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Abstract: The super-resolution of depth images is a research hotspot. In this study, the classical
Kriging algorithm is applied to the spatial interpolation of depth images, together with the fractional-
order differential method for edge recognition, to realise the super-resolution reconstruction of depth
images. The resulting interpolation model improves the edge performance of Kriging interpolation by
harnessing the superior characteristics of fractional-order differential edge recognition and effectively
solving the edge blurring problem in super-resolution interpolation of depth images. Experimental
results show that, compared with the classical algorithms, the super-resolution reconstruction based
on Kriging interpolation is greatly improved in terms of visual effects and the peak signal-to-noise
ratio of the depth image. In particular, edge recognition based on fractional-order differentia-
tion solves the image blurring problem at the edges of the depth images. Inspection of the point
clouds of the depth images shows that the output of the proposed interpolation model has obvious
fractal characteristics.

Keywords: edge recognition; fractional-order calculus; kriging interpolation; super-resolution reconstruction

1. Introduction

With the development of computer vision and image processing, deep image pro-
cessing has become a hot research topic in recent years. Deep image processing has both
theoretical significance and important practical applications. For example, in the field of
virtual reality video games, where the player’s pose movements are acquired through so-
matosensory devices and subjected to human–computer interaction and modelling, depth
images acquired in real time must be processed to improve the quality of the models
constructed from depth data. Another topic of importance is the super-resolution recon-
struction of depth images, which is critical for applications in vision fields such as virtual
reality video games, biomedicine, and augmented reality, as these applications require
highly accurate depth image data. High-precision super-resolution reconstruction helps
generate highly realistic three-dimensional (3D) object surface models. In addition, artifi-
cial intelligence and autonomous driving both require highly accurate depth image data.
Developments in computer vision and image processing promise to make the exploration
of depth-image-based super-resolution algorithms a research hotspot.

Recently, image super-resolution using deep learning methods has achieved remark-
able success in producing high-quality and visually pleasing results [1–3]. However,
these methods usually require a large amount of training data and computational re-
sources, making them impractical for real-time applications. To overcome this limitation,
some researchers have explored the use of non-deep learning-based techniques, such as
interpolation-based methods [4,5]. While these methods are computationally efficient, they
may not be suitable for processing complex depth images.
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Recently, a few studies have proposed the use of fractional-order differentiation in
interpolation-based methods for depth image super-resolution [6,7]. These methods have
been shown to be effective in preserving texture information and edge features as well
as improving noise reduction performance. In comparison with traditional interpolation-
based methods, these methods offer better image reconstruction and greater robustness.

Depth image super-resolution is a signal processing technique for obtaining high-
resolution images from single or multiple frames of low-resolution images [8] and has
promising practical applications [9]. Image super-resolution techniques can be broadly clas-
sified into four categories: interpolation-based [10], reconstruction-based [11], enhancement-
based [12], and learning-based [1,2] methods. Fractional-order calculus has been widely
applied in cybernetics, probability theory, and signal processing [13]. One study [14]
proposed a numerical implementation of fractional-order calculus in the field of signal
analysis and its initial application to two-dimensional (2D) image processing; the same
study also proposed the Tiansi mask operator based on fractional-order calculus, which
achieved good results in the field of image enhancement and edge detection. Other
studies [15–17] have proposed image denoising algorithms based on a small probabil-
ity model and gradient-adaptive fractional-order calculus, achieving good results in image
denoising and enhancement.

Spatial interpolation is a technique used to obtain attribute information at the unsam-
pled points (interpolation points) by studying the attribute information of the sampled
points. Using a mathematical model, the mapping relationship between the attribute do-
main and the spatial domain is analysed on the basis of known information from a certain
number of sampled points [18]. Spatial interpolation techniques are widely used in tasks
such as precipitation prediction, soil level classification, and groundwater simulation [19].
Numerous interpolation methods are in common use, such as inverse distance weighted
interpolation [20], Kriging interpolation [21,22], minimum curvature interpolation, the
Sheppard method, natural neighbour interpolation [20], nearest-neighbour interpolation,
multiple regression interpolation, the radial basis function method, the linear interpolation
triangular network method, and the moving average method.

The classical super-resolution algorithm for images introduces the Kriging interpola-
tion algorithm by exploiting the fact that a depth image is also a distance image. In this
study, the fractional-order calculus operator is introduced into the super-resolution recon-
struction process of depth images, and the fractional-order differential mask is constructed
to obtain high-frequency information such as image edges for originally low-resolution
images. In addition, fractional-order edge matching is used to improve the accuracy of
the Kriging interpolation process, and the fractional-order differential kernel is used to
construct and improve the Kriging interpolation diffusion function. The experimental
results show that the algorithm effectively improves the super-resolution reconstruction
and enhances the subjective and objective outputs of the reconstruction process compared
with the traditional algorithm.

