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Abstract: Research on renewable energy sources and power electronic converters has been increasing
due to environmental concerns. Many countries have established targets to decrease CO2 emissions
and boost the proportion of renewable energy, with solar power being a prominent area of investiga-
tion in the recent literature. Techniques are being developed to optimize the energy recovered from
PV cells and increase system efficiency, including modeling PV cells, the use of converter topologies
to connect PV systems to high-power inverters, and the use of MPPT methods. Certain MPPT
algorithms are intricate and demand high processing power. The literature describes several MPPT
methods; however, the number of hardware resources required by MPPT algorithms is typically not
disclosed. This work proposes a novel MPPT technique based on integral feedback conductance
and incremental conductance error, considering the current dynamics of the boost converter. This
MPPT algorithm is compared to the most widely used techniques in the literature and evaluates each
method’s efficiency, performance, and computational needs using an HIL system. Comparisons are
made with well-known MPPT algorithms, such as perturb and observe, incremental conductance,
and newer techniques based on fuzzy logic and neural networks (NNs). As the NN that is most
widely used in the literature depends on irradiation and temperature, an additional NN that is trained
using the proposed method is also investigated.

Keywords: MPPT; HIL; photovoltaic; integral feedback conductance

1. Introduction

The adoption of renewable energy production technologies has grown over the past
few decades due to more demanding environmental metrics, resulting in the need to reduce
CO2 emissions from fossil fuels. As a result, researchers are continuously seeking new
methods of maximizing the power production of solar panels [1,2]. Using wide-bandgap
semiconductors, such as silicon carbide or gallium nitride [3], and lowering computing
demands [4] are two further ways to improve the effectiveness of renewable energy systems.

Tracking the maximum power point (MPP) in a PV panel can be difficult due to the
non-linearity of voltage vs. current in PV cells, and the variable response in their output
power as a function of irradiance, temperature, solar incidence angle, and output load [5].

MPPs can be located using a variety of techniques [6,7], and can be grouped into offline
and online maximum power point tracking (MPPT) algorithms [8]. Offline techniques,
which often require briefly disconnecting the PV from the load, are simple but less effective,
and are not considered in this work. Online MPPT techniques provide continuous MPP
monitoring under a variety of conditions, including different temperatures, solar incidence
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angles, and irradiance levels, and do not require the PV panels to be disconnected. Due to
its simplicity and low computational requirements, perturb and observe (P&O) is widely
used in industry and highly researched in academia [9–13]. Another well-known MPPT
method is incremental conductance (INC) [14]; its search algorithm is still being researched
in the literature, with authors proposing some modifications [15,16].

Growing low-cost computing power led to the development of more complex con-
trollers in the 1990s and 2000s, such as fuzzy logic (FL) [5,17], neuro-fuzzy controllers [18],
artificial neural networks (ANNs) [19–22], and reinforcement learning [23]. Recently, sev-
eral algorithms have been proposed for addressing the partial shading problem in solar
energy systems. These algorithms include those based on flower pollination [24,25], particle
swarm optimization [26], and fireworks algorithm-based [27] methods that provide better
tracking in cases of sudden changes in irradiation. In fact, the algorithm proposed in this
work could be integrated with some of these methods or use array reconfiguration [25,28]
to improve performance under partial shading conditions, although partial shading is not
specifically investigated in this study.

Still, there are multiple ways in which MPPT algorithms are implemented in low-
computation devices [29–33]. However, a comparative study of the hardware resources
needed for implementing them could not be found in the literature.

In this study, a new MPPT method is proposed that combines the incremental conduc-
tance concept with an integral compensator (IC-INC). This novel approach overcomes the
constant increment or decrement value associated with traditional MPPT algorithms, such
as P&O and INC, which can limit their effectiveness. By using linear feedback theory to
obtain the MPP, the proposed IC-INC MPPT method eliminates this problem and offers
simple implementation in a digital context that does not require many hardware resources.

