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Abstract: Technical route decision making of intelligent driving has always been the focus of attention
of automotive enterprises and even the industry. Firstly, this study combs the main technical routes
of intelligent driving at different levels from three dimensions: development strategy, intelligence
allocation and sensor combination. Then, the methodology of technical component combination is
designed to disassemble different technical routes into corresponding technical component combi-
nations. Finally, an improved evaluation model of total cost of ownership of intelligent driving is
developed and the total cost of ownership of intelligent driving system under different technical
routes is compared. For the development strategy, even if the function superposition can follow some
research and development achievements of low-level intelligent driving, scenario-driven is still the
option with lower cost and better sustainability. For intelligence allocation, collaborative intelligence
can effectively reduce the cost of the vehicle compared with single-vehicle intelligence by up to 46%,
but the cost reduction depends on the original on-board hardware. For sensor combination, the
multi-source fusion always has the cost advantage compared with vision-only, but the advantage is
more obvious in the medium-level and high-level stage of single-vehicle intelligence.

Keywords: intelligent driving; technical routes; combination of technical components; total cost
of ownership

1. Introduction

Intelligent driving is gradually entering human society and becoming one of the
standard functions of automobiles [1]. The first thing to be clearly defined is that intelligent
driving and self-driving are not the same concept. Automation is only a main external
feature of intelligent driving, and the external features of intelligent driving can also
include networking, multi-agent collaboration, personalized driving experience and so on.
In addition, intelligent driving also includes some internal features, such as digitalization
of hardware and intelligence of software. At present, the industry usually uses the J3016
standard of the Society of Automotive Engineers (SAE) to divide intelligent driving into
five levels [2]. L1 and L2 are assistant driving systems, which are driven by drivers. At
this stage, machines assist human beings in perception, decision making and execution.
L3 is a conditional automatic driving system, which is jointly controlled by the driver
and machine. When the machine cannot handle the driving scenario, the driver needs
to complete the takeover. L4 and L5 are advanced automatic driving systems driven by
machines, which can achieve the minimum risk in most cases. Intelligent driving involves
complex technological groups, not only of different levels, but also with different technical
routes in different regions and different enterprises. Some technical routes are controversial.
For example, whether the development of intelligent driving should skip L3 [3], whether
intelligent driving above L3 must require lidar [4], whether intelligent driving should
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make vehicles, roadside infrastructure and cloud collaborate through vehicle-to-everything
(V2X) [5], and so on.

The improvement of intelligence level is undoubtedly the main evolutionary direction
of intelligent driving, but how to choose a technical route that can help products penetrate
the market quickly is also a topic worthy of attention by the government and original equip-
ment manufacturers (OEMs). According to the theory of technology diffusion, technological
feasibility and legal permission can only help intelligent driving penetrate the market in the
early stage [6]. Intelligent driving needs to be widely accepted by consumers if it is to be
popularized. Some studies have investigated consumers’ willingness to purchase various
vehicle automation functions [7]. There are many factors that affect purchase decisions, but
almost all studies have emphasized consumers’ emphasis on economy. Shabanpour et al. [8]
found that people are more sensitive to the purchase price of intelligent driving than other
factors such as fuel efficiency, safety or environmental friendliness. According to a multina-
tional survey, Chinese, German and American consumers are willing to pay USD 4600, USD
2900 and USD 3900, respectively, for autonomous driving [9]. If the cost exceeds consumers’
willingness to pay, intelligent driving will be difficult to promote quickly. Although many
technical routes have the possibility of achieving full self-driving, different technical routes
determine the cost competitiveness of future intelligent driving products. For example,
Tesla only uses cameras as sensors, which allows it to have stronger price adjustment
ability in market competition. Therefore, OEMs must consider the cost characteristics of
different technical routes when making technical strategic decisions. Moreover, because the
government needs to formulate industrial policies to promote new technologies, it may also
show some preference for low-cost technical routes [10]. For these reasons, it is necessary
to evaluate the cost of intelligent driving systems under different technical routes.

Some scholars have studied the economy of intelligent driving [11–17]. All these
studies adopt the total cost of ownership (TCO) analysis. TCO is the sum of all costs related
to buying a car and driving it during the period of owning it. This technique is mainly
used to compare the relative economic advantages of different competing technologies.
Bösch et al. [11] introduced self-driving cars into the urban transportation system to
calculate the total travel cost and TCO of self-driving cars in the future. There are many
similar studies. Abe [12] discussed the influence of urban density and public transportation
on the total travel cost and TCO. Turoń [13] used dynamic parameters such as the share
of self-driving fleets and the demand for self-driving travel in the TCO analysis method.
However, these studies all evaluate the cost from the perspective of consumer payment, so
the intelligent driving system is packaged and there is no analysis of technical details. In
addition, their research boundaries are also vague. These limitations lead to the distortion
or idealization of the TCO of intelligent driving, which is seriously inconsistent with
the real world. There is also more specific research on technical details. Bailo et al. [14]
systematically analyzed the composition of TCO of intelligent driving from the perspectives
of suppliers, OEMs and consumers, which were mainly divided into acquisition cost and
use cost. They also discussed the importance and sensitivity of various costs under different
research boundaries. On this basis, by building an intelligent driving system from bottom
to top on a battery electric platform and evaluating its TCO, Ongel et al. [15] find that,
although the acquisition cost of intelligent electric vehicles is higher than that of traditional
electric vehicles, the TCO can be reduced by 75%. Their study shows a complete TCO
analysis framework and process of intelligent driving, but it only evaluates the cost of a
specific intelligent driving solution and compares it with traditional vehicles, rather than
analyzing the cost differences within the intelligent driving technical group. Wadud [16]
compared the TCO of autonomous passenger cars and autonomous commercial vehicles
and found that full automation may reduce the TCO of passenger cars by about 30% and
trucks by 20%. In his research, the technical solutions of intelligent driving are different
due to the vehicle sizes. However, the difference in this technical solution only involves
the number and layout of sensors, and it does not involve the dispute of the technical
route, which is of little help to guide OEM development. Tan et al. [17] analyzed fourteen
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kinds of atomic sensing technologies on the vehicle and the roadside of intelligent driving,
and obtained the optimal combination solution of atomic sensing technologies under
safety constraints through the screening of full permutation combination algorithm. The
granularity of this research is refined to the technical components of the vehicle and the
roadside. However, the cost analysis in this study only focuses on the life cycle cost of the
sensors, ignoring the software cost, use cost and hardware cost of computers, actuators and
other components. Moreover, the discussion of different technical solutions in this study is
limited to the combination of atomic sensing technologies on the vehicle and the roadside.
There is no technical route dispute involving other dimensions. As can be understood
from the above literature, previous studies have often paid more attention to the life cycle
cost of hardware while ignoring the software and data. It should be emphasized that the
value proportion of software in vehicles is increasing. Liu et al. [18] believe that in the
future, software components will constitute a central general operating system, which may
eventually account for 20–40% of the automobile value.