2. Depth Image super-resolution Algorithm

Super-resolution of depth images requires image enlargement by interpolation of
images. The main theoretical basis of such methods is that there is a purely sampling rela-
tionship between low-resolution images and high-resolution images. In the up-sampling
process, only the pixel values of the low-resolution image need to be fitted to obtain a
continuous image, and then sampling can be performed to obtain the target-resolution
image. This method benefits from conceptual simplicity and low computational difficulty
and is widely used for image super-resolution in industry. However, due to theoretical
limitations, the super-resolution effect is not satisfactory when the images contain noise or
blur, i.e., when the relationship between the high- and low-resolution images is not purely
a sampling relationship.
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2.1. Classical Image Interpolation Methods

OpenCV2′s resize function includes a number of commonly used interpolation algo-
rithms: nearest-neighbour interpolation (INTER_NEAREST) [23], bilinear interpolation
(INTER_LINEAR) [24,25], resampling interpolation (INTER_AREA) [26], cubic interpola-
tion (INTER_CUBIC) [27], and LANCZOS4 cubic interpolation (INTER_LANCZOS4) [28].
Resampling interpolation is based on resampling using the pixel region relationship. There-
fore, resampling is preferred in image extraction (decimation). Meanwhile, when the image
is zoomed, INTER_NEAREST is preferred. These five classical interpolation algorithms are
widely used in industry. However, recent years have seen the emergence of several new
interpolation algorithms, including the fractal theory-based algorithm [29], the wavelet
algorithm [30], the contour template algorithm [31], the partial differential equation-based
algorithm [32], the topography-based inverse distance algorithm [33], and the Kriging
algorithm [34]. These algorithms have been shown to have superior performance in various
applications, such as image super-resolution, terrain modelling, and geological analysis,
and therefore merit consideration for future research.

This study evaluates the effectiveness of the five classical interpolation algorithms
mentioned at the start of the preceding paragraph with respect to the super-resolution of
depth images. Using experimental data obtained from the depth image dataset in [35], the
depth images and point clouds are first 50% down-sampled and then 200% up-sampled
to examine the effectiveness of the interpolation algorithms. The super-resolution results
are shown in Figures 1–6 and Table 1, the images show good clarity and completeness
after scaling.
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Figure 1. Depth image: original images. (a), depth image; (b), front view of the point cloud map of
the depth image; (c), side view of the point cloud map of the depth image.
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Figure 2. Nearest neighbour terpolation (INTER_NEAREST) results for depth images (PSNR = 29.795 dB).
(a), depth image; (b), front view of the point cloud map of the depth image; (c), side view of the point
cloud map of the depth image.
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Figure 3. Bilinear interpolation (INTER_LINEAR) results for depth images (PSNR = 34.164 dB).
(a), depth image; (b), front view of the point cloud map of the depth image; (c), side view of the point
cloud map of the depth image.
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Figure 4. Resampling interpolation (INTER_AREA) results for depth images (PSNR = 33.570 dB).
(a), depth image; (b), front view of the point cloud map of the depth image; (c), side view of the point
cloud map of the depth image.
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Figure 5. Results of cubic interpolation (INTER_CUBIC) of the depth image (PSNR = 34.515 dB).
(a), depth image; (b), front view of the point cloud map of the depth image; (c), side view of the point
cloud map of the depth image.
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Figure 6. Lanczos interpolation (INTER_LANZOS24) results for depth images (PSNR = 33.654 dB).
(a), depth image; (b), front view of the point cloud map of the depth image; (c), side view of the point
cloud map of the depth image.
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Table 1. Comparison of classical interpolation algorithms.

Interpolation
Method

Nearest
Neighbor

Interpolation

Bilinear
Interpolation

Resampling
Interpolaton

Cubic
Interpolation

Lanczos
Interpolation

PSNR (dB) 29.795 34.154 33.570 34.515 33.654

The five classical interpolation algorithms are tested experimentally with respect
to their ability to meet the requirements of image appearance. In terms of image edge
completeness and clarity, the cubic interpolation and Lanczos interpolation algorithms
achieve the highest values. However, after conversion of the depth images into point clouds,
it is evident that the cubic interpolation and Lanczos interpolation algorithms introduce a
large amount of smoothed data to optimise the appearance of the image. From the point
cloud or depth distance perspectives, these data can be seen as a source of additional
noise. Overall, the above experimental results show that the classical image interpolation
algorithms, except the nearest-neighbour interpolation algorithm, inevitably introduce
noise that cannot be eliminated. If the images need to be converted to point clouds and
reconstructed in 3D, the noise introduced will greatly affect the final result and be difficult to
eliminate. If high-quality, super-resolution depth images are to be obtained, improvements
are needed, starting with the interpolation algorithm.

2.2. Interpolation Algorithm Based on Kriging Interpolation

A depth image is itself a distance image and is similar to a geological/topographic
image after conversion to a point cloud. Considering the concept of inverse distance used
in adaptive weighting, an algorithm suitable for geology/topography is introduced. The
algorithm is based on inverse distance interpolation and Kriging interpolation, both of
which take into account the spatial relationship between the point to be interpolated and
the valid points around them [20,22].