The use of an integral controller to regulate incremental conductance represents a sig-
nificant contribution to the literature on MPPT. To evaluate the effectiveness of the proposed
method, a comparison is made with well-known MPPT algorithms found in the literature,
including P&O-, INC-, FL-, and ANN-based approaches using irradiance and temperature.
The proposed IC-INC method is also compared with an ANN trained on a dataset gener-
ated from IC-INC. The evaluation is carried out under time-varying irradiance conditions,
and the compared methods are analyzed in terms of power extracted from the PV panel,
response time, oscillations around the MPP, and hardware resources requirements.

This paper is organized as follows: Section 2 presents the mathematical model and
discusses well-known MPPT methods. Section 3 presents the power converter topology for
the evaluation of the MPPT methods under study, and the novel incremental conductance
with integral compensator (IC-INC) MPPT method. Then, the results obtained through
simulation and hardware in the loop (HIL) are presented in Section 4. A discussion of the
results is presented in Section 5, and the conclusions and recommendations for future work
are presented in Section 6.

2. Review of PV Model and MPPT Control Methods
2.1. Mathematical Model of Solar Panels

There have been many advancements in PV cell modeling through the years, which
have helped to closely reflect the behavior of actual PV cell panels. According to [23], a
balance between computational speed and accuracy can be obtained using the current
source plus diode model shown in Figure 1 in combination with Equations (1)–(4), and
five parameters.
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Figure 1. Equivalent electrical model of PV cell.

Based on Figure 1, Equation (1) can be written as follows:

IPV = Iph − Id − Ish, (1)

where Iph represents the current generated by the PV panel under a given solar irradiance
G [23].

Iph = [Isc + Kl (Tc − Tr )]
G

GSTC
, (2)

where

Isc—the short circuit current under Standard Test Conditions (STC) (model first parameter)
Kl—the short circuit temperature coefficient
Tc—the cell temperature
Tr—the reference temperature (298.15 K)
G—solar irradiance
GSTC—solar irradiance STC

The diode current in (1) is represented by Id, and in (3), it exhibits exponential behav-
ior [23].

Id = I0

[
exp

(
q Vd

A k Tc

)
− 1

]
, (3)

where

I0—the diode saturation current (second parameter of the model)
q—the electron charge constant (1.6 × 10−19)
Vd—the diode voltage
A—the ideal factor of the diode (third parameter of the model)
k—Boltzmann’s constant (1.38 × 10−23)

The current Ish in (1) is the current in the parallel resistor Rsh, and can be calculated
by:

Ish =
(VPV + IPV Rs)

Rsh
, (4)

where

VPV—the photovoltaic cell voltage
IPV—the photovoltaic cell current
RS—the series resistance of the solar panel (fourth model parameter)
Rsh—the parallel or shunt resistance of the solar panel (fifth model parameter).

A PV characteristic curve can be obtained using Equations (1)–(4), although choosing
the proper model coefficients (Isc, I0, A, RS, and Rsh) can be challenging [34]. Figure 2
depicts the characteristic curves of the current and power versus the voltage for the PV
used in this study.
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irradiances at 25 ◦C; and (b) different temperatures at 1000 W/m2.

The PV coefficients of A10-M60-240 from A10Green are already implemented in
MATLAB, derived from a PV list based on data from the National Renewable Energy
Laboratory (NREL) [35]; however, the PV coefficients are not disclosed by the manufacturer.
Instead, manufacturers sometimes provide other characteristics, such as Voc (open circuit
voltage), Isc (short circuit current), VMPP, IMPP, and voltage, as well as the temperature
coefficients (Kv, Ki) [36]. According to [34,37], some methods can be used to model a PV
cell when the coefficients are not disclosed.

2.2. Review of MPPT Control Methods

MPPT algorithms search for the point of maximum power, represented by the pair
(VPVMPP , IPVMPP ), within the plane VPV , IPV containing the solar panel’s voltage and current
curves [7]. Figure 2 illustrates how these curves are non-linear and significantly influenced
by cell temperature and sun irradiation [1].

MPPT algorithms are generally tested under specific and often simplistic irradiance
conditions [10]. In most scientific papers, only step variation in irradiance is applied;
nonetheless, common MPPT algorithms lose their bearings under gradual irradiance
variation. Therefore, to more accurately compare the approaches of interest, various
patterns of irradiance variation are used in this article.