The purpose of this study is to compare the cost of intelligent driving systems under
different technical routes from a more objective and accurate technical perspective to
provide a quantitative reference for intelligent driving technical route decision making.
The remainder of this study is organized as follows. Firstly, it combs the main technical
routes of intelligent driving at different levels from different dimensions. Thereafter, the
methodology of technical component combination is designed to disassemble different
technical routes into corresponding technical component combinations. Next, this study
develops the evaluation model of the TCO of intelligent driving systems and analyzes the
TCO of different technical routes based on the technical component combinations. Finally,
implications to OEMs and governments in choosing the intelligent driving technical route
are drawn.

2. Feature Identification of Intelligent Driving Technical Routes

This study further integrates this classification according to the intelligence level of
the system, with L1 and L2 as low-level intelligent driving, L3 as medium-level intelligent
driving and L4 and L5 as high-level intelligent driving. The dividing line between the low-
and medium-level lies in whether the driver is allowed to leave the steering wheel with
both hands in the operational design domain (ODD) [19]. The dividing line between the
medium- and high-level lies in whether the ODD can cover all daily travel scenarios and
the system can automatically reach the minimum risk state, which will allow the steering
wheel and brake in the cockpit to be cancelled [20]. The ODD of medium-level intelligent
driving can be divided into simple scenarios and complex scenarios. Simple scenarios are
characterized by no or few pedestrians, and usually include parking lots, closed parks,
highways, etc. Complex scenarios are characterized by a large number of pedestrians and
a complex traffic environment, usually including urban roads, congested road sections,
etc. [21]. One of the performance goals of improving intelligent driving ability is that the
system can handle more complex scenarios. However, the simpler the scenario, the more it
can give full play to the function of intelligent driving by reducing human intervention [22].

In this section, based on the development logic of intelligent driving systems, the
main controversial points in the development strategy, intelligence allocation and sensor
combination are combed.

2.1. Development Strategy

The development of intelligent driving systems can be based on two strategies [23].
Following different development strategies, the same function will lead to different techni-
cal compositions and product forms.

The first strategy is called function superposition. Its development principle is to take
the function of an advanced driving assistance system (ADAS) as the guide, develop differ-
ent technical packages for different functions, pursue the realization of each function and
achieve higher level intelligence through the combination and superposition of functions.
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The product design under this strategy focuses on the marginal benefit and cost of a single
new function and tends to pursue the function combination with the best cost performance.

The second strategy is called scenario-driven. Its development principle is to break
up and reorganize the basic ADAS functions and to develop overall solutions for different
scenarios by reshaping the electronic and electrical architecture. The product design under
this strategy focuses on the application value in different scenarios and tends to pursue the
best scenario experience and the lowest cost.

2.2. Intelligence Allocation

Intelligent driving requires enough hardware to provide perception and computational
capacity, some of which can be mounted on vehicles, the roadside or the cloud [24].

The solution whereby all hardware is mounted on the car is called single-vehicle
intelligence, and its advantages are a lower system complexity and more controllable
network security. However, this solution may also have an upper limit on performance,
such as for perception range. In addition, this solution will undoubtedly make consumers
pay higher costs.

The solution of realizing intelligent driving through vehicle–road–cloud collaboration
is called collaborative intelligence, which can not only transfer some hardware costs to
public infrastructure, but also better integrate with other technical systems such as smart
transportation and smart cities [25].

China has long decided on the technical roadmap for developing collaborative in-
telligence [1], and the European Union and the United States are also increasing their
investment in intelligent road traffic infrastructure. However, from the perspective of
products, single-vehicle intelligence still has great market potential and space to develop,
especially against the background of long deployment periods, large investment and
inconsistent standards of infrastructure.

2.3. Sensor Combination

Intelligent driving environment sensors mainly include cameras, millimeter wave
(MMW) radars and lidar. Two technical routes have been developed around sensor com-
binations in the industry; one is “multi-source fusion”, adopted by most automotive
enterprises, and the other is “vision-only”, represented by Tesla. Recently, Toyota also
announced that it will adopt “vision-only” to develop high-level intelligent driving, which
adds another uncertainty to the technical route dispute.

