Mathematical Modeling of the Drill String System

In reality, drill strings vibrate more often as a combination of all basic modes (lateral,
torsional, and axial deflection), and the coupling of all these vibration modes could make
the problem quite complex to study. In this formulation, it is assumed that (1) the drill
string is flexible, isotropic, and homogeneous; (2) the upper transmission rotates with an
initial angular speed Ω and provides a torque TM (neglecting the damping and friction
torques at the upper transmission); and (3) the deflection of the drill string is produced by
the displacement of eccentric centrifugal forces from the centerline. It is further assumed
that the internal damping and flow-induced forces are taken into account at this stage. The
Lagrangian method is used to model the drill string used in rotary operations; therefore,
to perform the analysis model, it is also assumed that only the stabilizer contacts the
borehole wall at a specific point as shown in Figure 1a. To simplify the drill string structure,
Figure 1b shows a simplified axial/lateral/torsional model of a conventional vertical drill
string model operating in an inviscid fluid. Understanding the drill string vibrations and
their correct interpretation for different types of formations in the real-time drilling process
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would help optimize the drilling vibration through automatic monitoring and control
parameters. For a better understanding of the geometrical structure of the mechanical
model, the corresponding simplified plane model is constructed in Figure 1b. The simplified
equivalent drill string model is composed of a cylindrical shaft of the uniform section with
an eccentric disc at the midspan of the submerged well inside a fluid-filled container. The
conventional vertical oil well drill string consists of the bottom-hole assembly (BHA), which
consists of a drill collar, a heavyweight drill shaft, and a non-magnetic drill string stabilizer
to prevent the drill string from under-balancing.
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Figure 1. Typical rotary drilling rig. (a) Drill string model. (b) Simplified schematic model of the drill string.

In this paper, the BHA will also be referred to as a drill bit; the length of the BHA remains
constant as the drilling operation progresses. It is also assumed that a section of the drill
string is put under compression to apply the weight on the bit (WOB). The drill string is
subject to compression due to the WOB, torsion due to rotation, lateral deflection due to the
stabilizer eccentricity, and the bit-cutting effect. The motor torque is assumed to be constant
and positive. The bit is supposed to be a simply supported rotor substantially subjected to the
axial vibrations represented by a harmonic force. Shear and gyroscopic effects can be ignored
since the structure is surrounded by a fluid with a low density compared to the rotating
structure’s material (usually steel). The equations for the lateral, axial, and torsion motion of
the drill string can be derived by applying Lagrangian formalism to the pulling drum.

2.1. Energy Principle and Expression

The drilling system in this study considers only the directions of axial strain, bending,
and torsion in the generalized shaft coordinates (X, Y, Z, θ, and ψ). These include two
horizontal displacements of the drill at the disk location (X and Y), one axial displacement
(Z), one rigid-body rotation (θ), and two torsional deflection angles (ψ). The kinetic energy
of the drill string disc is expressed as the sum of the translational and rotational mass
imbalance and the kinetic energy of the motor system. The full expression for the derivation
step appearing in this article is extensively developed in [14] and is therefore omitted for
brevity and can be written as follows:
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where JM is the inertia of the top rotary system, M is the drill string mass, JD is the shaft–disc
mass moment of inertia, mu is the imbalance mass, and the pairs, ex and ey, are the components
of e in x and y coordinates. The inertias are interconnected by linear springs (KXX, KYY, and
KZZ) which consist of three translational deformations (X, Y, and Z). Referring to a large
bending deflection, axial movement, and torsional deformation ψ, the potential energy is
expressed as:

V =
1
2

KXXX2 +
1
2

KYYY2 +
1
2

KZZZ2 +
1
2

Kψψψ2 (2)

where Kψψ is the system torsional stiffness, and KXX, KYY, and KZZ are the stiffness coeffi-
cients associated with the system degrees of freedom given by:

KXX = KYY = KZZ = K0 −
P(t)π2

2L
(3)

where K0 is the modal drill string stiffness value, and P(t) is an axially compressive force
which is assumed to fluctuate harmonically around a constant mean value of the weight of
the drill string PO and is written as [5]:

− P(t) = Po + Pf sin Ω f t (4)

where Pf and Ωf are, respectively, the amplitude and the frequency of the axial force. The
frequency of this periodic component is related to the frequency of the drilling system by
Ωf = nΩ, where n is an integer indicating the bit factor, and Ω represents the rotary speed of
the drill string. The Rayleigh dissipation function defined in the case of a viscous damper
and the torsional damping attached to the system can be expressed as:

R =
1
2

CT
.
ψ

2
+

1
2

CXX
.

X
2
+

1
2

CYY
.

Y
2
+

1
2

CZZ
.
Z

2
(5)

where CT is the system torsional damping, and CXX, CYY, and CZZ are the respective
degree of freedom damping coefficients. Furthermore, viscous damping torque is taken
into account at the upper drive system (Ten) and the bit (Tbt). Dry friction torque (TRb) is
considered at the drill bit. The extended Lagrange formulation can be therefore used to
derive the equation of motion of the damped drill string suspension system.

2.2. Mathematical Modeling of the 3D Rubbing Contact

During the experiment, the drill string, influenced by a centrifugal force during
bending, always touched the borehole wall during drilling, and the borehole wall exerted
pressure and frictional force on the drill string in response. As a result, two points of contact
(axial bit load, shaft disc to casing wall) could, in the long run, cause premature wear and
cracks. The collision effects between the shaft disc and the fixed casing are simplified to
be the axial and lateral impact forces exerted on the outer surface of the casing, as shown
schematically in Figure 2a. Figure 2b illustrates how the model proposed here, in contrast
to others in the reviewed literature, accounts for the shaft’s longitudinal sliding in the
vertical direction Z to estimate the nonlinear forces during contact. It is suggested that the
expression of the rubbing forces between rolling parts and the casing can be used to create
a realistic rubbing model that is more complex than the typical radial bilinear model [16].
Although various friction schemes have been proposed, such as the Stribeck friction model,
one of the most extensively used models to explain the friction phenomenon is the Coulomb
friction law.
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In the cartesian coordinate system of X, Y, and Z (see Figure 2b), let S represent any
known site of disc and casing contact. The axis Z is chosen to be orientated along the drill
string’s normal, while axes X and Y are oriented along the main axes of the cross-section.
Let,

→
e X ,

→
e Y, and

→
e Z be the unit vectors in the three-dimensional space X-, Y-, and Z-axes,

respectively. The disc bends in the
→
e X and

→
e Y directions and also oscillates along the

direction of
→
e Z (Figure 2a). The current position of the contact point S with respect to O as

shown in Figure 3b is written by the vector. The contact then brings an added stiffness that
is higher than the shaft stiffness and induces a restoring force. The expression of the radial
impact force FN and the tangential rub force FT can be written by the Coulomb–Amontons
law for friction as: {