The following MPPT algorithms are taken into account in the comparison.

2.2.1. Perturb and Observe (P&O)

Due to its low computational complexity, the P&O technique is a straightforward
MPPT algorithm and is likely the most used [9–13].

The implementation of P&O is performed in single-loop or multi-loop [38]. In single-
loop, the algorithm acts directly on the duty cycle of the electronic power converter, while
in multi-loop, the algorithm controls the reference voltage or current. The outcomes in
both scenarios are comparable. This paper focuses on the outcomes obtained using single-
loop P&O.
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The flowchart in Figure 3 depicts the basic form of the P&O method. The algorithm
computes the differences between the power and voltage of two samples at a given time,
and decides to increase or decrease the duty cycle D of the downstream converter by a
constant amount ∆D in order to iteratively converge into the MPP [11].
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In practice, the system never reaches the operating MPP; instead, it oscillates around it
with a resolution related to the duty-cycle variation ∆D. It should be noted that a larger ∆D
causes higher perturbation and, as a result, higher oscillation of the voltage and current,
whereas a lower ∆D causes a lower oscillation but slows the response speed [12].

Aside from the undesirable oscillations around the MPP, another disadvantage of this
algorithm occurs when the irradiance gradually increases [10]. In these cases, the P&O
algorithm temporarily loses the MPP, resulting in power loss.

Some improvements to this algorithm have been proposed, such as the use of adaptive
steps or modified flowcharts [9,13]. In this work, a version of P&O with fixed steps
is considered.

2.2.2. Incremental Conductance (INC)

Another well-known method that is prevalent in the literature is incremental conduc-
tance, which is based on the control objective given in (5):

dPPV
dVPV

= 0, (5)

It is clear from the usual P–V curve that the system operating point is on the left side
of the MPP when the dPPV/dVPV is greater than zero. The operational point is on the right
side of the MPP when the value dPPV/dVPV is negative.



Appl. Sci. 2023, 13, 4082 6 of 23

From (5), considering the power (given as PPV = VPV IPV), (6) is obtained. This result
relates the PV panel conductance to its incremental value.

dIPV
dVPV

= − IPV
VPV

, (6)

As a result, the duty cycle should be increased if dIPV/dVPV > −IPV/VPV . However,
the duty cycle should be reduced when dIPV/dVPV < −IPV/VPV . At the optimal point
dIPV/dVPV = −IPV/VPV , the duty cycle is maintained to reduce the ripple in panel voltage
and current. This algorithm can be seen in Figure 4.
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Incremental conductance also faces issues when the irradiance changes. During some
irradiance changes, the algorithm may compute the dIPV/dVPV value with an incorrect
signal, resulting in a delayed transient reaction and, as a result, a momentary loss of
power [39].

To lessen issues related to variations in irradiance and transient responses, some
adaptive and modified variants of incremental conductance have been introduced [15,16].
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2.2.3. Fuzzy Logic (FL)

The fuzzy logic (FL) mathematical framework is often used in artificial intelligence and
control systems. Fuzzy logic uses linguistic variables and human expert rules, designed
from the expert knowledge of system dynamic behavior, to control complex systems [40].
Therefore, FL does not usually need a mathematical model of the system to be controlled.
Instead, FL needs a system dynamics behavior expert to devise a set of required membership
functions, linguistic variables, and linguistic rules that translate the expert knowledge of
the system dynamics.

In the literature, there are several implementations of the FL-based MPPT algo-
rithm [5,17]. In [5], there are six possible solutions for the fuzzy logic implementation
of MPPT.

The discrete form of dPPV/dVPV , denoted as S(k), and its discrete time derivative
∆S(k), are used to develop an FL MPPT algorithm [5]:

S(k) =
dPPV
dVPV

=
PPV(k)− PPV(k − 1)
VPV(k)− VPV(k − 1)

, (7)

∆S(k) = S(k)− S(k − 1), (8)

In this research, the implementation of the FL-based MPPT algorithm in [5] was
investigated, in which the duty-cycle variation ∆D output is based on S(k) and on its
discrete derivative ∆S(k), according to the fuzzy surface control presented in Figure 5.
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The normalized set of input and output values can be described using five membership
functions: negative big (NB), negative small (NS), zero (ZE), positive small (PS), and positive
big (PB). Figure 6 shows the input and output membership functions within the normalized
universe of discourse. Table 1 shows the devised fuzzy rules. The Mamdani method was
employed as an inference engine for FL implementation, and the center of gravity algorithm
was used in the defuzzification process.
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Table 1. Fuzzy rule table based on [5].