The multi-source fusion route is based on the combination of heterogeneous sensors to
form a strong perception ability to handle complex scenarios. MMW radars provide stable
ranging capability, the camera provides accurate recognition capability, and lidar provides
rich 3D details. The combination of the three makes the system have better security
redundancy. Some researchers believe that multi-source fusion is the best perception
solution because it physically breaks through the limitations of human perception and
gives the system the ability to perceive the environment from more dimensions [26].

The vision-only route is only equipped with cameras on the vehicle. Tesla researchers
believe that the logic of visual perception fits the human eye and brain, and it is suitable
for realizing high-level artificial intelligence through convolution neural networks and
deep learning. The features of low cost, mature technology and uniform data format also
make vision-only easier to realize productization. However, some researchers believe that
cameras are easily interfered with by the environment, so their reliability is not ideal, and
there are extreme cases that are difficult to handle [27].

2.4. Main Technical Routes of Intelligent Driving at Different Levels

As shown in Figure 1, the prominence of technical controversial points is different at
different levels of intelligent driving systems, so the main technical routes of intelligent
driving at different levels can be identified.
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For low-level intelligent driving, due to the ease of research and development, most
products on the market develop the ADAS based on a function superposition strategy. In
the intelligence allocation dimension, because collaborative intelligence technology is still
immature, single-vehicle intelligence is still the only choice. Therefore, sensor combination
has become the main technical dispute at this stage, and two technical routes of low-level
intelligent driving, “L-FSV” and “L-FSM”, are identified.

For medium-level intelligent driving, conditional automatic driving in simple scenar-
ios, such as parking and closed road cruising, can be realized by adopting the function
superposition strategy, but complex scenarios, such as urban road cruising, must be based
on the scenario-driven strategy. In the intelligence allocation dimension, the scenario
feature of medium-level intelligent driving means that the collaborative intelligence route
will lead to frequent degradation of functions, which is extremely unfriendly to the user
experience, so single-vehicle intelligence is still the best choice [28]. Similar to the low-
level, medium-level intelligent driving is also faced with the choice of using vision-only
and multi-source fusion. The difference is that the medium level can use lidar, while the
low level usually does not. Therefore, six technical routes of medium-level intelligent
driving are identified, including “M1-FSV”, “M1-FSM”, “M1-SSV”, “M1-SSM”, “M2-SSV”
and “M2-SSM”.

For high-level intelligent driving, the system complexity requires that it must be based
on a scenario-driven strategy to solve the long tail problem of most extreme cases through
continuous data accumulation [23]. At this stage, considering intelligence allocation has
the real application value and there are still differences in sensor combinations between
vision-only and multi-source fusion routes. Therefore, four technical routes of high-level
intelligent driving are identified, including “H-SSV”, “H-SSM”, “H-SCV” and “H-SCM”.

Behind every technical dispute lies the difference in the TCO of intelligent driving.
In the development strategy dimension, each function in function superposition has its
own hardware and software, while the scenario-driven option can effectively improve
the integration of functions to reduce system redundancy and cost [29]. In the intelligent
allocation dimension, collaborative intelligence allows some sensing and decision-making
tasks to be transferred to the environment outside the vehicle, so the on-board hardware
can be appropriately reduced, and the software may be more complex, which will change
the cost. In the sensor combination dimension, the cost of lidar is more expensive than
that of the camera, and the type and number of sensors will have a great impact on the
cost. Therefore, in order to evaluate the cost difference between different technical routes
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more accurately, the specific technical solutions must be disassembled to the components
for analysis.

3. Solution Disassembly of Intelligent Driving Technical Routes

The intelligent driving solution corresponding to each technical route consists of a
series of technical components. The difference in the types and numbers of technical
components is the main source of the cost difference between different technical routes.
In this section, all the smallest functional units related to intelligent driving with separate
costs are sorted out as a set of technical components. According to the requirements and
characteristics of different technical routes, the necessary technical components in the set
are selected and combined to form a complete intelligent driving system. In this way, the
intelligent driving solutions of different technical routes are disassembled into multiple
technical components.

3.1. Technical Components of Intelligent Driving

Table 1 shows the technical components of intelligent driving, including sensors,
computers, actuators and communicators. This study mainly combed the incremental
components from human driving to intelligent driving and fully considered the evolution
trend of various technical components.

Table 1. Technical components of intelligent driving.

Category Components

Sensors

• Camera (2 MP, 8 MP and 12 MP)
• Millimeter-wave radar (short-range, long-range, 4D-imaging)
• Lidar (mechanical, hybrid solid-state, solid-state)
• Ultrasonic radar
• High precision locator (meter, decimeter, centimeter)
• Micro-electromechanical system

Computers
• Electronic control unit
• Domain control unit
• Central computer

Actuators • Braking system (electric power-assisted, wire-controlled)
• Steering system (electric power-assisted, wire-controlled)

Communicators • Telematics BOX (4G-V2X, 5G-V2X)

The accuracy of sensors will continue to increase; for example, vehicles will be
equipped with cameras with higher pixels and locators with smaller errors. In addi-
tion, sensors will have richer functions; for example, MMW radars will be able to achieve
4D imaging [30]. Considering the technology with lower cost, hybrid solid-state lidar and
solid-state lidar will replace mechanical lidar in the future [31].

With the increase of sensors, the on-board computational capacity needs to be in-
creased, which will further promote the centralization of the electronic and electrical
architecture of the whole vehicle [32]. For the intelligent driving system developed based
on the function superposition strategy, the control can be completed by the combination of
several electronic control units (ECUs) with low computational capacity. For the intelligent
driving system developed based on the scenario-driven strategy, all relevant data must
be integrated, and a domain control unit (DCU) or even a central computer with higher
computational capacity is needed to complete the data processing.

