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Abstract: Mixed traffic flows are opening up new areas for research and are seen as key drivers
in the field of data and services that will make roads safer and more environmentally friendly.
Understanding the effects of Connected Vehicles (CVs) and Connected Autonomous Vehicles (CAVs),
as one of the vehicle components of mixed traffic flows, will make it easier to avoid traffic congestion
and contribute to the creation of innovative applications and solutions. It is notable that the literature
related to the analysis of the impact of mixed traffic flows on traffic signal control in urban areas rarely
considers mixed traffic flow containing CVs, CAVs, and Human Driven Vehicles (HDVs). Therefore,
this paper provides an overview of the relevant research papers covering the topic of urban Traffic
Signal Control (TSC) and mixed traffic flows. Best practices for intersection state estimation and TSC
in the case of mixed traffic flows in an urban environment are summarized and possible approaches
for utilizing CVs and CAVs as mobile sensors and actuators are discussed.

Keywords: mixed traffic flows; connected vehicles; connected autonomous vehicles; traffic signal
control; intersection state estimation

1. Introduction

Due to globalization and the growth of urban areas, there are now more cars on the
roads than ever before. As public transportation and cars use the same urban road traffic
infrastructure, traffic congestion is the main issue facing almost every city. Urban roads
are notorious for their traffic jams, which mostly happen at intersections where conflicting
traffic flows are safely managed by traffic signals. In general, urban congestions can be
divided into recurrent and non-recurrent. Recurrent congestions are primarily brought on
by the physical limitations of infrastructure, daily recurring periods of increased traffic
demand, and infrastructure management. Non-recurrent congestions are primarily brought
on by traffic accidents, special events (sporting events, concerts, vehicle breakdowns,
roadworks, etc.), and traffic incidents [1]. Recurring congestions are simpler to identify,
and suitable traffic control measures can be prepared in advance to alleviate them. For the
latter, accurate traffic state estimation is essential because identifying congestion is the first
step in finding a solution to it. Successful congestion or its build-up detection allows for
implementing suitable congestion-relieving measures, such as signal program changes or
vehicle rerouting.

Frequent traffic congestions have an impact on daily living and present a variety of
difficulties. Reducing traffic congestion minimizes environmental pollution while simul-
taneously enhancing travel efficiency and safety. Researching causes of congestion, the
authors of [2] found that the most statistically significant relationships occurred in the case
of the number of business entities and the number of passenger cars implying that con-
gestion is more frequent in areas with a higher number of business entities. Air pollution
and fuel loss are side effects that become severe issues as traffic congestion extends the
time a vehicle is on the road. According to [3], the combined cost of traffic congestion in
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France, Germany, the United Kingdom, and the United States is expected to increase from
USD 239.5 billion in 2020 to USD 293.1 billion by 2030. Thus, finding new ways to reduce
traffic congestion is important for improving everyday life in urban areas.

Due to the widespread use of numerous Traffic Signal Control (TSC) systems world-
wide, TSC is now a key element of Intelligent Transportation Systems (ITS) traffic control
services. Many new technologies can be adopted in TSC and especially ITS. Artificial neural
networks, fuzzy systems, and evolutionary computation algorithms are the core compo-
nents of computational intelligence, which provides flexibility, autonomy, and robustness
to handle the non-linearity and randomness of traffic systems [4]. Accurate modeling and
short-term traffic prediction are quite challenging due to traffic’s intricate characteristics,
stochastic, and dynamic traffic processes [5]. Due to their randomness and non-linearity,
real-world data have limited applicability in short-term traffic state estimation [5,6].

Being able to solve complex real-world problems, in recent years, multi-agent systems
also gained significant importance in the field of traffic engineering [7]. As in any domain,
solving traffic engineering problems also requires domain expertise. Specially since relying
on multi-agent systems, problems can be divided into multiple smaller problems that re-
quire less domain expertise. Due to this advantage, it offers in resolving complex problems
with uncertainties, multi-agent systems have drawn a lot of attention in the field of TSC.
These systems provide a highly flexible and modular structure that incorporates domain
expertise to achieve the optimal solution [7].