FN = (∆− δ)Ks, f or ∆ ≥ δ
FT = µFN , f or ∆ < δ

(6)

where Ks is the stiffness of the casing in the radial direction, ∆ =
√
(Sr

X − Ss
X)

2 + (Sr
Y − Ss

Y)
2,

which represents the radial relative displacement between the rotor (indexed by r) and
the casing (indexed by s), µ is Coulomb’s friction coefficient, and δ is the radial clearance
between the rotor and the casing. SX and SY are, respectively, used for horizontal dis-
placements and SZ for vertical displacement. The mathematical phenomenon behind the
nonlinearity due to the rubbing effect happens when the radial displacement becomes
equal to the clearance between the drill string and casing (∆ = δ). The forces exerted in the
plane between the drill string and the casing are therefore expressed as:{

FX = − cos φ.FN + sin φ.FT
FY = − sin φ.FN − cos φ.FT

with
cos φ =

(
Sr

X − Ss
X
)
/∆

sin φ =
(
Sr

Y − Ss
Y
)
/∆

, (7)

This model is more generally used to model the rotor/casing contact in a Cartesian
plane [16]. Substituting (6) into (7) gives the expression of frictional forces in the planes X
and Y as:

FX_rub = − (∆− δ)Ks

∆
(X− µY) and FY_rub = − (∆− δ)Ks

∆
(µX + Y) (8)

The angle characterizing the position of the drill string relative to the casing is such
that the relative displacement of the center of the drill string of the radius is Z =

√
S2 − ∆2

which generates a vector of nonlinear forces F = [FAX, FN, FT]T which are the static force
loads in the radial (X and Y) and axial Z directions. In this case, with the contact force FN,
the inviscid fluid separating the rotating shaft and the fixed casing surfaces is assumed to
induce relatively low friction. Therefore, the drill string and casing interact according to
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Coulomb’s unilateral contact law with dry friction, and the axial friction FAX is modeled
conventionally by Coulomb’s law, i.e., by FAX = µ FN. A 3D rotor–casing contact friction
problem is highlighted by the case study example in this section. The dissipative nonlinear
force can be written in three dimensions, X, Y, and Z, in matrix form:

FX_rub
FY_rub
FZ_rub

 = −H(∆ + δax − δ)
(∆ + δax − δ)Ks

∆

1 −µ 0
µ 1 0
0 0 µ


X
Y
Z

 (9)

where H is the Heaviside function applied along the lateral displacement (X and Y) defined as:

H(Z) =
{

1, if ∆ > δ− δax
0, if ∆ ≤ δ− δax

(10)

The term δax corresponds to the decrease in the radial clearance induced by a preload.
For simplicity, the following set of assumptions can be made:

δax < δ i f the load is not su f f icient to ensure a rotor− stator contact,
δax = δ i f the rotor just comes into contact f lush with the stator,
δax > δ i f the load is large enough to generate the prestress in the rotor.

(11)

A significant point that appears for the first time in this study is the axial frictional
force emanating from the axial force. It should be noted that the clearance is still well
taken into account by this new formulation. Indeed, under the combined effect of this axial
preload and a radial load, there may still be a loss in contact.
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The term 
ax  corresponds to the decrease in the radial clearance induced by a pre-

load. For simplicity, the following set of assumptions can be made: 

Figure 3. Schematic diagram of a bit–rock interaction during full operation and the full torque profile.
(a) Full bit-rock torque contact. (b) Full bit-rock torque plot in drilling rig work.

2.3. Nonlinear Bit–Rock Interaction Model

The frictional force is recognized as the cause of the self-excited stick–slip phenomenon.
To include the influence of torque in the drill string system, some mathematical torque
equations are combined to simulate the dynamics of the drill string under various condi-
tions. One of the major contributions associated with the existing models is the description
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of some of the parameters involved, such as the presence of kinetic friction mechanisms,
which leads to discontinuous differential equations and results in consistency with the
field data. Therefore, the parameters that influence the friction mechanism, such as the
angular displacement and angular velocity, must be considered in a proper stick–slip model
(Figure 3). For this analysis, it is assumed that the bit is in continuous contact with the
bottom and is laterally restrained. As a result, a viscous damping torque is considered both
at the upper drive system (Ten) and the bottom hole of the drive bit (Tbt) caused by the
interaction of the bit and rock level [17]:

Tbit =
(

ηcb(ωRb) + (ηsb − ηcb)× e−λ|ωRb |
)
× (W0 + W1)RRb − ξb ×ωRb (12)

where λ = 0.9 is the decaying factor and ωRb is the angular velocity of the drill-bit (i.e.,
ωRb = Ω) W1 = k f χ0(1 − sin(2π fbt)) stands for the amplitude value of the WOB and
varies with the type of bit used, χ0 is the depth of the cut in one turn, and fb stands for
the frequency, which is determined by the depth of the cut χ0 and the rate of penetration.
In the above expression, TM operates alone when there is no bit contact with the ground.
When frictional contact occurs, the system switches to the mixed total torque mode. The
electrical motor’s surface torque TM is represented by this symbol [18]:

TM = −K0θ + crωRb (13)

The total nonlinear torque on the drill string bit (TTb) is modeled as the sum of the
total torque. Unlike the engine torque, the friction contact is modeled as a dynamic lateral
and axial discontinuous dry friction contact (TRb) expressed using Equation (9) by:

TRb = FZ_rubRRb = −H(∆ + δax − δ)
(∆ + δax − δ)Ks

∆
µZ× RRb (14)

The torque on the bit (TOB), generated in the (θ, X, Y, Z) direction of the drill associated
with the cutting torque Tc, can be expressed in the following equations:

TTb =

{
TM no contact
TM + Tbit + TRb i f f ull contact

(15)

The data relating to an actual drill string design given in [17] are used in the simulations
for the following: Wo (base case) = 30 kN, kf = 23 × 106 N/m, fb = 0.005 m, RRb = 0.005 m,
ηsb = 0.8, and ηcb = 0.45.

The developed torque profile presented in Figure 3b shows that the fluctuations
in the torque could have a detrimental effect on the drill bit and downhole equipment.
The evolution of the torque during the stick–slip oscillation demonstrated that there are
periodic fluctuations in the torque profile at startup around the mean value of 3400 Nm. The
amplitude of this fluctuation is relatively low at the start but remains significant throughout
the drilling process. Suddenly, the torque means the value drops to the minimum value,
indicating that the drill bit is about to stick. At stick RPM, the bit stops momentarily causing
the peak torque and TOB to build up almost linearly to a very high value, resulting in an
extreme drop in torque, and the system becomes relatively stable.