For actuators, electric power-assisted actuators have been widely used in ADAS, and
the wire-controlled chassis with faster response speed and higher safety is considered the
foundation of medium-level and high-level intelligent driving [33]. For communicators, a
T-BOX based on 4G-V2X is sufficient to meet the common networking needs. However, to
realize collaborative intelligence, vehicles need to communicate with roadside devices and
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the cloud, so 5G-V2X with higher broadband and more connections becomes a necessary
choice. It should be noted that the cost of roadside and cloud equipment needed for
collaborative intelligence should be borne by public finance, which will not directly affect
the TCO of vehicles. Therefore, this study did not take these components into consideration.
Liu et al. evaluated the cost of the intelligent upgrade of transportation infrastructure for
intelligence-connected vehicles, which can be used as a supplement.

3.2. Methodology of Technical Component Combination

This study has designed a methodology of technical component combination from
technical components to complete solutions. Table 2 shows the combination constraint
principles, considering the compatibility, coherence, reusability and substitution of techni-
cal components.

Table 2. Combination constraints of technical components.

Attribute Constraint Principle

Technical compatibility

• Sensors that collect different parameters are independent of
each other.

• Sensors, computers, actuators and communicators are not
mutually exclusive.

Technical coherence

• The total perception ability is proportional to the total
decision-making ability.

• Communication ability meets the timeliness requirements of
perception and decision coordination.

• Some technical components have a fixed collocation relationship,
such as related hardware in a high-precision locator.

Technical reusability

• Sensors can be reused by functions with the same
parameter requirements.

• The components related to high security or special use are
not reusable.

Technical substitution

• For the sensors that collect the same parameters, the
components with higher performance can replace the
components with lower performance.

• Redundant components do not change the normal
realization effect of functions.

Based on the technical components and their combination constraints, the author and
the invited technical experts in the automotive industry jointly screened and determined
the combination solutions of intelligent driving technical components of different technical
routes according to the process shown in Figure 2. The core idea of the process is to realize
the full coverage and security redundancy of all functional requirements based on the
first principle and the minimum change principle, taking the representative solution of
industrial practice as the benchmark. Sensors and actuators are first determined, and
the first technical constraint review focuses on the combination of sensors. According to
the combination of sensors, the total computational capacity required by the system is
evaluated, and then the on-board computers and communicator are matched according
to the allocation of intelligence inside and outside the vehicle. Finally, the combination
of all technical components goes through the second technical constraint review and
expert review.
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3.3. Technical Component Combinations under Different Technical Routes

Table 3 shows the combination solutions of technical components under different tech-
nical routes. The main difference between the two technical routes of low-level intelligent
driving is the number of cameras and MMW radars. This study aims to compare it with
the medium- and high-level systems, so as to provide a reference for OEMs. Compared
with low-level systems, the actuators of medium-level systems need to be upgraded to the
wire-controlled chassis. Among the different technical routes of medium-level intelligent
driving, M1-FSV and M1-FSM with function superposition strategy will adopt the same
distributed electronic and electrical architecture as the low-level system, and lidar will
only adopt ordinary mechanical lidar. M1-SSV, M1-SSM, M2-SSV and M2-SSM with a
scenario-driven strategy can be regarded as the phased achievements of the research and
development (R&D) of high-level systems, so they will adopt more centralized domain
architecture and higher performance hardware, such as 4D-imaging radar, hybrid-solid
lidar, decimeter-level locator and DCU. The hardware of the high-level system needs
further upgrades and redundant backup. In addition to the increase in the number of
sensors, 12 MP cameras, centimeter-level locators, solid lidar and a central computer will be
mounted on the bus. Horizontally, compared with single-vehicle intelligence, collaborative
intelligence needs to adopt 5G technology in the communicator.
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Table 3. Disassembly of technical components of intelligent driving under different technical routes.

Component L-FSV L-FSM M1-FSV M1-FSM M1-SSV M1-SSM M2-SSV M2-SSM H-SSV H-SSM H-SCV H-SCM

Camera 9*2 MP 5*2 MP 13*2 MP
3*8 MP

6*2 MP
3*8 MP

7*2 MP
3*8 MP

5*2 MP
2*8 MP

12*2 MP
3*8 MP

5*2 MP
2*8 MP

8*2 MP
4*8 MP

2*12 MP

4*2 MP
1*8 MP
2*12 MP

6*2 MP
3*8 MP
2*12 MP

4*2 MP
1*8 MP
2*12 MP

MMW
radar — 4*short-

range —

2*long-
range

4*short-
range

—

1*long-
range

4*short-
range

—

1*4D-
imaging
1*long-
range

4*short-
range

—

1*4D-
imaging
2*long-
range

4*short-
range

—

2*long-
range

4*short-
range

Lidar — — — 1*mechanical — 1*mechanical —
1*mechanical

2*hybrid-
solid

—

2*hybrid-
solid

4*solid-
state

— 2*solid-
state

Ultrasonic
radar 12 8 12 8 12 8 12 4 — — — —

HD-Map 1*meter-
level

1*meter-
level

1*meter-
level

1*meter-
level

1*meter-
level

1*meter-
level

1*decimeter-
level

1*decimeter-
level

1*centimeter-
level

1*centimeter-
level

1*centimeter-
level

1*centimeter-
level

MEMS 2 2 3 3 3 3 3 3 4 4 4 4

Computer 3*ECU 3*ECU 3*ECU 3*ECU 2*DCU 2*DCU 2*DCU 2*DCU 1*central
(256 TOPS)

1*central
(1024 TOPS)

1*central
(128 TOPS)

1*central
(256 TOPS)