The emerging mixed traffic flows enable even more control strategies for TSC. Mixed
traffic flows are the result of the coexistence of conventional Human-Driven Vehicles and
Connected Vehicles (CVs). One has to note that a CV is considered any vehicle, e.g.,
Connected Autonomous Vehicles (CAVs), and HDVs, being able to communicate with the
environment whether that is another vehicle, infrastructure, or pedestrians [8]. Having
the possibility to operate as mobile sensors, the appearance of CVs and CAVs has opened
up new areas of research regarding ITS. Equipped with Radio Detection and Ranging
(RADAR), Light Detection and Ranging (LIDAR), cameras, and many other sensors, CVs
have significant advantages compared to conventional fixed-mounted traffic sensors. While
conventional sensors cover only specific measurement points, each CV is a mobile data
source that can provide real-time spatiotemporal measurement data. Thus, instead of
having the traffic information for certain road sections, the data from CVs or CAVs can
provide insight into the traffic state along the road on a microscopic level. Moreover, CVs or
CAVs have advantages over existing traffic sensor technology because they are not limited
by the line of sight like cameras and, as mentioned, collect large amounts of data at the
microscopic level, which is convenient for studying traffic. Such large amounts of data will
be generated by future mixed traffic flows containing classic vehicles and CVs or CAVs.
The share of the latter will rise, decreasing the need for classic traffic sensors (inductive
loops, cameras, radars, etc.).

Although CVs can provide data on the microscopic level, those data must be pre-
processed before they can be used as input for various TCS systems. Hence, having a lot
of data requires data processing to be fast and efficient. Therefore, the question of how
to process large quantities of data quickly and efficiently using the potential of CVs and
CAVs as mobile sensors and actuators arise. CAV-based multi-agent based traffic control
systems are a possible solution as a single agent can process a small piece of information
acting on it, and more agents together can handle very complex processes, including a
network of intersections [9]. Thus, another question is the applicability of the CVs or CAVs
in the multi-agent system since both can also receive information about the traffic state
ahead. Based on the received information, CVs or CAVs can also act accordingly, creating a
closed-loop control system assuming the driver will use the received information like a
CAV would.

The presented topic overview leads us to the motivation for this review paper as similar
reviews like [10–12] do not explicitly address the problem of mixed traffic intersection
control. Thus, the contributions of this paper are as follows:
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• Overview of relevant research papers on the topic of urban TSC and mixed traffic
flows with a systematic overview of conventional TSC strategies, and intersection
state estimation methods.

• Analyzed the impact of mixed vehicle traffic flows on TSC.
• Suggestions for further research steps on the topic TSC of mixed traffic flows in urban

environments.

The rest of the paper is organized as follows. Section 2 describes the research method-
ology. In Section 3, the technological background is given. Conventional TSC strategies are
described in Section 4. Intersection state estimation methods are presented in the following
Section 5. Section 6 describes the impact of mixed traffic flows on TSC. The concept of the
connected and autonomous vehicle-based TSC is described in Section 7. The discussion
with open questions is given in Section 8, and Section 9 concludes the paper.

2. Research Methodology
2.1. Open Questions and Scope Definition

As mentioned, this review paper is focused on the analysis of the impact of mixed
traffic flow on TSC in urban areas. Reviewed papers analyze the applicability of CV as
data sources for adaptive traffic signal control, as well as the impacts of mixed traffic flow
on traffic signal control and urban dynamics. To accomplish the research’s objectives, the
following research questions were defined:

• RQ1: What are the intersection state estimation approaches?
• RQ2: What is the impact of mixed traffic flows on urban traffic dynamics?
• RQ3: How to process large amounts of data quickly and efficiently using the potential

of CVs and CAVs as mobile sensors?

2.2. Applied Research Method

We focused on articles available online and published in English between 2017 and
2021 available in the following digital libraries:

• Scopus;
• IEEE;
• Web of Science (WoS).