3. Mathematical Modeling of the Inviscid Fluid System

In this section, the analysis is carried out, first theoretically, then experimentally, on a
560 mm shaft length immersed in a vertical rectangular rigid and impermeable container,
which is estimated under the excitations of the drill string along the X-, Y-, and Z-axes. It
is assumed that (1) under shaft excitation, the inviscid fluid motion is at a low Reynolds
number and is entirely caused by the low amplitude vibrational motion of the drilling
system, (2) the fluid is inviscid, incompressible, and during wet contact, the coefficient of
friction and the wet coefficient are relatively the same, (3) the liquid can have a free surface
when the inviscid fluid is considered, and (4) for sudden changes in section, the radius of
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the disc is closer to the radius of the shaft (Rshaft ≈ Rdisc). The mass of the fluid contributing
to the motion of the drill string is estimated using linearized Navier–Stokes equations that
are simplified to Euler equations. As a result, the pressure distribution on the container
surface is integrated to estimate the hydrodynamic forces acting on the drill string during
forced excitation.

3.1. The Hydrodynamic Force under Lateral Excitation Force

The derivation of the hydrodynamic forces operating on a vertical container of depth
h and width 2 W under sinusoidal lateral excitation is established under translational and
pitching excitations. The drill string of length L is partially submerged in the reservoir
filled with an inviscid fluid, as shown in Figure 4b. Rising to a dynamic imbalance, the drill
string’s center of mass is then deflected, which causes the harmonic excitation of the (x and
y) axes by:

x(t) = X0 cos Ωt and y(t) = Y0 sin Ωt (16)

where X0 and Y0 are the excitation amplitudes, and Ω is a cyclical frequency in cycles
per unit of time much lower than its fundamental frequency (ω� Ω) so that the liquid
oscillates at exactly the excitation frequency.
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Figure 4. (a) Rectangular tank subject to harmonic excitation; (b) fluid profile around the shaft.

The following equations represent the linearized form of the fluid field equations for
irrotational, inviscid, incompressible flow motion under the assumption that the submerged
shaft oscillations are moderated [14]:

∇2Φ̃ = 0, within the domain of fluids (17)

∇2 =
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2 +
∂2

∂z2 (18)

Where Φ̃ = Φ̃(r, θ, z,t) (Φ̃ = Φ̃(r, θ, z,t)) is related to the flow disturbances and depends on
Eulerian coordinates and time. The presence of the drill string and the boundary conditions
at the container boundaries are:

∂Φ̃
∂r

∣∣∣∣∣
r=W

= 0,
∂Φ̃
∂z

∣∣∣∣∣
z=h

= 0,
∂Φ̃
∂θ

∣∣∣∣∣
θ=0,π/2

= 0, (19)
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The combined free surface condition obtained from the kinematic condition is:

gη − ∂Φ̃
∂t

+
..
xrcosθ= 0, at z =η(r, θ, t) (20)

The vertical velocity of a fluid particle resting on the free surface, z =η(r, θ, t), must be
equated to the vertical velocity of the free surface itself to give the linearized dynamic free
surface condition:

−∂Φ̃
∂z

=
∂η

∂t
at z =η(r, θ, t) (21)

where η(r, θ, t) is the fluid surface’s height from the unaltered free surface. Once the
kinematic free surface Condition (21) and the dynamic Circumstance (20) with respect to
time have been differentiated, the outcomes are obtained:

∂2Φ̃
∂t2 + g

∂Φ̃
∂z

=
...
x rcosθ (22)

The function Φ̃ satisfies the following conditions on the fluid boundary: ∂Φ̃/∂η = 0,
at the container walls and the free surface.

.
η(r, θ, t) is the vertical velocity of the free surface.

The typical solution of the continuity Equation (18) subject to boundary Condition (19) can
be expressed as follows:

Φ̃(r, θ, z,t) =
∞

∑
n=1

[C1n(t) cos θ + D1n(t) sin θ]J1(k1nr)
cosh(k1n(z + h))

cosh(k1nh)
] (23)

where C1n and D1n are time-dependent functions determined from the free-surface ini-
tial Condition (20), J1(.) is the Bessel function of the first order, k1n = ξ1n/W are roots of
∂J1(k1nr)/∂r|r=W = 0 , and r is a Fourier-Bessel series expansion given in the following form:

r =
∞

∑
n=1

Fn J1(k1nr) (24)

where Fn = 2W/(k2
1nW2 − 1)J1(k1nW). Introducing Equations (23) and (24) with the

free-surface Condition (20) yields:

∞

∑
n=1

[
..
C1n(t) + ω2

1nC1n(t)−
...
x Fn

cosh(k1nh)
]J1(k1nr) cos θ + [

..
D1n(t) + ω2

1nD1n(t)]J1(k1nr) sin θ = 0 (25)

where the natural frequency of the liquid-free surface in a rigid rectangular tank ω1n can be
obtained if the functions are expressed as harmonic functions. By substituting Equation
(23) into the homogeneous Equation (22), the natural frequency expression is derived and
expressed as:

(ω2
1n cos h((h + z)k1n)− gsinh((h + z)k1n)) sin(ω1nt)(cos θ + sin θ)

cos h(hk1n)
= 0 (26)

The corresponding natural frequencies are given by:

ω2
1n = gξ1ntanh(ξ1nh/W)/W (27)

where ξ1n are the roots of ∂J1(k1nr)/∂r|r=W = 0 , and Expression (25) is satisfied if the
functions C1n and D1n fulfill the following differential equations:

..
C1n(t) + ω2

1nC1n(t) =
...
x Fn

cosh(k1nh)
and

..
D1n(t) + ω2

1nD1n(t) = 0 (28)
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The steady-state solutions of Equation (28) are:

C1n(t) = −
Ω3

(ω2
1n −Ω2)

X0Fn

cosh(ξ1nh/W)
cos Ωt and D1n(t) = 0 (29)

By substituting Equation (29) into Expression (23), the velocity potential function is:

Φ̃ = −X0Ω cos θ cos Ωt
∞

∑
n=1

[
2W

(ξ2
1n − 1)

Ω2

(ω2
1n −Ω2)

J1(ξ1nr/W)

J1(ξ1n)

cosh(ξ1n(z + h)/W)

cosh(ξ1nh/W)
] (30)

The disturbed fluid function Φ̃ and the reservoir potential function Φ = −X0r cos θ cos Ωt
are coupled (Φ = Φ̃ + Φ0) to obtain the total potential function expressed as:

Φ̃ = −X0Ω cos θ cos Ωt×
{

r +
∞

∑
n=1

[
2W

(ξ2
1n − 1)

Ω2

(ω2
1n −Ω2)

J1(ξ1nr/W)

J1(ξ1n)

cosh(ξ1n(z + h)/W)

cosh(ξ1nh/W)
]

}
(31)

Integrating the pressure distribution throughout the rectangular tank’s bottom and
walls yields the hydrodynamic force. The following equation can be used to determine the
pressure distribution in any area of the reservoir at a depth h; since the fluid is inviscid,
there is no shear force, and the gravitational effects (ρgz) can be disregarded:

p = ρ
∂Φ̃
∂t

= ρΦ0Ω

{
r +

∞

∑
n=1

[
2W

(ξ2
1n − 1)