Actuators

1*electric
power

steering
1*electric

power
braking

1*electric
power

steering
1*electric

power
braking

1*wire-
controlled
steering
1*wire-

controlled
braking

1*wire-
controlled
steering
1*wire-

controlled
braking

1*wire-
controlled
steering
1*wire-

controlled
braking

1*wire-
controlled
steering
1*wire-

controlled
braking

1.5*wire-
controlled
steering
1.5*wire-

controlled
braking

1.5*wire-
controlled
steering
1.5*wire-

controlled
braking

2*wire-
controlled
steering
2*wire-

controlled
braking

2*wire-
controlled
steering
2*wire-

controlled
braking

2*wire-
controlled
steering
2*wire-

controlled
braking

2*wire-
controlled
steering
2*wire-

controlled
braking

Communicator 4G-V2X 4G-V2X 4G-V2X 4G-V2X 4G-V2X 4G-V2X 4G-V2X 4G-V2X 4G-V2X 4G-V2X 5G-V2X 5G-V2X
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4. TCO Evaluation Model of Intelligent Driving

The TCO of intelligent driving can be divided into purchase cost and use cost. The
purchase cost mainly refers to the on-board hardware and software. For the use cost, this
study considers the cost of electricity consumption, data traffic and maintenance over
the life cycle of the vehicle. In some other studies, some scholars have also considered
the change of use cost indirectly caused by tax changes and the reduction of insurance
coverage [34]. However, this part of the cost change is still controversial in the industry,
and not the key factor for the technical route decision, so it does not be considered in this
study. In addition, because the intelligent driving technology is developing faster under the
impetus of electrification, the electric vehicle is considered the best platform for intelligent
driving systems in the future [15], so the related cost evaluation is based on the battery
electric vehicle platform.

The commercial application of intelligent driving at different levels is at different time
nodes. According to the planning of the Chinese Intelligent Connected Vehicle Technology
Roadmap, medium-level intelligent driving will achieve mass production in 2025 and
high-level intelligent driving will achieve mass production in 2030 [2]. Therefore, this study
sets the cost evaluation time nodes of intelligent driving at three levels, i.e., in 2021, 2025
and 2030, respectively.

4.1. Hardware Cost

With the expansion of the production scale and the iteration of technology (such as
the optimization of integration and structure), the hardware cost gradually decreases. The
change of hardware cost is assumed to follow the law of learning curve [35]. The total
hardware cost of intelligent driving can be expressed as (1):

CH = ∑[ Ci,single,base × (1 − α)(T−2021) × Ni ]. (1)

The average market price of component i in 2021 is selected as the benchmark
Ci,single,base, and the original data comes from 3 OEMs cooperating with the research team.
The cost reduction rate α is revised by taking the change rate of market price in previous
years as a reference and integrating the current technical development trend and produc-
tion characteristics of technical components. The parameter T, corresponding to the three
levels of low, medium and high, are 2021, 2025 and 2030, respectively. Ni is the number
of components i in the technical solution. Table 4 shows the unit cost of each technical
component in different years.

Table 4. Cost and power consumption of various technical components. All costs are shown in USD.

Components 2021 2025 2030

Camera (2 MP) $33, 10 W $31, 8 W $30, 6 W
Camera (8 MP) $93, 15 W $86, 12 W $78, 10 W
Camera (12 MP) $148, 20 W $120, 16 W $93, 12 W

MMW (short-range) $76, 5 W $73, 4 W $69, 3 W
MMW (long-range) $140, 12 W $130, 10 W $117, 8 W
MMW (4D-imaging) $312, 20 W $204, 18 W $121, 16 W
Lidar (mechanical) $2836, 45 W $1866, 40 W $1104, 36 W
Lidar (hybrid-solid) $933, 40 W $760, 35 W $588, 32 W
Lidar (solid-state) $560, 35 W $367, 32 W $216, 30 W

MEMS $3, 1 W $2.8, 1 W $2.7, 1 W
Ultrasonic radar $24, 12 W $23, 11 W $22, 10 W

HD map (m) $343, 1 W $279, 1 W $216, 1 W
HD map (dm) $1104, 2 W $957, 2 W $740, 2 W
HD map (cm) $2015, 4 W $1858, 4 W $1433, 3 W

T-Box (4G-V2X) $21, 4 W $17, 4 W $13, 4 W
T-Box (5G-V2X) $93, 8 W $61, 8 W $36, 8 W
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Table 4. Cont.

Components 2021 2025 2030

Electric power steering $224, 40 W $215, 40 W $204, 40 W
Electric power braking $179, 50 W $172, 50 W $164, 50 W

Wire-controlled steering $522, 70 W $482, 70 W $436, 70 W
Wire-controlled braking $373, 80 W $343, 80 W $310, 80 W
Computer (<100 TOPS) $7.5, 1 W/TOPS $6, 0.4 W/TOPS $4.5, 0.17 W/TOPS

Computer (100–500 TOPS) $2.8, 1 W/TOPS $2.2, 0.4 W/TOPS $1.8, 0.17 W/TOPS
Computer (>500 TOPS) $1.5, 1 W/TOPS $1.2, 0.4 W/TOPS $0.9, 0.17 W/TOPS

4.2. Software Cost

Unlike hardware, software only has R&D costs, which mainly depends on the com-
plexity and abundance of software [36]. Complexity is related to the system architecture,
sensor type and decision algorithm. Abundance is related to the level of intelligent driving
and the number of technical components. According to the current business model of the
industry, OEMs usually charge according to the hardware cost in proportion to amortize
the R&D expenses of the software. The value range of software cost proportion is based on
the practical experience of OEMs.