We searched for relevant papers using keywords and keyword combinations, consid-
ering newer research publications, as well as prominent papers they referenced. A tabular
overview of the referenced papers is shown in each section separately. Used keywords
were: Mixed traffic flows; Connected Vehicles; Connected Autonomous Vehicles; Traffic
Signal Control, and Intersection State Estimation.

3. Technological Background

The rise of CVs and CAVs is attributed to recent advancements in the automotive
industry, and CAVs are anticipated to be accessible to the general public in the near future.
Along with the deployment of CVs and CAVs, communication systems such as the Vehicle-
to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Everything (V2X) will be
implemented in the transportation environment.

3.1. Intelligent Transportation System Overview

The development of a sustainable transportation system requires efficient use of
existing infrastructure and continuous integration of information and communication
technologies. Data transmission, traffic flow control, and the administration of transporta-
tion networks are all made possible by the deployment and application of cutting-edge
communications and electronic and computational capabilities. A large number of these
systems were closed systems running independently or in a closed system environment.
To deliver better and safer mobility and transition to ITS, these systems have to collaborate
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and interact with one another [13] as shown in Figure 1. The emphasis of this paper is on
Advanced Traffic Management Systems.

Figure 1. Schematic overview of ITS components [14].

The key factor for the success of ITS is the technology to access, gather, and interpret
measurement data collected by various traffic sensors and, among others, from CVs and
CAVs related sensors. Generally, two types of sensing platforms can be distinguished
in this case: intra-vehicular sensing platforms and urban sensing platforms [15]. As the
name suggests, the intra-vehicular sensing platform gathers information about a vehicle’s
conditions, while urban sensing platforms gather data on traffic conditions. To capture
data during V2V and V2I interactions, sensor technology is a crucial component. Based on
the collected data, the transportation management system are then given access to these
data for additional processing, analysis, and decision-making [15]. Thus, relying on CVs
or CAVs eliminates classical problems with traffic data collection. Having the ability to
communicate with the environment, CVs or CAVs can provide data beyond the line of
sight of fixed-mounted classic sensors. Exploiting that detailed data from CVs or CAVs, the
temporal and spatial characteristics of congestion can now be precisely determined. Thus,
more effective traffic control and vehicle rerouting countermeasures can be planned and
implemented. Computing with those new data sources can provide appropriate solutions,
e.g., altering the timing of traffic signal programs, disseminating data via variable message
signs and vehicle navigation systems, or even planning new road capacities. Moreover,
collected data from CVs or CAVs can also be used for the evaluation of implemented
congestion countermeasures [16].

The implementation of ITS solutions based on CVs or CAVs has advantages for every
entity in the traffic and transportation ecosystem. It is manifested in the improvement of
the overall transport network level of service. The advantages for society include a decrease
in traffic accidents by promoting safe driving. Furthermore, traffic congestion decrease can
be achieved by proper and timely traffic information distribution, which will also benefit
by reducing the environmental impact of traffic. Road maintenance services will benefit
from exploring traffic data and detecting unsafe regions and frequently congested places.
Furthermore, the drivers will gain benefits in terms of expenses, comfort, and safety.

3.2. Traffic Signal Control Importance

Properly located, operated, and maintained traffic lights may have multiple advan-
tages. Suitably positioned and designed traffic light systems may provide controlled
movement of traffic by assigning right-of-way to conflicting traffic flows. Thus, traffic
lights can increase the effective capacity of an intersection enabling conflicting traffic flows
to share the same infrastructure while controlling traffic flows reduces the possibility of
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accidents. Traffic signals ensure continuous movement of traffic, especially when traffic
control on a particular intersection is coordinated with surrounding intersections. TSC
types can be differentiated as coordinated or isolated. Isolated TSC operates independently
of traffic signal controllers at surrounding intersections. Contrarily, coordinated traffic
signal timing is coordinated with surrounding traffic signal controllers to achieve better
throughput [17]. Considering the way the TSC systems operate, they can be classified as
fixed-time, fully actuated, and semi-actuated traffic signals [17]. While fixed-time traffic
signals operate according to a predefined schedule, fully actuated and semi-actuated traffic
signals employ detection of the presence of vehicles or pedestrians to actuate particular
phases. The difference between actuated and semi-actuated is that the latter guarantees at
least one phase will be served while other phases are actuated. Fully-actuated traffic signal
skips a particular phase if a vehicle or pedestrian is not detected. As one of the most efficient
ways to reduce traffic congestion at intersections, TSC is a crucial instrument in managing
traffic flow [18]. Further study on TSC is still required because of the recent increase in the
popularity of CAV technology. When it comes to improving of TSC, adequate mobility data
from CVs or CAVs will reflect the dynamics of the city’s traffic more precisely and give
insight into the city traffic dynamics crucial for further TSC improvement.