Fuzzy Rule
S(k)

NB NS ZE PS PB

∆S(k)

NB ZE PB PS ZE NB
NS PB PS ZE ZE NB
ZE PB PS ZE NS NB
PS PB ZE ZE NS NB
PB PB ZE NS NB ZE

2.2.4. Artificial Neural Network (ANN)

An artificial neural network (ANN) is a form of machine learning algorithm that mim-
ics the structure and function of the human brain. Neural networks are built using input
layers of cells (neurons), output layers, and several hidden layers of densely interconnected
neurons. Each neuron has a variable activation gain, or weight, given by a non-linear
function, that is tuned during the learning (training) process. As a result, some neurons
are more active than others in the inputs, hidden layers, and outputs, resulting in distinct
output signals according to the tuning obtained from the applied training. Therefore, one
of the most significant aspects of neural networks is the quantity and quality of the existing
training data, which influence the quality of the neural network outcomes after training.

In MPPT, neural networks can be used in a variety of ways [19–22]. They can be trained
using irradiance and temperature datasets [19,22] or datasets generated via alternative
methods, such as P&O or FL [20,21].

Implementations based on irradiance and temperature are very accurate in simulation,
but they have several drawbacks in practice. For each PV model, the neural network must
be trained in order to tune the neuron gains. Additionally, irradiance and temperature
sensors are expensive and difficult to calibrate [41]. Another disadvantage can occur if the
PV is dusty or shadowed while the irradiance sensor is not, or vice versa. In this case, the
irradiance- and temperature-trained ANN has reduced performance, since the sensor data
do not correspond to the actual panel irradiance.

The work conducted in [21] represents an example of training using the P&O approach,
while [20] presents an ANN trained using the fuzzy logic method. These approaches often
do not require additional sensors, instead employing the sensors from the DC/DC converter
(current and voltage), which contributes to cost savings.

The number of neurons and hidden layers of a neural network is often determined
empirically [42], as it depends on the problem’s complexity. The number of hidden layers
should be balanced, because while more hidden layers can increase the performance of
the neural network, too many layers may result in the network reaching a local minimum
rather than a global minimum [42].

As approaches based on irradiance and temperature are frequently investigated in
the literature [19,22], a neural network trained with a dataset based on these parameters
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(ANN (G, T)) was evaluated in this work. The dataset was created using only MPP PV
current values, for irradiances between 0 W/m2 and 1000 W/m2 with steps of 50 W/m2,
and at temperatures between 0 ◦C and 80 ◦C with steps of 5 ◦C. Although the PV equations
produce non-linear I-V and P-V characteristics, the current values in the MPP have a linear
relationship with irradiance and temperature (Figure 7), making the problem straightfor-
ward. In this case, only one hidden layer with 10 neurons was needed. This implementation
achieved good results.
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3. Incremental Conductance with Integral Compensator (IC-INC)
3.1. Converter Topology

PV panels usually output a relatively low voltage; thus, step-up (boost) converter
topologies are frequently used to connect the PV panels to systems that require higher
voltage levels, while performing tracking of the MPP [43]. The switching boost converter
is connected to a capacitor Cin at the PV panel output (Figure 8) to reduce the voltage
variation around the MPP. The converter controls the extracted current/power from the
PV panel by varying the duty cycle, or by using a hysteretic controller if current control is
used. In this work, for ANN and IC-INC, we chose to use hysteretic controllers, while for
P&O, INC, and FL, we used a PWM modulator and duty-cycle variation.
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Figure 8. Schematic of implemented topology.

The output of the boost converter is connected to a power source (Vmg) and a resistor
Rmg that emulates a DC microgrid at 48V, which is typically used in telecom equipment as
required by the IEEE DC microgrid standards [44].