Ω2

(ω2
1n −Ω2)

J1(ξ1nr/W)

J1(ξ1n)

cosh(ξ1n(z + h)/W)

cosh(ξ1nh/W)
]

}
(32)

The fluid pressure on the wall occurs on the disc at θ = 0, and Ωt = π/2 is given by:

pw

ρgW
=

Ω2W
g

{
1 +

∞

∑
n=1

[
2

(ξ2
1n − 1)

Ω2W/ξ1ngtanh(ξ1nh/W)

(1−Ω2W/ξ1ngtanh(ξ1nh/W))

cosh(ξ1n(z + h)/W)

cosh(ξ1nh/W)
]

}
(33)

Similarly, the fluid pressure on the bottom of the thank at z = −h, θ = 0, and
Ωt = π/2 is:

pb
ρgW

=
Ω2W

g

{
r

W
+

∞

∑
n=1

[
2

(ξ2
1n − 1)

Ω2W/ξ1ngtanh(ξ1nh/W)

(1−Ω2W/ξ1ngtanh(ξ1nh/W)) cosh(ξ1nh/W)

J1(ξ1nr/W)

J1(ξ1n)
]

}
(34)

The integer n is the circumferential mode representing the deformation of the rotor.
Taking into account the oscillation of the basic mode m = n = 1 such that the bottom of the
reservoir Z = −h is produced by integrating the pressure on the appropriate region of the
boundary and the net components of the hydrodynamic force acting on the wall r = W/2:

FZ =

2π∫
θ=0

0∫
−h

p sin θWdθdz = 0 and Fb =

2π∫
θ=0

W∫
r=0

prdrdz = 0 (35)

Resolving along θ = 0, the force exerted by the fluid along the fixed-coordinate X- and
Y-axes is:

FXY =

2π∫
0

0∫
−h

p cos θWdθdz⇒ FXY = m f X0Ω2 sin Ωt

{
1 +

2W
(ξ2

1n − 1)
Ω2

(ω2
1n −Ω2)

tanh(ξ1nh/W)

ξ1nh

}
(36)

where m f = ρπhW2 is the total mass of the fluid.

FXY
ρgR2X0

= π
hΩ2

g
×
{

1 +
2W

(ξ2
1n − 1)

Ω2

(ω2
1n −Ω2)

tanh(ξ1nh/W)

ξ1nh

}
sin Ωt (37)
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These results suggest that a net force is applied along the direction of excitation,
according to Equation (36). The pressure distribution is symmetrical with respect to the
reservoir in the perpendicular direction, canceling out the integration of the latter. There
is no force in the direction of excitation produced by the pressure at the tank’s bottom.
It should be highlighted that the introduction of notions of resistance forces for such
liquid-level systems enables the straightforward description of their dynamic properties.
Therefore, when considering the vertical shaft’s center coordinates along the X- and Y-axes:

X = W cos Ωt and Y = W sin Ωt (38)

For the first mode, the natural frequencies are obtained by setting n = 1; then, the
hydrodynamic force can be rewritten as:

FX = −M f l
d2Y
dt2 where M f l = m f X0 ×

{
1

W
+

2
(ξ2

11 − 1)
Ω2

(ω2
11 −Ω2)

tanh(ξ11h/W)

ξ11h

}
(39)

Therefore, it is clear that in the scenario of a fluid surrounding a revolving drill string,
the fluid’s existence results in extra mass. The system’s natural regime appears to have been
altered, and the extra mass of the fluid is coupled to the shaft’s inertial force as follows:

mXX = mYY = M + mu + M f l (40)

To examine and comprehend, in particular, the influence of the fluid on the unset-
tling phenomena experienced during the friction and drilling operation, simulations and
experiments were based on this straightforward formula.

3.2. The Equations of Motion of the Rotor–Casing Rub System Immersed in an Inviscid Fluid

To extract the features of the signal distributed in the time and frequency domains,
an instantaneous energy spectrum distribution is performed. The five degrees of freedom
(DoF) second-order differential equation regulating the mechanical system of a drilling rig
in rubbing contact is established using the Euler–Lagrange formalism in an inviscid fluid
and can be written as follows in matrix form:


mθθ mθψ mθX mθY mθZ
mψθ mψψ mψX mψY 0
mXθ mXψ M + mu + M f l 0 mXZ
mYθ mYψ 0 M + mu + M f l mYZ
mZθ 0 mZX mZY mZZ





..
θ
..
ψ
..
X
..
Y
..
Z


+


0 0 0 0 0
0 Cψψ 0 0 0
0 0 CXX 0 0
0 0 0 CYY 0
0 0 0 0 CZZ





.
θ
.
ψ
.

X
.

Y
.
Z



+


0 0 0 0 0
0 Kψψ 0 0 0
0 0 K0 − ∆P 0 0
0 0 0 K0 − ∆P 0
0 0 0 0 K0 − ∆P




θ
ψ
X
Y
Z

+


Qθ

0
QX
QY
0

 =


TTb
TM
FX
FY

FZ + Fg



(41)

where ∆P = Pπ2/2L − Fψπ3/2L2. The external excitation forces associated with each
degree of freedom are expressed as Fg, the force vector induced by gravity, Fθ , the input
force from the motor, and Fψ, the fluctuating axial force. {Qn} represents the nonlinear part,
which is shown to be a function of the system rotational speed, the torsional deformation
angle, and the mass imbalance. The drill string–fluid interaction provides the coupling
between the fluid forces and the imbalanced lateral and torsional coupled rotor. It can be
noted that due to the formulation of the stresses, the axial, torsional, and lateral vibrations
are coupled. The coupling mass matrix between all degrees of freedom and the expression
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containing the nonlinear terms and the possibility of periodic instability at very high shaft
speeds is introduced in Equations (42)–(52) written in the form:

mθψ = mψθ = mψψ = JD + mue2 (42)

mθθ = JM + JD + mue2
(

1 + ψ2
)

(43)

mθX = mXθ = −mu
[(

ex − ψey
)

sin θ +
(
exψ + ey

)
cos θ

]
(44)

mθY = mYθ = mu
[(

ex − ψey
)

cos θ −
(
exψ + ey

)
sin θ

]
(45)

mψX = mXψ = −mu
[
ex sin θ + ey cos θ

]
(46)

mψY = mYψ = mu
[
ex cos θ − ey sin θ

]
(47)

mXX = mYY = mZZ = M + mu (48)

Kψψ = KT −mue2
.
θ

2
(49)

Qθ = 2mue2ψ
.
ψ

.
θ (50)

QX = −2mu
.
θ

.
ψ
(
ex cos θ − ey sin θ

)
−mu

.
θ

2[(
ex − ψey

)
cos θ −

(
exψ + ey

)
sin θ

]
(51)

QY = −2mu
.
θ

.
ψ
(
ex sin θ + ey cos θ

)
−mu

.
θ

2[(
ex − ψey

)
sin θ +

(
exψ + ey

)
cos θ

]
(52)

The governing equations are fully coupled nonlinear differential equations with time-
varying coefficients. The time-varying coefficients are due to fluid–shaft excitation and axial
coupling. Axial and transverse motions are coupled due to nonlinear elastic deflections,
while the transverse motions in the X and Y directions are coupled due to hydrodynamic
damping, shock impact, and frictional forces.