3.3. Characteristics of CVs and CAVs

The ever-increasing connectivity around the world has inevitably affected vehicles.
Thanks to improvements in connectivity and computing power, CVs and CAVs are becom-
ing the new platform for the development of new applications and services. Equipped
with advanced sensing technology, CVs and CAVs generate rich traffic data and affect the
human-vehicle dynamic, as well as change the impact of traffic on the environment and
the economy [19]. CV technologies have already been used to improve fleet productivity
and safety. Although the need for CVs and the technology that supports it has advanced
significantly in recent years, there are still difficulties in deploying linked and collabora-
tive vehicle applications before CVs’ full potential may be realized. Applications for CVs
are developed with an emphasis on solving transportation-related issues. The primary
study topics are real-time data capture and management, V2V, and V2I communications
for safety [15]. Being a rich data source on the microscopic level, the development of
CVs created research potential for various applications, and the CV features also found
their applications in intersection control systems. Providing real-time speed, heading, and
position is valuable data in traffic control systems, allowing additional enhancements in
terms of traffic efficiency and safety.

The Society of Automotive Engineers (SAE) in [20] defined six levels of automation,
where level 0 is without any automation, and level 5 implies full autonomy. The first
three levels are vehicles equipped with support features for drivers. Level 3 automation
means that the driver must take over control of the vehicle when requested. Levels 4 and 5
are capable of autonomous driving without requesting the driver to overtake control [20].
Although CAVs have a higher SAE level of automation, they can be considered as a
subgroup of CVs since they employ V2X communication. Since CAVs are equipped with
sensors, which can detect adjacent objects and the ability to communicate with other CVs
and CAVs, their driving characteristics will be different from those of conventional HDVs.

In contrast to the delay in human reaction time or the negative impacts of human
mistakes, CAVs are able to obtain more precise driving-condition characteristics than
human perception, enabling them to respond to changes in driving circumstances more
quickly. The distance between two successive CAVs is much smaller than that between two
conventional HDVs because the CAVs can be driven closely together using Adaptive Cruise
Control (ACC) technology [21]. It is important to note that the ACC technology is not
reserved for CAVs only; it is present in conventional HDVs too, but without collaboration
capability with other vehicles.
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4. Conventional Traffic Signal Control Strategies

This section, through three subsections, describes conventional TSC strategies. They
serve as the basis for the development of more advanced TSC approaches, including new
TSC approaches for mixed traffic flows.

4.1. Signal Program Parameters

Traffic signal parameters define how an intersection can be controlled regarding traffic
flow throughput. Depending on the parameter setup, the intersection can operate in various
traffic conditions. Each signal program is defined with the following parameters [17,22]:

• Green time: The time duration in seconds, during which a given traffic movement at
signalized intersection proceeds at a saturation flow rate.

• Cycle length: The amount of time it takes a signal to complete the signal cycle.
• Phase sequence: The sequence in which the signal program phases occur throughout

a signal cycle.
• Change interval: Also known as a Clearance interval, a short time period to provide

clearance before the green time for conflicting traffic movements.
• Offset: The relationship in time between the beginning of the signal cycle between

two or more consecutive intersections.