Kriging interpolation is a method for the unbiased optimal estimation of regionalised
variables in a finite region (used to estimate values that are spatially correlated, such
as air quality, where values at closely spaced locations are similar). ‘Unbiased’ means
that the expectation of the difference between the estimated and actual values is equal
to zero, and ‘optimal’ means that the variance between the estimated and actual values
is minimised. Based on this feature, Kriging interpolation is much more effective than
other interpolation methods. In simple terms, Kriging interpolation does the following.
Given some coordinates and the real values at those coordinates, which we call sampling
points, these points are fed into the Kriging algorithm to estimate the values at other
unknown locations [22].

Kriging interpolation analyses the regional variation of variables to achieve an optimal
linear unbiased estimation [20,22]. The method consists of two steps: (1) the variational
function model is established using the values of the spatial attributes of the regional
variables, which are used to express the structural and stochastic characteristics of those
attributes; (2) on the basis of the analysis of the spatial attributes, the domain range is
determined and the Kriging equation is solved to estimate the values of the attributes with
interpolation points.

Ẑo =
n

∑
i=1

λizi (1)

where zi is the estimated value at the point (x, y) and λ i is the weight coefficient, which is a
weighted sum of the data at all known points in the space and is used to estimate the value
of unknown points. However, the weight coefficients are not the inverse of the distance
but are the optimal set of coefficients that can satisfy the minimum difference between the
valuation ẑo of the point (x, y) and the true value of zo, i.e.,

min
λi

Var(ẑo − zo) (2)
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Additionally, the unbiased condition must be satisfied:

E(ẑo − zo) = 0 (3)

The main difference between different Kriging interpolation methods is the underlying
assumptions. In this paper, only the assumptions and applications of ordinary Kriging
interpolation are presented.

Ordinary Kriging interpolation assumes that the spatial properties z are homogeneous.
All points in space (x, y) have the same expectation c with variance σ2. That is, for any
point (x, y), we have

E[z(x, y)]= E[z]= c (4)

Var[z(x, y)]= σ2 (5)

In other words, the value at any point z(x,y) is composed of the regional mean c and
the random deviation at that point R(x,y):

z(x, y)= E[z(x, y)]+R(x, y)= c + R(x, y) (6)

where R(x,y) denotes the deviations at the point (x,y), and their variances are all constants.

Var[z(x, y)]= σ2 (7)

First, we analyse the unbiased estimation condition:

E(ẑo − zo) = 0 (8)

Substitute

ẑo =
n

∑
i=1

λizi (9)

We obtain

E

(
n

∑
i=1

λizi−zo

)
= 0 (10)

Furthermore, because E[z] = c for any z, one of the constraints on λi can be obtained.

n

∑
I=1

λi = 1 (11)

The analysis estimation error Var(ẑo − zo) is denoted here by J:

J = Var(ẑo − zo) (12)

Furthermore, we have

J = Var
(

n
∑

i=1
λizi−zo

)
= Var

(
n
∑

i=1
λizi −2Cov

(
n
∑

i=1
λizi, zo

)
−zo

)
+Cov(zo, zo)

=
n
∑

i=1

n
∑

j=0
λiλjCov

(
zi, zj

)
− 2

n
∑

i=1
λiCov(zi, zo)+Cov(zo, zo)

(13)

By definition, Cij=Cov
(
zi, zj

)
=Cov

(
Ri, Rj

)
, where Ri = zi − c denotes the deviation of

the attribute value at point (xi, yi) from the regional average attribute value

J =
n

∑
i=1

n

∑
j=0

λiλjCij−2
n

∑
i=1

λiCio+Coo (14)
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Defining the semivariance function rij = σ2 −Cij, which is substituted into J, we have
the following:

J =
n
∑

i=1

n
∑

j=0
λiλj

(
σ2−rij

)
−2

n
∑

i=1
λi
(
σ2−rio

)
+
(
σ2 − roo

)
=

n
∑

i=1

n
∑

j=0
λiλj

(
σ2)− n

∑
i=1

n
∑

j=0
λiλj

(
rij
)
− 2

n
∑

i=1
λi
(
σ2)+2

n
∑

i=1
λi(rio) +

(
σ2−roo

) (15)

Given that ∑n
i=1 λi = 1, after substitution we have

J = σ2 −
n
∑

i=1

n
∑

j=0
λiλj

(
rij
)
−2σ2+2

n
∑

i=1
λi(rio) +

(
σ2−roo

)
= 2

n
∑

i=1
λi(rio)−

n
∑

i=1

n
∑

j=0
λiλj

(
rij
)
−roo

(16)

The goal is to find a set of λi that minimises J. As J is a function of λi, we can directly
calculate the partial derivative of J with respect to λi, and find the zero-valued point. That
is, we solve the following for λi:

∂J
∂λi

= 0; i = 1, 2, 3, . . . n (17)

It is also necessary to satisfy ∑n
i=1 λi = 1. Additionally, the optimisation problem with

this constraint is solved using the Lagrange multiplier method by first constructing a new
objective function.