4. Description of the Test Bench and Experimental Approach

To validate the theoretical model, an experimental setup is developed using a minia-
turized Bently Nevada rotor-kit 4. The test rig consists of a flexible vertical shaft with an
imbalanced disc attached to it and connected to a variable-speed motor. The system is installed
inside an 84.5 × 25 × 25 cm3 rectangular container filled with non-viscous water. Engine
speed is measured with a laser tachometer and the response is captured with devices such
as probes and stainless-steel pressure sensors inside the water. The test bench set up for
the experiment is described in the following section. The proposed rig design is focused on
studying the rotational motion of a small-scale drill string, where axial and lateral vibrations
are not recorded.

4.1. Experimental Setup Description

The photograph presented in Figure 5 was used to analyze the imbalance and rub
impact in a fluid medium. The experimental test rig consists of a motor, flexible coupling, a
drill string shaft, one disc, two journal bearings and bearing blocks, six proximity probes,
a rub screw, a plexiglass container filled with water, and a data acquisition interface unit
that is controlled by Ascent software. An interchangeable flexible steel shaft that transmits
the rotational movement of the motor to the BHA is used to reproduce the drill rod. The
coupled motor and rotor’s shaft are simply supported at the top end by a wooden base
inserted in a V-frame design that was chosen to provide better control of the dynamic
stiffness properties of the housing. A vertical shaft of 560 mm in length and 10 mm in
diameter carries a disc with a diameter and thickness of 75 mm and 35 mm, respectively,
mounted at the position of 280 mm and driven by an electric motor incorporated with a
shaft through a flexible coupling. The motor is placed on the rig platform, typically with a
speed ranging from [0–1600 rpm]. It is used to maintain the desired WOB, bit drill, and pull
out the top drive drill and requires an amplifier system to maintain proper speed control.
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Figure 5. Miniature drilling rig model for experimental analysis. (a) 1-Computer screen, 2-ccout-2013,
3-speed control junction box, 4-frame support, 5-vertical shaft, 6-motor, 7-disc, 8-tank, 9-granitic rock
sample; (b) 10-probe sensors, 11-water; (c) 12-rub screw, 13-rub housing; (d) 14, 15–90◦ mounted
sensors.

The motor and the torque system are fixed on the base, and the stage is connected to
the load table by the steel cable and the fixed pulley. When the weights are placed on the
load table, different weights can be set to control the drilling feed force. The rub screw is
used to rub the radial surface of the shaft at a distance of 240 mm from the bottom. The rub
screw is adjustable to achieve various rub degrees and is secured in the mounting block
with a locknut (corresponding to the reduction in the screw–shaft clearance area). Indeed,
the lateral deflections of the shaft are created by a 3.2 g weight setscrew tightened in the disc
serving as an imbalance mass to completely facilitate the recurrent screw–shaft contact. The
experimental setup was adjusted to use real granitic rock samples in the drill tests, where
a rotating handle under the experimental platform was designed to change the height of
the sample to provide an additional WOB for the drill string. The vibration measurements
are conducted by using a laser tachometer to assess the rotor’s speed and six proximity
probes and four stainless steel pressure sensors mounted in both orthogonal directions near
the rub position and shaft support, as illustrated in Figure 5, to capture the vibration. The
probes are connected to the data acquisition devices, which are in turn connected to the PC.
The data acquisition interface unit operation is controlled by the Ascent-2013 software to
collect and store vibration data. Then, the data are transferred from the Ascent software to
Matlab for processing and analysis.

4.2. Fluid Model Properties

For a rectangular section, the damping factor is a function of the liquid’s height and
the tank’s width. For the aforementioned expression,ω1n = (g ξ1n/Wtanh(ξ1nh/W))1/2 of
the liquid-free surface gets closer to being constant. A family of unit-step response curves
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FX/ρgX0W2 with the dimensionless variable ξ1n and the frequency hΩ2/g is shown in
Figure 6a,b.
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Figure 6. Dependence of the ratio of the hydrodynamic forces on the damping and frequency
parameters. (a) Fluid forces for various values of ξ; (b) Fluid forces around the oscillating drill.

From Figure 6a, it can be seen that an underdamped fluid system between 0.1 and
0.9 gets close more rapidly than a critically damped or overdamped system. When increasing
the damping parameters, the amplitude of the hydrodynamic force is exponentially increased
away from the equilibrium position. The hydrodynamic forces acting on the rectangular
container experience harmonic motion by overshooting the equilibrium position rapidly and
exhibiting the fastest unstable response. Overdamped hydrodynamic forces are sluggish in
responding to any damping increment, as observed by the dashed curves. However, Figure 6b
presents the dependence of fluid forces on the lateral excitation frequency. From the foregoing
analysis of the hydrodynamic forces, the fluid force is either critically damped or overdamped
monotonically at the same magnitude. The downhole vibration of a drill bit, such as axial,
lateral, and torsional vibrations, can cause premature tool failure. To optimize the drilling
performance and extend the life of the drilling tools, controlling or mitigating downhole
vibration is essential [19,20]. The natural frequencies of the five DoF kinematic chain are as
follows: f 01 = 0 Hz, f 02 = 4.0756 Hz, f 0X =53 Hz, f 0Y = 53 Hz, and f 0Z =187 Hz. The fluid drill
string parameters used in this study are listed as indicated in Table 1.

Table 1. Data parameters used in rotary drilling simulation.