The parameter factors in COCOMO II, a software constructive cost model, are used to
distinguish the software complexity between different technical routes [37]. Centralized
architecture helps to improve software reusability and make software development easier.
Therefore, the low-level system with distributed architecture, the medium-level system
with domain architecture and the high-level system with central architecture are given
complexity factors of 1, 0.8 and 0.6, respectively. The more kinds of sensors, the more
complex the fusion algorithm of heterogeneous data is. Therefore, vision, vision plus
MMW radar and vision plus lidar are given complexity factors of 1, 1.2 and 1.5, respectively.
The decision algorithm of collaborative intelligence needs to coordinate the data and
software inside and outside the vehicle, which is more complicated than that of single-
vehicle intelligence. Therefore, single-vehicle intelligence and collaborative intelligence are
given complexity factors of 1 and 1.2, respectively.

The higher the level of intelligent driving, the more basic the software and functional
applications needed. In addition, each technical component needs the corresponding driver
and control applications. In this study, an evaluation model of software cost proportion as
shown in Figure 3 is built, which introduces the software cost proportion required by three
levels: underlying hardware, functional subsystems and electronic/electrical architecture.
The research results of VSI Labs on the share of software cost in the total cost is helpful
to determine the software abundance factor [38]. Underlying hardware such as sensors
needs drivers, hardware abstract middleware and information security software to ensure
its running. The abundance factors Fabun,sensor of low-, medium- and high-level systems
are assigned as 3%, 5% and 8%, respectively. The underlying hardware and computer can
form a functional subsystem, which needs software such as an operating system, basic
software platform, and perception-decision algorithms to realize data processing. The
abundance factors Fabun,subsys of low-, medium- and high-level systems are assigned as 8%,
12% and 15%, respectively. A number of functional subsystems cooperate with actuators and
communicators to form the electronic and electrical architecture of the whole vehicle, which
needs OTA software, functional safety software, control algorithm and scenario application
to complete the control of intelligent driving functions. The abundance factors Fabun,arch of
low-, medium- and high-level systems are assigned as 12%, 18% and 25%, respectively.

Combining the hardware cost and the complexity and abundance of software, the total
software cost of intelligent driving can be expressed as (2):

CS = (∑ Ci,sensor × Fabun,sensor × Fabun,subsys × Fabun,arch + ∑ Cj,computer × Fabun,subsys × Fabun,arch

+∑ Ci,actuator&communicator × Fabun,arch)× Fcomplexity
(2)
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4.3. Power Consumption Cost

Intelligent driving systems will generate additional power consumption, and this part of
the cost needs to be borne by consumers during the use period, which can be expressed as (3):

CE = ∑( Pi × Ni)×Li f e × UT × UR × EF (3)

The parameter Pi is the typical rated power of technical component i, which can be
found in Table 4. Li f e is the average service life of battery electric vehicles in China, with
a value of 10 years. UT is the average annual service time of electric vehicles in China,
with a value of 950 h/year. UR is the average function utilization proportion of intelligent
driving in China, which is related to the subjective psychology of consumers and the
deployment of infrastructure [39]. According to an industry survey, the function opening
proportion of ADAS is around 20% [40]. With the progress of technology, the value of
UR will gradually increase and become more stable. This study assumes that the UR of
medium-level intelligent driving is 60% in 2025, and that of high-level intelligent driving is
95% in 2030. EF is the average charging cost in China, with a value of 0.15 USD/kwh.

4.4. Data Traffic Cost

When the intelligent driving system is in use, some information services such as map
navigation, V2X, over-the-air upgrade, remote monitoring, etc. will generate a large amount
of data traffic, for which consumers have to pay. The data traffic cost can be expressed as (4):

CD = Li f e × Ct,year (4)

where Ct,year is the average annual data traffic cost calculated based on the scale of data in
vehicles, and the values of the low-, medium- and high-level systems are USD 3, USD 15 and
USD 75, respectively.

4.5. Maintenance Cost

To ensure the safety of intelligent driving, it is necessary to carry out regular inspec-
tion, sensor cleaning and re-calibration, etc., which leads to new maintenance costs. The
maintenance cost is proportional to the hardware and software cost of the system and can
be expressed as (5):

CM = ( CH + CS)× βM (5)

The maintenance factor βM is as cited by McKinsey’s research, and the values of low-,
medium- and high-level systems are 10%, 15% and 20%, respectively [41].
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5. Results and Discussion

Figure 4 shows the total cost of ownership of intelligent driving under different
technical routes. The arrows of different colors in Figure 4 show the cost comparison of
different dimensions.
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5.1. Cost Comparison of Different Levels

According to Figure 4, with the improvement of intelligent driving levels, the TCO of
the same technical route is on the rise due to the increase in the number of sensors and the
improvement of hardware performance. The only exception is that the TCO of M2-SSM
is higher than that of H-SSM. The reason is that M2-SSM is the conditional automatic
driving in the complex scenario realized in 2025, which belongs to a relatively advanced
solution. The cost of the lidar and computer used by M2-SSM is still high. According to
Table 5, from the perspective of cost composition, with the improvement of the intelligent
driving level, the power consumption cost increases significantly with the increase in the
system utilization rate, the data traffic cost increases significantly with the increase in the
demand for networking, and the maintenance cost increases with the increase in system
maintenance demand [42], which leads to the continuous decline of the proportion of
hardware cost; from about 70% in the low-level system to about 50% in the high-level one.
The software cost share is maintained within a stable range, which means that the absolute
increase of software cost is positively related to the intelligence level. Therefore, increasing
software investment is a necessary condition to promote intelligence improvement.

Table 5. TCO composition share at different levels of intelligent driving.