J + 2φ

(
n

∑
i=1

λi−1

)
(18)

where φ is the Lagrangian multiplier. We solve for the set of parameters φ, λ1, λ2, · · · , λn
that minimises this cost function and thereby minimises J under the constraint ∑n

i=1 λi = 1,
which yields {

∂(J+2φ(∑n
i=1 λi−1) )

∂λi
= 0; i = 1, 2, 3, . . . n

∂(J+2φ(∑n
i=1 λi−1) )

∂φ = 0
(19)

Substituting into J, we obtain

∂
(

2 ∑n
i=1 λi(rio)−∑n

i=1 ∑n
j=0 λiλj(rij)−roo+2φ(∑n

i=1 λi−1)
)

∂λi
= 0;

∂
(

2 ∑n
i=1 λi(rio)−∑n

i=1 ∑n
j=0 λiλj(rij)−roo+2φ(∑n

i=1 λi−1)
)

∂φ = 0
(i = 1, 2, 3, . . . n)

(20)


∂
(

2 ∑n
i=1 λi(rio)−∑n

i=1 ∑n
j=0 λiλj(rij)−roo+2φ(∑n

i=1 λi−1)
)

∂λi
= 0;

∂
(

2 ∑n
i=1 λi(rio)−∑n

i=1 ∑n
j=0 λiλj(rij)−roo+2φ(∑n

i=1 λi−1)
)

∂φ = 0
i = 1, 2, 3, · · · n

(21)

For the reason that Cij = Cov
(
zi, zj

)
= Cji, the same semivariance function rij = rij,

and further simplification shows that
rio −

n
∑

j=1
rijλj +φ= 0; i = 1, 2, 3, · · · n

n
∑

i=1
λi= 1

(22)
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The equations to be solved for the above weighting factor λi are first written in the
form of a linear system of equations, as follows.

r11λ1+r12λ2 + · · · r1nλn −φ= r1o
r21λ1+r22λ2 + · · · r2nλn −φ= r2o

...
rn1λ1+rn2λ2 + · · · rnnλn −φ= rno

λ1+λ2 + · · ·+λn= 1

(23)

The system of equations is written in matrix form, and the inverse matrix solution
procedure is performed.

By the definition of semi-covariance, rij = σ2−Cij and its equivalent form rij =
1
2E
[(

zi− zj
)2].

By the previous definition (hypothetical conditions), we have Z(x, y) = c + R(x, y), so
we then have Ri = zi − c. Further, we have zi − zj = Ri − Rj under these conditions:

rij =
1
2 E
[(

Ri−Rj
)2
]

= 1
2 E
[
Ri

2−2Rij+Rj
2]

= 1
2 E[R i

2]+ 1
2 E[R j

2]− E
[
RiRj

] (24)

This follows from the fact that

E[R i
2] = E[R j

2] = E[(z i−c)2] = Var(z i) = σ
2 (25)

E
[
RiRj

]
= E

[
(zi−c)

(
zj−c

)]
= Cov

(
zi, zj

)
= Cij (26)

After substitution, we obtain

rij =
1
2
σ2 +

1
2
σ2−Cij = σ2−Cij (27)

The above proof confirms that rij =
1
2 E
[(

zi − zj
)2
]
. The following procedure is then

used to calculate rij. Here, we continue to use the principle of similarity of attributes in

space. This spatial similarity is expressed by rij =
1
2
(
zi − zj

)2 in terms of distance, defining
the geometric distance between zi and zj as

dij= d(z i, zj) = d((x i, yi), (x j, yj)) =

√(
xi−xj

)2
+
(

yi−yj

)2
(28)

Kriging interpolation assumes that there is a functional relationship between rij and dij,
which can be linear, quadratic, exponential or logarithmic. To identify this relationship, we
perform the following steps on the observed data set {z(x1, y1), z(x2, y2), · · · , z(xn−1, yn−1),
z(xn, yn),}.

First, we calculate the distance between any two points

dij =

√(
xi−xj

)2
+
(

yi−yj

)2
(29)

and semi-covariance
rij =

1
2
(
zi−zj

)2 (30)

It is possible to obtain n2 (dij, rij) data pairs by plotting all the d and r values in a
scatter plot to find an optimal curve to fit d and r and obtain a functional relationship.

r = r(d) (31)
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Furthermore, for any two points z(xi, yi), z(xj, yj), we first calculate their distance,
dij. Next, according to the functional relationship, we obtain the semi-covariance rij.
Considering the computational complexity, simple Kriging is used for the interpolation of
depth images. The ordinary Kriging formula is as follows.

Ẑo =
n

∑
i=1

λizi (32)

The simple Kriging formula is as follows.

Ẑo − c =
n

∑
i=1

λizi − c (33)

where c is the mathematical expectation of the attribute value, i.e., E[z] = c. That is, in
ordinary Kriging interpolation, the attribute value of an unknown point is considered to be
a weighted sum of the attribute values of known points.