Drill String Parameter Value and Unit Bearing Stiffness Value and Unit

Length of the shaft (L)
Shaft diameter (D)
Disc radius (Rd)
Disk moment of inertia (JD)
Motor moment of inertia (JM)
Shaft torsional damping (CT)
Damping of the shaft (C0)
Friction coefficient (µ)
Rotor–casing clearance (δ)
Radial clearance (δax)

570 mm
10 mm
0.15 m
0.1861 kg.m2

10.36 kg.m2

90 Nms/rad
100.44 kg/s
0.2
20 µm
60 µm

Bearing shaft stiffness (Ko)
Casing stiffness (Ks)
Lateral damping ratio (ξl)
Torsional damping (ξT)

7.35 × 105 Nm−1

6.9 × 107 N/m
0.0287
0.03

Disc Value and Unit

Shaft–disc mass (M)
Eccentricity mass (mu)
Mass eccentricity (e)
Disc thickness (Ddisc)

16.845 kg
0.25 kg
0.0011 m
25 m

Inviscid Fluid Properties Units Tank Parameter Value and Unit

Water (T◦)
Fluid frequencies (ω1n)
Fluid density (ρ)
Shaft–fluid angular speed (Ω)

20 ◦C
6.01 rad/s
1004 kg/m3

4.8522 rad/s

Tank width (W)
Excitation amplitude (X0/W)
Axial force magnitude (Pf)
Static weight component (Po)

0.3 m
0.166
50 kN
100 N
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5. Numerical Simulation Results and Discussion

Based on Equations (16) and (41), the numerical simulation was conducted under the
baseline and fault conditions presented as follows: 1. Baseline response: the imbalance
drilling system is shown in both mediums. 2. Drill–casing rubbing condition: the periphery
disc on the imbalanced shaft is supposed to have rubbing forces that are normal, tangential,
and axial to it. 3. Submerged condition: in addition to imbalances and rubbing, the drill
string system is simulated when immersed in an inviscid fluid in the lateral direction, the
orbit of the shaft center, and the frequency spectrum of the signal. 4. For this paper, NWSST
methods and IF have been developed to allow the signal processing of nonstationary signals
and to simulate a vibration signal from an industrial model of multicomponent vibrations
generated under a specific fluid regime.

5.1. Imbalanced Drill String System Response

The baseline data response of a simulation performed on an imbalanced drill string
system during the passage through the first critical speed and the self-excited torsional
vibration of the drill string is explored.

Figure 7b shows a drop in the torsional deflection signal, which keeps on gradually
attenuating until the torsional vibration stops. Due to the nonlinear effects inherent in
the drill string system problem, the oscillations do not grow infinitely; rather, during a
collision, it is found that, in the case of deterministic friction without water, the component
corresponding to the circumferential vibrations of the drill string disc is always dominant,
and random friction creates impulsive forces which excite the transverse mode (Figure 7a).
Figures 8 and 9 are an expanded view of the spectrum around the drill string speed up
to two orders with the appearance of noise peaks in specific areas of the spectrum. The
drill string hump of energy just around 66.3135X and 132.627 orders in the air is possibly a
structural half and critical resonance (Figure 8b). Contrary to the air medium, the structure
in a fluid environment in Figure 9b shows an imbalanced fault characteristic frequency.
The observation of the envelope spectrum in Figure 9b demonstrates a reduction in the
vibration amplitude resulting in the soft fluctuation of the system. The vibration changes
drastically in magnitude as a result of fluid pressure. Common changes in patterns (peaks,
harmonics, noise, and orbits) can be observed. The presence of fluid reduces the number
of peaks from the fundamental frequency and increases progressively after the amplitude
of fluctuation from 0.84 × 10−4 m to 1.11 × 10−4 m in the inviscid fluid. The vibration
responses displayed by the orbit patterns are distorted and cease to be pure harmonic
signals, as shown in Figure 8a, contrary to Figure 9a, wherein the immersed fluid in the
shaft center orbit in the X and Y directions are multi-circular circles.
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Figure 7. Torsional response of the imbalanced drill string-casing system with rub in an inviscid fluid.
(a) Torsional in air; (b) Torsional in an inviscid fluid.
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Figure 9. Response of the imbalanced drill string system immersed in an inviscid fluid at the first
critical speed. (a) 3D imbalance response orbit in fluid; (b) FFT response of drill string in fluid.

Observation 1: The measured vibration level at 1X depends on the stiffness of the
machine mounting as well as the eccentric mass showing a greater 1X than damping-mounted
machines for the same degree of imbalance. Because of the fluid impact, the vibration level at
the 1X frequency decreases over a period of time. The more the fluid is introduced, the more
likely that an imbalance will be detected. In any case, the direction in which the drill string is
the least stiff is the direction of the highest 1X level. The horizontal vibration will therefore
typically be higher than the axial. However, what will the axial data reveal?

5.2. Response of the Imbalanced Drilling System and Diagnosis of the Rubbing Effects

Flexible coupling problems add multiple harmonics, such as imbalance and friction,
producing a variety of symptoms in different environments; each case must be individually
diagnosed. In the case of an imbalanced drill string with a rub, the effects of the fluid influence
significantly the rub impact features. An interesting behavior observed in Figures 10 and 11 is
the effect of the hydrodynamic forces on the system stability. As it is seen, the existence of
rub on the imbalanced drill string causes instability in a highly disturbed drilling system, and
this effect is intensified proportionally to the axial excitation force for a given rub clearance
(δ = 6 × 10−4 m selected). When the bit begins to interact, the system will inevitably be
disturbed by the possibility that axial and lateral vibrations occur simultaneously, and the
formation of their critical frequencies is noticeable. Eccentricity, in this case, produces a high
vibration level at 1X in the radial direction. Due to various nonlinear coupling terms, all
critical frequencies are increased during contact conditions, and several resonance peaks are
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observed as shown in Figure 10b. The effect of the permanent impact of the drill string on
the casing generates multiple unwanted critical speeds, occurring at 75 rpm, 175 rpm, and
225 rpm (1X, 2X . . . 5X). These undesirable frequencies show that the rub on the vertical
drill string with axial excitation forces would practically reinforce the high vibration of the
system and cause its destruction. The results of the excitation due to the imbalanced drill
string–casing contact and axial forces, in Figure 10a, generate a high unwanted fluctuation
along with axial displacement (Z-axis), as shown in the 3D orbit plot where the rub impact
is strongly irregular throughout the radial bilinear friction forces. From Figures 10a and 11a
the 3D orbit vibration of the drill string experiences changes from being periodic to chaotic
eventually. It is shown that, depending on the radial bilinear frictional forces and the axial
friction, the drill string undergoes a transient phase marked by intermittent rebounds.
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(a) 3D imbalanced drill string response orbit in fluid with rub; (b) FFT response of imbalanced and
rubbed drill in fluid.

It is apparent, comparing both Figures 10b and 11b, that when the hydrodynamic forces
are applied, the vibration response decreases considerably with a reducing range of the first
critical speed. The presence of dissipative effects such as hydrodynamic forces eventually
settles into multiple limit cycle behaviors, as seen in Figure 11a. Figure 11a reveals that,
depending on the radial bilinear frictional forces and the axial friction, the unstable contact is
intermittent along the radial direction where the friction, despite the presence of fluid, remains
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effective. This means that the hydrodynamic forces influence the motion of the drill string, as
observed throughout the torsional deflection (Figure 7b), where the torsional motion becomes
attenuated with a large amplitude in the presence of fluid.

Observation 2: The spectrum of the frequency illustrates also the effect of attenuation
of vibration features of the drilling system partially immersed in a fluid. The results indicate
that any interaction of the fluid with the drill string is followed by a moderate 2X . . . 5X
reduction in the critical frequencies and smooth growth of fluctuation where the shape of
the orbit patterns is in torus compared to Figure 9b. The results also show increased axial
forces in the air as it enters the formation, which can help operators optimize the drilling
process and identify potential problems before they become more serious problems.