TCO Composition Low-Level Medium-Level High-Level

Hardware 70.1–71.7% 56.9–63.3% 52.3–55.3%
Software 14.1–16.9% 13.6–21.3% 12.9–18.0%

Data Traffic 1.1–1.3% 1.2–4.2% 5.9–10.5%
Power Consumption 3.2–4.4% 4.9–10.7% 7.4–8.3%

Maintenance 8.6–8.7% 11.2–12.2% 13.6–14.3%

5.2. Cost Comparison of Different Development Strategies

Because the low-level intelligent driving system is generally developed based on the
less difficult function superposition strategy in the industry, and the high-level intelligent
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driving system cannot be developed based on the function superposition, the technical
route dispute of the development strategy mainly exists at the medium-level system. The
cost comparison of different development strategies is shown by the cerulean arrow in
Figure 4. Table 6 shows the TCO composition of related technical routes. For medium-level
intelligent driving, the scenario-driven option can reduce the cost by 13% compared with
function superposition because it optimizes the integration of functions to reduce the
redundancy of sensors and the scale of computational capacity. Considering that the R&D
of medium-level systems adopting the function superposition strategy is often based on
the already developed low-level system, this means that some functions can be directly
inherited. In this study, by subtracting the software R&D cost of L-FSV and L-FSM from
M1-FSV and M1-FSM, it is found that M1-SSV and M1-SSM still have about a 10% cost
advantage. It should be pointed out that under the scenario-driven development strategy,
the medium-level intelligent driving system in simple scenarios can make the ODD of the
system cover complex scenarios by upgrading the hardware and software. From M1-SSV
to M2-SSV, the TCO needs to be increased by USD 1958, and from M1-SSM to M2-SSM, the
TCO needs to be increased by USD 5085.

Table 6. Cost comparison of different development strategies. All costs are shown in USD.

TCO Composition M1-FSV M1-SSV M2-SSV M1-FSM M1-SSM M2-SSM

Hardware $2361 $2083 $3371 $5027 $4530 $7737
Software $670 $462 $765 $1884 $1353 $2337

Data Traffic $143 $143 $143 $143 $143 $143
Power Consumption $437 $323 $423 $752 $420 $609

Maintenance $455 $382 $620 $1037 $883 $1511

5.3. Cost Comparison of Different Intelligence Allocations

Because the application scenarios of low- and medium-level intelligent driving are
limited, which means that the economy of large-scale infrastructure deployment is low, the
technical route dispute of intelligent allocation mainly exists at the high level. Table 7 shows
the cost composition of four high-level technical routes. The cost comparison of different
intelligent allocations is shown by the purple arrow in Figure 4. Although collaborative
intelligence can reduce the on-board hardware of high-level intelligent driving, to ensure
basic safety, the vehicle still needs to retain the necessary sensors and computational
capacity. Therefore, in the case of vision-only routes, single-vehicle intelligence uses low-
cost hardware, and the cost reduction brought by collaborative intelligence is very limited.
In the case of multi-source fusion routes, collaborative intelligence can reduce the cost
by about 30%. In the case where the cost decreases even more, by transferring expensive
sensors to the roadside, the system changes from the original single-vehicle intelligence
with multi-source fusion to the collaborative intelligence with vision-only, and the cost can
be reduced by 41.7%.

Table 7. Cost comparison of different intelligence allocations. All costs are listed in USD.

TCO Composition H-SSV H-SCV H-SSM H-SCM

Hardware $3970 $3642 $6679 $4559
Software $923 $1004 $2017 $1570

Data Traffic $714 $714 $714 $714
Power Consumption $596 $541 $985 $641

Maintenance $979 $929 $1739 $1226

5.4. Cost Comparison of Different Sensor Combinations

The technical route dispute of sensor combination runs through all levels of intelligent
driving. The cost comparison of different sensor combinations at different levels under
single-vehicle intelligence is shown by the red arrow in Figure 4. Table 8 shows the TCO



Appl. Sci. 2023, 13, 4361 15 of 19

composition of related technical routes. Regardless of level, the vision-only route has a
lower cost than the multi-source fusion route because of its simple hardware design and
software complexity. However, the cost advantage of the vision-only route is most obvious
at the medium- and high-level stages of single-vehicle intelligence. At the low-level stage,
the cost advantage of vision-only is 11.2% because only a low-cost MMW radar is used
in the multi-source fusion route. At the medium-level stage, the cost advantage of the
vision-only route is expanded to 51.6% due to the use of high-cost hardware such as lidar in
multi-source fusion. At the high-level stage, on the one hand, it is expected that the cost of
the lidar and 4D-imaging MMW radar will be greatly reduced; on the other hand, the use
cost will increase, resulting in a reduction in the proportion of hardware cost. Therefore,
the absolute difference between the vision-only route and the multi-source fusion route
is widened, but the relative difference is slightly reduced to 38.8%. An important finding
is that when collaborative intelligence is adopted, the relative cost difference between the
vision-only and multi-source fusion routes is further reduced to 17.7%, and the absolute
difference is no more than USD 2000, which means that for some cost-insensitive vehicle
models, the cost difference between vision-only and multi-source fusion options can already
be accepted by OEMs and consumers [43].

Table 8. Cost comparison of different sensor combinations. All costs are shown in USD.