The simple Kriging Formula (33) completes the derivation of the estimation of the
values of depth images by interpolation, according to which different peripheral depth
values can be selected for interpolation. Based on this theoretical derivation, a depth
image interpolation algorithm is constructed to super-resolve depth images by Kriging
interpolation. The method first down-samples the image by 50% and then up-samples it
by 200%, where the sampling algorithm uses Kriging interpolation. The super-resolution
results are shown in Figure 7 which shows that the Kriging interpolation algorithm is
affected by edges and voids. It can also be seen from the output of the Kriging interpolation
algorithm that rapid changes at edges can lead to highly discrepant interpolation results
from the actual situation.
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Figure 7. Kriging interpolation results for depth images (PSNR = 20.629 dB). (a), depth image;
(b), depth image after Kriging interpolation; (c), point cloud map orthomosaic of the depth image.

3. Fractional-Order Differential Edge Recognition

Image enhancement processing is an important branch of digital image processing. Un-
der real-world environmental conditions, the visual effectiveness of image capture is poor,
which necessitates image enhancement techniques. Such techniques include highlighting
certain characteristics of the target object in the image and extracting the characteristic pa-
rameters of the target object from the digital image. The goal is to improve the recognition,
tracking, and understanding of the target [36]. The main objective of image enhancement
processing is to highlight the parts of interest in an image and attenuate or remove un-
wanted information so that the useful information is enhanced to obtain a more useful
image, or the image can be made more suitable for analysis and processing by humans or
machines. The main features of an image (i.e., the main information) include edges, texture
details, and other features. The enhancement of image features plays an important role in
improving the visual effectiveness of an image and also lays a good foundation for subse-
quent image processing (e.g., image recognition, image segmentation, or super resolution).
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Fractional-order differentiation significantly enhances the high- and medium-frequency
components of the signal while nonlinearly strengthening the medium-frequency compo-
nents of the signal to a certain extent as well as nonlinearly preserving the low-frequency
and DC components of the signal. Therefore, fractional-order differentiation is beneficial
in terms of both significantly enhancing the image edge and contour information and
strengthening the texture details in the smooth regions of the image. Due to this prop-
erty of fractional-order differentiation, the fractional calculus theory in image processing
operations has received increasing attention [13–17].

It is generally believed that the main benefit of applying methods based on fractional-
order calculus to digital images is to add a degree of freedom, i.e., the fractional-order v
(0 < [v] < 1). By choosing the appropriate order and constructing the corresponding mask
operator, better image enhancement (v > 0) and denoising (v < 0) can be achieved. Huang
G et al. derived fractional-order calculus and verified the application of the fractional-order
integral in image processing [37]. They also proposed a fractional-order differential en-
hancement and fractional-order integral denoising model based on the Grünwald–Letnikov
(G-L) definition of 2D images.

Introducing the G-L definition of the fractional-order calculus, the −v order integral
of the G-L expression [17] is given by the following equation:

G
a D−νx = lim

h→0
hν ∑

t−a
h

n=0

(
−v

j

)
f(x− jh), v ∈ R (34)

The fractional-order integral can be approximately expanded by defining the one-
dimensional (1D) signal f(t) of the duration interval as [a,t]. According to the unit
h = 1 equipartition, we have m =

[ t−a
h

]
= [t− a], implying that there is a 1D signal

of v (v ≥ 0). The equivalent expression of the fractional-order differentiation of order v is

dvt
dtv ≈ f(t) + (−1)1(v)f(t− 1) + (−1)2

(
v(v + 1)

2

)
f(t− 2) + . . . + (−1)j Γ(ν+ 1)

Γ(j + 1)Γ(ν− j + 1)
f(t− j) (35)

Define the 2D image signal I(x, y), and assume that the fractional-order derivatives
of I(x, y) are separable for the x-axis and y-axis directions under certain conditions. Fur-
thermore, we use the separability of the Fourier transform to extend the fractional-order
calculus from one dimension to two dimensions. By equating the 2D image signal I(x, y)
according to the unit time with h = 1, the fractional-order calculus of the x-axis and y-axis
can be obtained, and v is the fractional-order calculus order (v ≥ 0).

From Equation (35), the approximate solution of partial fractional-order calculus under
the G-L definition can be derived, enabling us to solve the numerical expression of the
fractional-order calculus operator along the x-axis and y-axis directions, namely

dvI(x, y)
dxv ≈ I(x, y)+(−1)1(v)I(x− 1, y)+(−1)2

(
v(v− 1)

2

)
I(x− 2, y) + . . .+(−1)j Γ(ν+ 1)

Γ(j + 1)Γ(ν− j + 1)
I(x − j, y) (36)

dvI(x, y)
dyv ≈ I(x, y)+(−1)1(v)I(x, y− 1)+(−1)2

(
v(v− 1)

2

)
I(x, y− 2) + . . .+(−1)j Γ(ν+ 1)

Γ(j + 1)Γ(ν− j + 1)
I(x, y− j) (37)

That is,

dvI(x, y)
dxv = lim

N→∞

[
∑N−1

m=0(−1)j Γ(ν+ 1)
Γ(j + 1)Γ(ν− j + 1)

I(x− j, y)
]

(38)

dvI(x, y)
dyv = lim

N→∞

[
∑N−1

m=0(−1)j Γ(ν+ 1)
Γ(j + 1)Γ(ν− j + 1)

I(x, y− j)
]

(39)

From Equations (38) and (39), we can obtain v (v≥ 0). The coefficients of the fractional-
order differential operator of order R are as follows.