The high-frequency fsw switching boost converter stores energy in the inductor L
before releasing it in the output capacitor Cout at higher voltage. The high-frequency
voltage ripple in the PV (VPV) should be as minimal as possible, as the MPP is dependent
on voltage and current, and oscillations in voltage or current around the MPP can cause
a loss of power. Hence, the input capacitor should have enough energy to keep the PV
voltage nearly constant during the high-frequency switching period and during abrupt
irradiance changes.
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An inductor L was selected to allow for a variation of 10% in the boost input current.
Although the current iL has a higher variation than iPV , both have the same average value
(IL = IPV). This variation in currents should be supported by Cin.

The Cin capacitor is appropriately sized for very low ripple voltage (0.05% of VPV);
thus, the IPV current will also present very little rippling, preventing limit cycles around
the MPPT. The Cin capacitor keeps the PV voltage and current nearly constant during the
switching period.

The output capacitor Cout is appropriately sized to support discontinuities in the
current while presenting low ripple voltage (0.5%). All the system parameters are presented
in Table 2.

Table 2. Parameters of implemented topology.

Parameter Value

Voc (PV open circuit voltage) 36.84 V
Isc (PV short circuit current) 8.32 A

VMPP (PV MPP voltage) 30.72 V
IMPP (PV MPP current) 7.83 A
PMPP (PV MPP power) 240.54 W

L (inductor) 300 µH
Cin (input capacitor) 150 µF

Cout (output capacitor) 150 µF
fsw (switching frequency) 50 kHz
Vmg (microgrid voltage) 48 V

Rmg (microgrid resistance) 50 mΩ

3.2. IC-INC Method and Algorithm

The IC-INC approach is based on the incremental conductance Equation (6), written
as (9).

VPV
dIPV
dVPV

+ IPV = 0, (9)

This equation means that in steady state, the conductance IPV/VPV equals its incre-
mental value dIPV/dVPV . However, during transients or during the convergence to steady
state, the algebraic sum of the incremental conductance value dIPV/dVPV with the conduc-
tance IPV/VPV will not be zero; this will lead to a tracking error eMPPT , rewritten in (10) as
the error, or deviation, of the negative feedback system.

VPV
dIPV
dVPV

− (−IPV) = eMPPT , (10)

This tracking error value eMPPT should be enforced to zero within a finite amount of
time using a suitable closed-loop controller. Upon dividing all the components of (10) by
VPV , (11) is obtained.

dIPV
dVPV

−
(
− IPV

VPV

)
=

eMPPT
VPV

, (11)

Assuming the boost converter is driven by a current controller (e.g., the hysteresis con-
troller), the inductor current IL dynamics will track the current reference IL ≈ ILre f ≈ IPV
with a small delay. This relatively small delay can be approximated using a first-order
low-pass filter dynamics with a dominant pole at −1/Tc. Then, the term −IPV/VPV in (11)
can be written as follows.

− IPV
VPV

≈ −
ILre f

VPV

1
1 + sTc

, (12)
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If we consider the capacitor at the output of the PV Cin is parallel with an equivalent
PV resistor, given by RPV = VMPP/IMPP, Tc can be estimated as follows.

Tc = CinRPV = Cin
VMPP
IMPP

, (13)

To ensure MPPT tracking (zero steady-state error), an integral controller Ki/s can then
be devised using (10) and (12) (Figure 9). The integral gain Ki can be computed using the
closed-loop transfer function represented in Equation (14).

− IPV
VPV

dIPV
dVPV

≈
−Ki

Tc

s2 + s
Tc

− Ki
Tc

, (14)
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Compared with the canonical form of a second-order system s2 + 2ξωn + ω2
n, (15) is

obtained. To ensure stability, Ki should be negative with a damping factor close to unity
ξ ≈ 1.

ω2
n = −Ki

Tc
; Ki = − 1

2 ξ2Tc
, (15)

3.3. Using the IC-INC Method to Train a Neural Network

It can be seen that MPPT ANNs trained using irradiance and temperature datasets
may present severe drawbacks in practice. To use the voltage and current from PVs, a
dataset for training a new neural network is obtained through the IC-INC method applied
to the PV.