TCO Composition L-FSV L-FSM M1-SSV M1-SSM H-SSV H-SSM

Hardware $1547 $1756 $2083 $4530 $3970 $6679
Software $304 $422 $462 $1353 $923 $2017

Data Traffic $29 $29 $143 $143 $714 $714
Power Consumption $94 $79 $323 $420 $596 $985

Maintenance $185 $218 $382 $883 $979 $1739

5.5. Uncertainty Analysis

There are two possible uncertainties in the above cost evaluation. One is the cost
reduction rate of some technical components. 4D-imaging MMW radars, lidars and high-
precision locators are widely believed to achieve technological breakthrough and mass
production in the next few years, so their cost reduction is set at a high rate. Once the
progress of technological breakthrough is not as fast as expected, the cost may be higher. For
this assumption, the result caused by this uncertainty does not affect the cost ranking among
technical routes, but further enlarges the cost difference between the vision-only route and
multi-source fusion route. Another uncertainty is the function utilization proportion of
intelligent driving. The assumption of the function utilization proportion of intelligent
driving in this study is also optimistic. However, if the public opinion about intelligent
driving is not good or the infrastructure deployment speed is slow, it may lead to a
reduction in the function utilization proportion of intelligent driving at the medium and
high levels [44]. According to the scenario forecast, the result caused by this uncertainty
also does not affect the cost ranking between technical routes and has little influence on
the conclusion.

6. Conclusions

This study systematically combed the main technical route alternatives of intelligent
driving at different levels. Based on the unique perspective of the disassembly and com-
bination of technical components, the TCO of different technical routes is evaluated. It is
found that there are obvious cost differences among different technical routes:

• At the low-level, the vision-only route has an 11% cost advantage compared with the
multi-source fusion route.

• At the medium-level with simple scenarios, the scenario-driven strategy saves about
13% TCO compared with the function superposition strategy. Even considering the
inheritance of R&D cost of low-level systems under the function superposition strategy,
the scenario-driven strategy still has a cost advantage of 10%.
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• At the medium-level with complex scenarios, the hardware cost of the sensor com-
bination solution with a multi-source fusion route reaches USD 7737, far exceeding
the current willingness of consumers in China to pay USD 4600, while the TCO of the
vision-only route can be controlled at USD 5400.

• At the high-level, collaborative intelligence can save up to 46% of the TCO compared
with single-vehicle intelligence, and the reduction of costs depends on the type and
quantity of the original on-board hardware. In addition, with the help of collaborative
intelligence, the cost difference between vision-only and multi-source fusion routes
will be controlled within USD 2000.

Based on these findings, this study provides the following suggestions for OEMs to
formulate technical strategies and the government to formulate industrial policies:

• In the choice of development strategy, a scenario-driven strategy not only has cost
advantages, but also can continuously evolve to a higher level of intelligence. OEMs
should shift their development strategy to scenario-driven options as soon as possible
and put products on the market to build a data closed loop. At the same time, due to
the high cost of medium-level intelligent driving in complex scenarios, whether OEMs
should commercialize it in 2025 is a topic worthy of further discussion.

• In the choice of intelligence allocation, collaborative intelligence can effectively reduce
the TCO compared with single-vehicle intelligence. On the premise that China has
announced that it will develop collaborative intelligence, the government should speed
up the deployment of infrastructure, the construction of pilot demonstration areas
and the improvement of relevant standards and regulations. OEMs should actively
seek cross-border cooperation and jointly explore the new value that collaborative
intelligence can create, such as traffic safety and travel efficiency, so as to further
enhance the economy of collaborative intelligence [45].

• In the choice of sensor combinations, the vision-only route has an obvious cost advan-
tage, but at present, only a few OEMs, such as Tesla, have made some breakthroughs
in technology. Therefore, OEMs which lack previous relevant technical experience
should avoid blindly switching technical routes. In addition, because collaborative
intelligence can effectively narrow the cost gap between vision-only and multi-source
fusion routes, OEMs need not worry too much that choosing multi-source fusion will
make the product lose its market competitiveness.

• Compared with the TCO of medium- and high-level intelligent driving, China con-
sumers’ willingness to pay is relatively low at present. OEMs and the government
should consciously increase consumers’ willingness to pay for intelligent driving
through advertising, popular science and other methods, and may also need to pro-
vide appropriate subsidies at the initial stage of market penetration of innovation.

There are still some points worthy of optimization in this study. Firstly, although each
technical component combination solution is determined according to a certain process
under given constraints, it still depends on expert experience. It is doubtful whether these
solutions will retain a high degree of consistency with real solutions in the future. For
example, this study believes that the multi-source fusion route of medium- and high-level
intelligent driving will be equipped with lidar, but the progress of 4D MMW radars makes
some people in the industry think that lidar can be replaced. Even the latest Tesla autopilot
computing platform has reserved the interface for the 4D MMW radar, which suggests
it may abandon the vision-only route in the future [46]. Therefore, research on the TCO
of each technical route and industrial practice may be a mutually promoting relationship.
The calculation results can provide guidance for the future development direction of the
industry, and the latest industrial practice can influence the research objects and results.
Secondly, some indirect derivative costs, such as financial cost, market opportunity cost,
travel cost and infrastructure use cost, are not included in the TCO evaluation model.
Further expansion of the model can be considered. However, in fact, not all costs will
affect consumers’ purchase decisions. Some studies believe that the cost perceived by
consumers can be reduced through the change of business models [47,48]. For example, it
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is more acceptable for consumers to convert the one-time purchase cost of software into the
form of pay-per-use subscription [47]. Combining business model innovation with TCO
analysis is a direction that can be expanded in the future. Finally, this study assumes that
the deployment of infrastructure can meet the ideal needs of collaborative intelligence in all
scenarios. However, the deployment of infrastructure may be a long and gradual process,
and the system is facing the degradation from collaborative intelligence to single-vehicle
intelligence. Therefore, more technical component combination solutions of collaborative
intelligence may be designed in the future, which is an issue that can be further explored.
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