R = (−1)j
(

v
j

)
= (−1)j Γ(ν+ 1)

Γ(j + 1)Γ(ν− j + 1)
(40)
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Assuming a mask size of 3× 3, i.e., setting N = 3, the approximate solutions in both
axis directions can be obtained from Equations (38) and (39).

dvI(x, y)
dxv ≈ I(x, y) + (−1)1(v)I(x− 1, y) + (−1)2(

v(v− 1)
2

)I(x− 2, y) (41)

dvI(x, y)
dyv ≈ I(x, y) + (−1)1(v)I(x, y− 1) + (−1)2(

v(v− 1)
2

)I(x, y− 2) (42)

Considering that the other six directions in the image have similar definitions, the ap-
proximate solution of the fractional-order differential in those six directions can be derived.
Thus, a fractional-order differential operator filter with 8 directions can be obtained, and
the operator is rotationally invariant.

From Equations (40)–(42), we can obtain the fractional-order differential mask and
a 5 × 5 fractional-order differential mask template v (v ≥ 0). The coefficients of the
fractional-order differential convolution mask are

aν∗= [R v
0 , Rv

1 , Rv
2 ], (j = 0, 1, 2) (43)

where
Rv

0= 1 (44)

Rv
1= −v (45)

Rv
2 =

v(v− 1)
2

(46)

The definition mask template has 8 directions, where by definition the x-axis positive
and negative directions have av

0 and av
180. In the anticlockwise direction, there are av

45, av
135,

av
225, and av

315, and the positive and negative directions of the y-axis have av
90 and av

270. The
constructed masks are as follows.

Where the coefficients are as follows

av
0= Rv

0= 1 (47)

av
1= Rv

1= −v (48)

av
2= Rv

2 =
v(v− 1)

2
(49)

In any image, there is a certain similarity between neighbouring pixels. To reduce
the unnecessary spatial and temporal complexity, the feature information of the local
neighbourhood of the target pixel should be fully utilised, considering that the pixels closer
to the target have higher similarity to the target. Given 8 directions of 3 × 3 masks a ∗ v, for
a 5 × 5 masks of image points I(x,y), the convolution calculation is performed as follows:

I(x, y)ν∗= I(x, y)∗aν∗ (50)

The result of the convolution calculation is linearly weighted by the sum of the
convolutions in each direction to obtain the final result:

I(x, y)ν∗ =
I(x,y)ν0

sum(x,y)×I(x, y)−ν0 +
I(x,y)ν45

sum(x,y)×I(x, y)ν45 +
I(x,y)v

90
sum(x,y)×I(x, y)ν90

+
I(x,y)ν135
sum(x,y)×I(x, y)ν135 +

I(x,y)ν180
sum(x,y)×I(x, y)ν180 +

I(x,y)ν225
sum(x,y)×I(x, y)ν225

+
I(x,y)ν270
sum(x,y)×I(x, y)ν270 +

I(x,y)ν315
sum(x,y)×I(x, y)ν315

(51)

where
sum(x, y)= I(x, y)ν0 +I(x, y)ν45+I(x, y)ν90+I(x, y)ν135

+I(x, y)ν180+I(x, y)ν225+I(x, y)ν270+I(x, y)ν315
(52)
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After the fractional-order differential mask convolution calculation, there is a continu-
ous process of enlargement or reduction. Hence, it is necessary to construct the fractional-
order differential normalisation factor q to unify the final enlargement and reduction factors.
The factor is calculated as follows:

q =
360

∑
θ=0

I(x, y)v
θ (θ = 0, 45, 90, 135, 180, 215, 270, 315) (53)

Importing q into Equation (54), the new I(x, y)νm after fractional-order differential
filtering of order ν using a 5 × 5 mask is obtained as follows.

I(x, y)νm =
I(x, y)∗aν∗

q
(54)

In 2D images, both edges and noise are discontinuous points with local characteristics,
and both have rapid changes in the pixel values of the corresponding domain, so they are
high-frequency signals. The edges have the characteristics of orderliness, directionality,
and structure, and they have a larger energy and range relative to the noise. Edge detection
models based on fractional-order differentiation have shown good results. The authors
of [13] recommended the use of v = 0.6 in fractional-order differentiation based on their
experiments, which enabled them to achieve richer edge information compared with the
classical integer-order edge detection operator. From the depth image and the correspond-
ing point cloud map after the fractional-order differential mask convolution calculation
in Figure 8. It can be seen from Figure 9 that the fractional-order differential method can
identify the edges accurately.
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Figure 9. Fractional-order differential edge recognition for depth images. (a), depth image; (b), front view
of the point cloud map of the depth image; (c), side view of the point cloud map of the depth image.
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4. Kriging Interpolation Super-Resolution Algorithm Based on Fractional-
Order Differentiation

Depth images consist of ordered distance data distributed spatially, and the orderliness
makes them conducive to parallel computation, a technology that may realise efficient
filtering and convolution computation in the future.