The new neural network, denoted IC-INC, uses the voltage and current of the PV and
their last values (t − 1) as inputs. The ANN IC-INC outputs the variation in the reference
current, an external integrator in the output of the ANN that mimics the integrator in the
IC-INC, and additional multiplication by VPV is required (11).

The IC-INC method includes divisions (11) of IPV by VPV and dIPV by dVPV . This is a
more sophisticated process than learning a surface, as performed by ANNs (G, T), because
of the known division operation issues that occur in ANNs. As such, two different ANNs
were considered in this paper. The first uses three hidden layers and five neurons in the
first and second layers, and three neurons in the third layer, while the second uses four
hidden layers and six neurons in the first and second layers, four neurons in the third layer,
and two neurons in the fourth layer.

When the results of the two trained ANNs were compared, it was determined that
the neural network with four hidden layers provided the best answer, because no over-
fitting was discovered during its training phase and its performance was higher. The
ANN’s performance was measured using two parameters: the mean square error (MSE)
and R-squared (R). The first implementation with three hidden layers obtained an MSE
of 3.72 × 10−7 and an R of 0.85. The implementation with four hidden layers achieved an
MSE of 2.48 × 10−7 and an R of 0.92.

4. Results
4.1. Laboratory Setup

The results were obtained through simulation and an HIL test system. The HIL is
shown in Figure 10, and consists of FPGA Zynq ZC706 and some interface boards (DACs



Appl. Sci. 2023, 13, 4082 12 of 23

and board adapters). The system was inspired by a controlled HIL system (C-HIL), with the
controller and the emulated system (PV, boost converter, and DC microgrid) implemented
in FPGA ZC706.
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4—FPGA Xilinx ZC706; 5—computer; 6—router.

Emulation of the PV system, boost converter, and microgrid was conducted using
Simscape electrical components, followed by conversion into a linear state-space model.
This conversion produced four typical state-space matrixes and a Simulink file with im-
plementation of the state space. This file could then be coded into VHDL using an HDL
coder in MATLAB. Then, the VHDL code was entered into Vivado from Xilinx (AMD) [45],
compiled, and transferred to the FPGA.

As the PV panel in Simscape was not available for the HDL coder, it was replaced by
the PV model reviewed in Section 2.1 and presented in Figure 1. This implementation is
shown in Figure 11.
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The VHDL code for the MPPT algorithms was produced using the HDL coder library
in MATLAB. This tool requires the usage of single-precision floating point values, and is
unable to use double-precision values. To fulfill this requirement, the blocks used in this
implementation were configured to work with single-precision values. The use of single
instead of double precision reduced resource utilization in the FPGA, but also reduced the
precision of the mathematical operations.

After code conversion, the produced VHDL code was added to Vivado in block design
mode and connected to a PWM modulator or hysteretic blocks.
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For a clearer data visualization, some additional elements were added to Vivado to
show the PV power that was instantaneously produced and the maximum available power.
These signals were sent to the DAC board to enable visualization using an oscilloscope.

Some additional functions were also added to change the parameters of irradiance
and temperature in the HIL model using the FPGA AXI interface. In addition, a webserver
was implemented in the Zynq processor to simplify the user’s interaction with the system.

The MPPT algorithms were designed in MATLAB Simulink to speed up the imple-
mentation process. Moreover, this process enabled simulation of the controller before
its implementation.

4.2. Test Results

All algorithms were subjected to steady-state tests, step variation in irradiance, and two
fast and slow transience scenarios. Variation of 6000 W/m2/s was considered fast transient
variation, while 1000 W/m2/s was considered slow variation. Each of the algorithms
was adapted to obtain maximum power extraction, and thus, an accurate comparison of
the results.

The irradiance conditions applied to the PV in the simulation tests are shown in
Figure 12, and are described throughout the Results section.
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A step variation test was performed to better compare the obtained results with the
published ones, as the step test is widely used in the literature. At the beginning of the
step test, the irradiance is 400 W/m2; at 0.133 s, this value increases to 1000 W/m2, and
at 0.266 s, another transition occurs, with a final value of 600 W/m2. The step variation
simulation results of each algorithm are presented in Figures 13 and 14, which contain the
HIL results. These results were obtained using a Tektronix DPO 2014B oscilloscope.
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Figure 14. HIL results of power produced from panel when step variations occurred.