5.3. Feature Extraction of the Rubbing Drill String System by Wavelet Synchrosqueezing Transform

Parametric studies in the context of the dynamics of nonlinear systems require the use of
robust and efficient methods for the study of periodic regimes and their stability, such as the use
of time–frequency methods. The oscillation feature of the denoising vibration response signal
using the wavelet hard-thresholding methodology is first extracted so that the time–frequency
resolution is better. Then, the denoised signal is fed to the instantaneous frequency and is taken
as an index to qualitatively describe the highly oscillated rotor–casing system and detect the
feature of the rub impact in an inviscid fluid through the fluctuation of energy.

The procedure followed to analyze the time signals and interpret the results is different
based on the dissipative energy of the system. A direct comparison between conditions
with and without friction and fluid is preferred to the main effect plot. Based on the NWSST
representation, the influences of some dynamic parameters, including eccentric mass and
rub impact under hydrodynamic forces, are investigated as shown in Figure 12. The mass
of the fluid affects the frictional impact leading to high quasiperiodic motion. The energy
distributions obtained based on the NWSST, as shown in Figure 12a,b, demonstrated
that, despite the fluid mass added around the contact point, the friction phenomenon is
still perceived by the appearance of some trivial lower amplitude harmonic interference
components. The increase in the mass system causes a significant reduction in the bit
fluctuation (Figure 12b) where in the severity of stick–slip is more apparent when operating
in a dry environment.
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Observation 3: Note that the 3D plot scale is different; the high amplitudes of the 1X
and 2X peaks (t = 0.3 s and 12 s) are lower than the levels observed without fluid impact.
The existence of nonsynchronous components in the vibration spectrum is the source of
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axial direction and a red flag to the analyst that rubbing problems may exist. The severity
of the stick–slip vibrations generates different frequencies based on its physical make-up,
as observed in Figure 12, where, despite the presence of the fluid around the stick–slip and
drill–wall contacts, the vibrations do not disappear for this drilling section. The drill string
system first oscillates with a registering long period of bit sticking with a peak in large
resonance amplitudes (Figure 12a), and a sharp decrease in amplitudes of the noiseless
extracted IF components reveals the complexity of the time interval between successive
high pulses.

Figure 13 illustrates the feature of the rubbing contact when the dissipative inviscid fluid
is not integrated into the drill string system. In Figure 13a, the time–frequency ridges from
the nonlinear wavelet synchrosqueezing plot can be observed, and this representation is used
to obtain a higher resolution for the energy concentration analysis. The maximum energy of
the time–frequency ridge is extracted in cycles per sample of the wavelet synchrosqueezed
transform. The aperiodic oscillations during the shock reflect the influence of the amplitude
of the impact during the contact. During impact, the drill string oscillates at its first resonance
frequency of 200 Hz where the frequency of the first resonance mode of the drill string can
be observed. The second resonant frequency of the drill string with a high frequency of
400 Hz shows that the drill string, at this time, is excited in its first two modes. The peaks of
the second resonance mode of the drill string can be observed with a slight shift below the
resonance frequency (circled area) for the second mode, which may be sufficient to change the
behavior of the drill string according to its rotational speed. Through time, it can be noted that a
satisfactory energy concentration result is observed around the fundamental value of 400 Hz,
which denotes a better time–frequency location and better characterization of the time-varying
feature. The drill string makes contact with the borehole wall, which then leads to a sustained
fluctuating frequency representation. It is worth mentioning, from Figure 13b, that it is difficult
to identify the periodicity of a single peak after transforming the signal into the frequency
domain. This explains the results of the chaotic behavior obtained in the three-dimensional orbit
plot (Figure 10a). Figure 13a shows a distinct set of points that indicates the chaotic behavior of
the distributed energy in a fluid medium.
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Figure 13. No fluid-NWSST representation of the rotor-casing rubbing signal in the Y direction.
(a) Time-frequency ridges from NWSST; (b) Estimated IF amplitude spectrum of the signal.

The corresponding estimated frequency spectrum (red line) extracted by the NWSST
method shown in Figure 13b contains a regular breaking point that involves the damping
effect of the fluid upon shock contact. In Figure 14a, the dominant frequency of the
resonance mode of the drill string can be observed at a considerably lower frequency. If
the evolution through time of the peak at 250 Hz is followed, it can be seen that there is no
longer an oscillation around a defined frequency. However, the curve (circled area) shows
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sudden periodic jumps above that of the frequency resonance as if the behavior of the
system changed from one mode to another, which corresponds to the minimized chaotic
point observed in Figure 13a. In the presence of hydrodynamic forces, the rubbing intensity
observed in Figure 13 is attenuated, but the nonlinear phenomena of the fluid introduced a
disturbed cascade of peaks throughout the vibration. The IF of the imbalanced system under
the frictional impact of the phenomenon is relatively obvious, as observed in Figure 14b,
where a series of peak frequency components are aperiodically distributed by irregular low
spectral lines representing the contact permanent. As fluid forces and frictional impacts
occur, the wavelet scalogram gives a good display of time in the frequency region with
an improved analysis of the time-frequency resolution; higher frequency components
appear and make it possible to identify the time of occurrence, and the frequency of the
friction caused impacts and a sharp decrease in the amplitudes of noiseless extracted IF
components, which reveal clearly the time interval between successive high pulses.
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Figure 14. Friction/fluid-NWSST representation of the rotor-casing rubbing signal in an inviscid
fluid. (a) Time-frequency ridges from NWSST; (b) Estimated IF amplitude spectrum of the signal.

Observation 4: The useful information in the harmonic distribution is observed in
Figure 12 at some specific disturbed periods illustrated by the high peak’s shape disturbance
throughout the signal, while in the spectrum bands, the diminution of the impact amplitude
is prominent. It can also be seen from Figure 12 that there are good approximations of
the signal’s instantaneous frequency, which oscillates periodically and differs from the IF
of the imbalanced drilling/casing system with the eliminated hydrodynamic forces. The
damping imposed by the presence of fluid makes it possible to obtain a good prediction of
the behavior of the drill string subjected to an impact. Adding a dissipative inviscid fluid
in the system minimizes its vibration by significantly amortizing the shock. It is obvious
that, if only the imbalance effect is taken into account, the IF remains unchanged, while the
shock generated by the rotor–casing system oscillates gradually in amplitude.