Depth images also contain peripheral correlation, and the high-frequency points of
edges can be identified by fractional-order differentiation. The high-frequency points
are interpolated using the spatial local neighbourhood, while the non-high-frequency
points are interpolated by Kriging interpolation. The flowchart in Figure 10 depicts the
fractional-order differential Kriging interpolation super-resolution model, which is divided
into the following processes: acquiring the depth image, down-sampling the depth image,
performing fractional-order differential edge detection, interpolating the down-sampled
depth map using the fractional-order differential Kriging interpolation super-resolution
model, and obtaining the high-resolution depth image. Table 2 shows the comparison
between the kriging interpolation algorithm based on fractional order differentiation and
the nearest neighbor interpolation algorithm. It can be seen that the PSNR of kriging
interpolation based on fractional order differentiation is better than the nearest neighbor
interpolation algorithm.
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Figure 10. Super-resolution flow chart.

Using open-source datasets [35], a comparison of nearest-neighbour interpolation and
Kriging interpolation is performed. In the Kriging interpolation method, the images are
first up-sampled by 200% and then down-sampled by 50%. As shown in Table 2, using peak
signal-to-noise ratio (PSNR) as the evaluation metric, Kriging interpolation outperforms
nearest-neighbour interpolation in terms of reflecting texture details. Specifically, the super-
resolution method based on fractional-order differential Kriging interpolation improves
the PSNR by 3–18 dB, a significant enhancement. The super-resolved depth images are
converted into point cloud maps for comparative analysis, and it can be seen that most of
the edges are correctly recovered. These experimental results show that the fractional-order
differential Kriging interpolation algorithm performs very well in the super-resolution of
depth images and has significance for further research and application.
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Table 2. Fractional-order differential Kriging interpolation super-resolution (200%).

Datasets [35]
Number

Fractional-Order Differential Kriging
Interpolation

Nearest
Neighbor Interpolation

v PSNR PSNR

00033 0.6 33.457 29.795

03236 0.6 37.230 27.738

03528 0.6 38.598 29.868

04797 0.6 47.182 26.580

05989 0.6 39.888 29.468

08343 0.6 38.391 25.008

The super-resolution results are shown in Figure 11 and Table 2, it can be seen that
the edge blurring problem can be solved by edge detection, but the adoption of the sim-
ple nearest-neighbour interpolation scheme also causes unwanted jagged edge effects.
Subsequently, the super-resolution model based on Kriging interpolation is verified for
larger-scale magnification factors using 25% down-sampling and 400% up-sampling. The
data in Table 3 show that the super-resolution method based on Kriging interpolation
via fractional-order differential edge detection achieves a greater improvement in super-
resolution than that of nearest-neighbour interpolation.
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Figure 11. Validation of fractional-order differential Kriging interpolation super-resolution model
(dataset no. 00333). (a,d,g) Original depth images; (b,e,h) Outputs of fractional-order differential
Kriging interpolation super-resolution model (ν = 0.6, PSNR = 33.299 dB); (c,f,i) Outputs of nearest-
neighbour interpolation super-resolution model (PSNR = 29.795 dB).
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Table 3. Super-resolution results of the method based on fractional-order differential Kriging interpo-
lation (400% up-sampling) and the nearest-neighbour interpolation method.

Datasets [35]
Number

Fractional-Order Differential Kriging
Interpolation

Nearest-Neighbour
Interpolation

v PSNR PSNR

00033 0.6 28.828 25.385

03236 0.6 32.290 23.383

03528 0.6 33.677 25.825

04797 0.6 40.595 22.456

05989 0.6 34.459 25.503

08343 0.6 33.819 21.051

The super-resolution results are shown in Figures 12–18 and Table 3. The results of
Figure 12 are compared in side view in Figure 13 as an example. As can be seen from
Figure 13, the results of the interpolation methods differ in the details. The edge detection
method using fractional-order differentiation is implemented to solve the problem of
blurred edge points. In terms of texture details, the Kriging interpolation yields more
details than the nearest-neighbour interpolation. In particular, the Kriging interpolation
yields results with more texture details and a certain level of randomness and fractal
characteristics, indicating its superiority over inverse distance interpolation in terms of
detail representation.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 23 

Datasets [35] 

Number 

Fractional−order Differential 

Kriging Interpolation 

Nearest-Neighbour 

Interpolation 

𝒗 PSNR PSNR 

00033 0.6 28.828 25.385 

03236 0.6 32.290 23.383 

03528 0.6 33.677 25.825 

04797 0.6 40.595 22.456 

05989 0.6 34.459 25.503 

08343 0.6 33.819 21.051 

The super−resolution results are shown in Figures 12-18 and Table 3. The results of 

Figure 12 are compared in side view in Figure 13 as an example. As can be seen from 

Figure 13, the results of the interpolation methods differ in the details. The edge detection 

method using fractional−order differentiation is implemented to solve the problem of 

blurred edge points. In terms of texture details, the Kriging interpolation yields more de-

tails than the nearest-neighbour interpolation. In particular, the Kriging interpolation 

yields results with more texture details and a certain level of randomness and fractal char-

acteristics, indicating its superiority over inverse distance interpolation in terms of detail 

representation. 