To better understand the MPPT method’s response to linear irradiance changes, fast
and slow tests were conducted.

Within the fast test, the initial irradiance value is 400 W/m2; at 0.1 s, the value gradually
increases to 1000 W/m2, stabilizes for 0.1 s, and then decreases to 300 W/m2 between
0.3 and 0.4 s. The simulation results for this scenario are presented in Figures 15 and 16,
which show the HIL results.

The simulation and HIL results for the slow test are presented in Figures 17 and 18,
respectively. The initial irradiance conditions are 600 W/m2 for 0.1 s; then, the irradiance
increases from 600 W/m2 to 700 W/m2 for 0.1 s. After this increase, the value remains
unchanged for 0.1 s, and finally decreases to 600 W/m2.
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The data in Table 3 complement the presented results, showing the efficiency
PMPPTAlgorithm /PMPPT in each MPPT algorithm. The efficiencies shown do not include
losses in the boost converter (98% efficiency), and only the output power of the PV panel is
considered to compute the ratio of the maximum available power. The values presented in
Table 3 were obtained using simulation results, and Table 4 presents the results for HIL.
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Table 3. Simulation results of MPPT efficiency.

Algorithm Step
Variation

Fast
Variation Slow Variation Steady State *

P&O 97.03% 97.14% 95.58% 99.98%
INC 97.85% 98.01% 96.96% 99.91%
FL 99.03% 99.08% 99.20% 99.87%

ANN (G, T) 99.94% 100.00% 99.96% 100.00%
IC-INC 99.95% 99.67% 99.89% 99.97%

ANN (IC-INC) 99.67% 98.50% 99.86% 99.94%
* Steady-state values were calculated between 0.1 s and 0.2 s, and the initial transient response was discarded.
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Figure 16. HIL results of power produced from panel when fast variations occurred.
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Table 4. HIL results of MPPT efficiency.

Algorithm Step
Variation

Fast
Variation Slow Variation Steady State

P&O 98.36% 98.94% 99.11% 99.04%
INC 99.21% 98.98% 99.04% 99.17%
FL 99.14% 98.81% 98.64% 99.12%

ANN (G, T) 97.88% 98.55% 99.06% 97.95%
IC-INC 98.54% 98.92% 99.10% 99.23%

ANN (IC-INC) 97.86% 98.66% 99.36% 99.12%
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4.3. Required Hardware Resources

To evaluate the hardware resources required by each MPPT algorithm, a synthesis
compilation was performed. The device used was an xc7z045ffg900-2 FPGA from a ZC706
board, and default synthesis configuration was applied. These results are presented in
Table 5 as a percentage of occupation in the ZC706 FPGA.

The ZC706 FPGA was divided into two major sections: the processing system (PS) and
programable logic (PL). The PS section is related to the ARM processor and is not the focus
of the present study. The PL section contained all the implemented algorithms. This section
contained 54,650 slices, 900 DSP, and some other dedicated hardware. Each slice contained
eight registers, four LUTs, two F7 muxes, and one F8 mux. In total this FPGA contained
218,600 LUTs, 437,200 registers, 109,300 F7 muxes, and 54,650 F8 muxes. The registers are
not presented in Table 5 because of their irrelevance in relation to the other components.
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Table 5. Results of FPGA resources for different implemented algorithms.

Algorithm LUTs
(218,600)

F7 Muxes
(109,300)

F8 Muxes
(54,650)

DSPs
(900)

P&O 1.08% 0.01% 0.00% 0.22%
INC 2.48% 0.01% 0.00% 0.00%
FL 5.92% 2.02% 1.67% 0.89%

ANN (G, T) 28.38% 0.08% 0.02% 11.78%
IC-INC 2.53% 0.00% 0.00% 0.44%

ANN (IC-INC) 63.76% 0.08% 0.02% 30.67%

In terms of the hardware resources required for implementation, the cost of the FPGA
could be determined for each of the algorithms under consideration. The comparison was
conducted using a Xilinx 7 series FPGA, with specific hardware requirements varying
between algorithms. Specifically, P&O, INC, and IC-INC require the XC7S6 FPGA from
the Spartan family, while FL requires the XC7S25 FPGA. The ANN (G, T) algorithm
can be implemented using the XC7S75 FPGA, whereas ANN (IC-INC) requires an Artix
XC7A200T FPGA.