6. Experimental Analysis and Discussion

In this section, an extracted signal contaminated with strong noise is used to evaluate the
performance of the NWSST technique. The drill string vibration signal under various operating
conditions is imported as an excel sheet into Matlab to perform the time–frequency analysis.
Although it may be useful to experimentally study the effects of the fluid on the dynamic
behavior of the rotor–casing, the reconstructed signal with multiple faults is first denoised using
a wavelet thresholding technique through the original signal. A detailed practical study of
NWSST for rub detection and monitoring in rotors is illustrated using two sets of experimental
data (with and without fluid forces) acquired under varying speed conditions.
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6.1. Practical Test 1: Imbalanced Vertical Shaft Response

From the FFT characteristics (Figure 15b), it is evident that the resonant frequency is
higher than in the case of the imbalanced drill string operating in water in Figure 15a. The
experimental results demonstrate that, during start-up, the lateral trajectory of the drill
string increases gradually, and its circular orbit consists of mixing two harmonic paths
of different frequencies (Figures 15a and 16a). The orbital path rotates at a considerably
lower amplitude (note the different magnitudes in the X- and Y-axes in the figures after
immersion) as shown in Figures 15b and 16b.
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For the experiment presented, the drill string rotates in the air, and for the fluid, at
a speed of approximately 1600 rpm with an imbalanced mass, the progressive excitation
leads to rubbing contact. Due to the constraint on the axial displacement, measurement
probes (Figure 6d) to detect the behavior of the drill string downhole were used for the
actual drill string and to extract the characteristics when some unwanted vibration occurred
in the fluid medium. The lateral vibrations of an imbalanced swirling drill string at critical
velocities and influenced by fluid forces were measured, and the impulse characteristics
were then extracted and plotted as shown in Figures 17 and 18.
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Figure 18. Experimental orbit response of imbalanced rotor-casing rub (a) without water and (b)
with water.

6.2. Practical Test 2: Imbalanced Vertical Shaft with Friction and Fluid

Figures 17a and 18a are almost similar to the behavior of that in the fluid. The
frictional impact of higher resonance frequencies and larger subharmonic peaks occurring
with the bounce of the outer drill string orbit can be seen in both Figures 17 and 18. In
general, friction-induced noise and vibrations exhibit nonlinear, time-varying transient
characteristics. For comparison, it is shown that the obtained experimental signal is highly
consistent with the simulated defect signal. The extracted impulse features in the inviscid
fluid are plotted as shown in Figure 17b. The proposed results can accurately display the
impulse characteristics of the rubbing contact, even when the fault signal is buried under
strong noise interference.

Observation 5: For the case where faults such as imbalance and rotor–stator rub
coexist, the response of the drill string orbit in the lateral direction and its FFT spectrum
showed that the harmonics of 1 × order (213.8 Hz) representing the imbalance exist in each
response (with and without fluid). The FFT spectral plot also shows that higher frequencies,
for example, 2X, 3X, 5X, etc., get excited as it occurs. The presence of a weak subharmonic
resonance at 1/2 of the critical bending speed can be observed in the submerged imbalanced
rubbing drill string. The experimental results show how the fluid also indirectly affects the
frictional torque in the system.
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In this section, since the rub fault is highly nonlinear and the fluid expression is always
transient, the time–frequency representation (TFR) is properly used for this study using
both IF and NWSST. Figures 19 and 20 show waveform plots of the IFs extracted by wavelet
synchrosqueezing and the NWSST spectra without and with fluid, respectively. In general,
aperiodic and chaotic windows can be observed in the experimental responses in Figure 19a,
and a period-doubling route can be noted from the expanded diagram, as presented in
Figure 20a and observed previously in Figures 13a and 14a. To further experimentally show
the performance of the NWSST in analyzing the signal with multiple faults, the center
frequencies of these fault components are confined to the interval [90 Hz to 500 Hz] where
the TF characteristics of these two faults are captured by the NWSST (Figure 19a). The
NWSST provides a time–frequency representation of the signal, which may require further
analysis and interpretation to extract meaningful information about the dynamic behavior
of the system. The corresponding IF is then used to filter these two fault signals. It can be
seen in Figure 19b that the reconstructed IF with a denoised signal is highly consistent. With
the increase in the impact, the large number of continuous components of the frequency
spectrum of the system shows that there is a serious frictional impact phenomenon in
the system. These frequency components can be used as characteristic frequencies for
drill string rub impact fault diagnosis. Figure 21 shows the standard deviation trends
corresponding to the defective cases of the selected signal segments, revealing an explicit
energy level difference between the reference (air) and fluid medium (water).
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Figure 21. The overall trend of the drill string vibration level. The blue line shows the transient
contact in the air with a coefficient of friction µ = 0.2, and the black line shows the frictional contact
inside the fluid with the same coefficient of friction.

Observation 6: Figure 20b shows that the main difference in the dynamic response
with and without the fluid–structure interaction model lies in the dynamic amplitude of
the response and the major influence of the fluid in the side frequencies on the side mode
shape. The overall trend is different for the two models when the vibration amplitude
curve of the drill string without fluid is greater than that in water. To track the operating
conditions of the drill string and the trend deterioration to predict the downtime, it can
be seen from the overall measurement that the fluid-free vibration amplitude suddenly
increases (Figure 21). The level of vibration on impact is still normal, so no action needs to
be initiated, but the vibration should be measured regularly from then on, and any increase
in amplitude should be accurately assessed.

7. Conclusions

In this research, the common frictional defect between a drill string and a stator was mod-
eled and studied considering the whole torque, centrifugal force, stabilizer, bit–rock interactions,
shock and friction between the stabilizer and the borehole wall, and fluid–structure interactions
(which circulate around the drill shaft). The conventional FFT spectrum and orbit patterns
provide preliminary results for machine operators to identify the exact occurrence time and
frequency of these rubbing-caused impacts in the fluid. The instantaneous frequency based
on the nonlinear wavelet synchronized transform creates significant interference sufficient to
obtain a good resolution of the impacts caused by friction. The conditions of shock are difficult
to separate; in particular, for the important frictions, the tests of the simulated and experimental
signals show that the period of the shock is very difficult to determine. The fluid has a major
influence on the lateral frequency, but the axial frequency and torsional frequency are not
affected. Moreover, the results also show that the synchrosqueezed techniques significantly
improved the readability of the results by increasing the time of occurrence and the period
of high-frequency impact during friction in a fluid medium. The existence and severity of
friction inside the inviscid liquid becomes detectable. Synchrosqueezed methods are effective
for estimating and detecting the instantaneous frequencies of lower amplitude frictional impacts
as well as the behavior of the drill string systems in an inviscid fluid. However, it only extracts
nonlinear features, which may not be sufficient for some applications requiring more complete
information. Their limitations need to be carefully considered and addressed to ensure accurate
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and reliable results. However, the accurate measurement of the axial contact of the drill string
and the rock poses a great challenge for experimental fault diagnosis, which is a limitation
of the present research. This forms the motivation for future research work in addition to
experimentally studying the effects of frictional impacts in viscous and inviscid fluids in both
healthy and defective drill strings and then correlating the results with those of the proposed
theoretical model.
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