Figure 12. Validation of fractional−order differential Kriging interpolation super−resolution model 

(dataset no. 00333). (a, d, g) Original depth images; (b, e, h) Outputs of fractional−order differential 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i)

Figure 12. Validation of fractional-order differential Kriging interpolation super-resolution model
(dataset no. 00333). (a,d,g) Original depth images; (b,e,h) Outputs of fractional-order differential
Kriging interpolation super-resolution model (ν = 0.6, PSNR = 28.828 dB); (c,f,i) Outputs of nearest-
neighbour interpolation super-resolution model (PSNR = 25.385 dB).
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Figure 14. Validation of fractional-order differential Kriging interpolation super-resolution model
(dataset no. 05989). (a,d,g) Original depth images; (b,e,h) Outputs of fractional-order differential
Kriging interpolation super-resolution model (ν = 0.6, PSNR = 34.459 dB); (c,f,i) Outputs of nearest-
neighbour interpolation super-resolution model (PSNR = 25.503 dB).
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Figure 15. Validation of fractional-order differential Kriging interpolation super-resolution model
(dataset no. 03236). (a,d,g) Original depth images; (b,e,h) Outputs of fractional-order differential
Kriging interpolation super-resolution model (ν = 0.6, PSNR = 32.290 dB); (c,f,i) Outputs of nearest-
neighbour interpolation super-resolution model (PSNR = 23.383 dB).
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Figure 16. Validation of fractional-order differential Kriging interpolation super-resolution model
(dataset no. 03528). (a,d,g) Original depth images; (b,e,h) Outputs of fractional-order differential
Kriging interpolation super-resolution model (ν = 0.6, PSNR = 33.677 dB); (c,f,i) Outputs of nearest-
neighbour interpolation super-resolution model (PSNR = 25.825 dB).
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Figure 17. Validation of fractional-order differential Kriging interpolation super-resolution model
(dataset no. 04797). (a,d,g) Original depth images; (b,e,h) Outputs of fractional-order differential
Kriging interpolation super-resolution model (ν = 0.6, PSNR = 40.595 dB); (c,f,i) Outputs of nearest-
neighbour interpolation super-resolution model (PSNR = 22.456 dB).
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Figure 18. Validation of fractional-order differential Kriging interpolation super-resolution model
(dataset no. 04797). (a,d,g) Original depth images; (b,e,h) Outputs of fractional-order differential
Kriging interpolation super-resolution model (ν = 0.6, PSNR = 33.819 dB); (c,f,i) Outputs of nearest-
neighbour interpolation super-resolution model (PSNR = 21.051 dB).
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Figures 14–18 show the super-resolution results after 25% down-sampling and 400%
up-sampling, and it can be seen that the depth images after super-resolution meet the
requirements for effective reconstruction and recognition. Moreover, for complex and
variable data, such as the multiple bouquets in Figure 18 Kriging interpolation considerably
outperforms nearest-neighbour interpolation.

5. Discussion

This study has shown that most of the classical image interpolation algorithms are
not suitable for super-resolution of complex depth images with voids and rapid edge
changes. Through comparisons of the point clouds of interpolated depth images, it is found
that only nearest-neighbour interpolation of the classical image interpolation algorithms
is applicable to depth images. The Kriging interpolation model, especially the variant
based on spatial distance, can obtain better results that reflect the spatial characteristics to a
greater extent. The introduction of fractional-order differential edge recognition successfully
addresses the edge blurring problem of Kriging interpolation. The experimental results
demonstrate the superiority of the improved Kriging interpolation based on fractional-order
differentiation in terms of the super-resolution of depth images, which preserve texture
information and edge properties. Objective evaluations show that the Kriging interpolation
with fractional-order differential edge detection significantly improves the interpolation
effect compared with the classical interpolation algorithm, with a PSNR improvement of
3–18 dB. Furthermore, the images produced by Kriging interpolation have more fractal
characteristics, as would be expected for super-resolution based on interpolation. Overall,
the Kriging interpolation super-resolution method based on fractional-order differential
edge detection has better image reconstruction ability and stronger robustness than the
classical interpolation algorithms.

While our proposed method shows promising results, there are still some limitations
that should be addressed in future work. For instance, our current approach assumes
that the depth images are noise-free, which may not be realistic in practise. Future work
could explore the integration of denoising techniques with our approach to improve its
robustness. Additionally, while we have demonstrated the effectiveness of our approach
on synthetic depth images, its performance on real-world data should be further evaluated.

Overall, our work provides a valuable contribution to the field of depth image super-
resolution and has the potential to be applied in a range of practical applications, such as
3D reconstruction, augmented reality, and medical imaging.
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