Considering only the hardware costs associated with implementing the algorithms,
it can be estimated that P&O, INC, and IC-INC would cost approximately EUR 20 when
implemented in a microcontroller. On the other hand, FL is estimated to cost twice as much,
and ANN (G, T) would require five times more resources for microcontroller implemen-
tation. Finally, ANN (IC-INC) is estimated to require 15 times more resources than P&O,
INC, and IC-INC in terms of hardware costs.

It is important to note that P&O, INC, and IC-INC can also be implemented in a
microcontroller that costs only a few euros. In this case, the hardware resources available
would be replaced by CPU usage, with the calculations performed sequentially; however,
the cost would be substantially reduced. While FPGA implementation may be necessary
for certain applications that require higher performance and greater processing power,
such as ANNs, microcontroller implementation represents a more cost-effective solution
for many other applications.

5. Discussion

The results obtained in this study show that the presented methods respond differently
when exposed to different variations in irradiance. Additionally, during steady-state
simulations, all algorithms showed effectiveness values exceeding 99%. However, in
HIL simulations, the ANN (G, T) exhibits a comparatively lower effectiveness value.
Nevertheless, no MPPT algorithm achieves perfect effectiveness. According to our analysis
of the response times and oscillations in the voltage and current of the PV, all the algorithms
have good response times. In terms of oscillation, the INC, FL, and ANN (G, T) present
lower oscillation than the other methods.

According to our analysis of Table 3, the algorithms with the greatest efficiency are the
new IC-INC and the ANN (G, T). The IC-INC method is also effective in creating datasets to
train high-performance ANNs that are not dependent on measured values of irradiance and
PV cell temperature. The simulation results show that FL, IC-INC, and ANN algorithms
achieved efficiencies above 99% in all the tested scenarios. In terms of implementation,
the proposed IC-INC algorithm does not require a high number of resources, with values
slightly higher than P&O and INC.

The fuzzy logic and neural networks algorithms also achieve good results in most
scenarios; however, more resources are necessary for FPGA implementation.

The behaviors shown in the results of the HIL and simulation are very similar in most
cases; however, in FL implementation, some changes are visible in the slow variation test.

By comparison to the results reported in Table 4, it was observed that the IC-INC
algorithm outperforms the tested ones in steady state. Furthermore, the IC-INC algorithm
delivered satisfactory results in most irradiance scenarios.
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6. Conclusions

Based on our results, it is easy to understand the extensive use of the P&O approach in
the industry because it is simple, is lightweight, and can obtain results above 99.9% under
constant irradiance. As shown in our results, the INC technique, which is also utilized in
industry, is an algorithm that uses slightly more resources than P&O, but produces better
results than P&O in most tests.

On the other hand, FL- and ANN-based MPPT methods produce even better results
(simulation) than P&O and INC; however, they are difficult to deploy because they require
expert knowledge or a dataset for training, and many more resources.

The new IC-INC approach appears to be a valuable alternative to P&O and INC,
with comparatively better tracking capabilities, a shortened settling time in MPP tracking,
and very accurate MPP detection, all while being as light on resources as P&O and INC.
Therefore, the proposed algorithm is particularly suitable for use in scenarios where each
single PV panel must have its own microconverter to maximize power extraction in difficult
conditions, such as partial shading.

Our evaluation of the hardware resources required by each MPPT algorithm shows
that P&O, IC-INC, and INC require the fewest computing resources, such as a very low-
power microprocessor, while FL- and ANN-based MPPT require many more resources,
such as an FPGA or a fast digital signal processor (DSP).

Future research could include testing the promising IC-INC algorithm under partial
shading to verify its ability to detect the global MPP, or its potential as a low-resource MPPT
algorithm for distributed microconverters in every PV string.
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