4.2. Fixed Time Traffic Signal Control

The Fixed Time Signal Control (FTSC) strategy, also known as open-loop control, relies
on historical data. Obtained signal programs have predefined more or less optimal phase
sequences based on historical data, which corresponds to daily traffic volume fluctuations.
However, when relying on historical data, optimal signal programs mean the plans are
optimal only for traffic patterns that are derived from historical data. The traffic patterns
tend to change over time, thus, the signal programs will become obsolete or at least
suboptimal at some point. Examples of FTSC strategies are Webster’s method [23] and
its extensions, SIGSET [24], SIGCAP [25] for isolated intersection control together with
MAXBAND [26] and its extensions, TRANSYT [27], and MULTIBAND [28] for coordinated
intersection control.

Calculation simplicity is the advantage of FTSC, but predefined signal programs can
not alleviate occasional events such as traffic accidents, roadworks, special events (e.g.,
concerts, social events), etc. Furthermore, traffic volume fluctuations differ from day to day,
which affects the effectiveness of predefined signal programs since signal programs may
not be optimal due to constant fluctuations in traffic volume. To overcome the drawbacks
of FTSC strategies, first actuated and then Adaptive Traffic Signal Control (ATSC) strategies
were introduced.

4.3. Adaptive Traffic Signal Control
4.3.1. Conventional Adaptive Traffic Signal Control Strategies

ATSC strategies respond to fluctuations in daily traffic patterns by adjusting signal
program timing according to current traffic demand, reducing traffic congestion, delays,
and travel time [29]. ATSC was first proposed as early as 1960s [30]. Early studies and
implementations include SCOOT [31], SCATS [32], UTOPIA [33], and RHODES. SCOOT
and SCATS are conventional systems that rely on loop detectors and communication
infrastructure to collect traffic data. The main philosophy of these systems is a fast response
to the change in traffic demand generating green signal time. They are based on solving
an optimization problem during operation. Emphasize of adaptation can be changed by
setting the appropriate optimization criteria (intersection throughput maximization, delay
minimization, giving priority to public transportation). Recently developed systems such as
RHODES can realize also proactive control by predicting traffic demands at a downstream
intersection and optimizing lost times on a global scale [34].
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4.3.2. New Adaptive Traffic Signal Control Strategies

Recent approaches to creating ATSC are based on machine learning [10]. Machine
learning presents the foundation of intelligent traffic signal controllers with the ability to
improve in the long term by gaining new knowledge on how to control traffic flows in
different situations. The performance of such intelligent traffic signal controllers greatly
depends on how they are trained and developed using optimization algorithms [35]. Recent
years have seen significant progress in forecasting algorithms as well as the availability
of real-time data, which has accelerated the development and applications of machine
learning and artificial intelligence in TSC. Proactive models can predict the flow of traffic
before it happens and calculate the necessary changes in the TSC system to prevent it
completely or reduce the adverse effects [22].

Whether real-time measured or predicted traffic volume values are used, these ATSC
systems have their pros and cons. One aspect of their operation is generating a so-called
“green wave signal” for large vehicle flow by optimizing the network’s traffic signal
offset values according to the current traffic demand. Generating a “green wave signal”,
ATSC strategies can reduce delay and the number of stops and consecutively increase the
throughput of intersections. A reduced number of stops reduces fuel consumption, which
positively impacts the environment in terms of air and noise pollution. Approximation
models of energy consumption and gas emissions have been used as objective functions in
traffic signal optimizations, and as a result, using such approximation models may result
in an unrealistic traffic signal program configuration [36]. A signal program should be
robust such that it is less sensitive to demand variations and can maintain near-optimal
performance during varying traffic demand [37].

ATSC systems use both predicted and real-time traffic arrivals to maximize the corre-
sponding objective functions. Such systems also use cameras and inductive loop/magnetic
detectors to track vehicles, which has considerable downsides in terms of cost and func-
tionality. Namely, in urban areas, a green wave can be generated only in one-way corridors
with ensured communication between intersection controllers. The system’s initial imple-
mentation costs are around USD 30,000 per junction, or USD 28,800 per mile every year [38].
These systems also require a sizable communication network that can support centralized
control with a high data rate. As a result, many towns throughout the world have created
systems that are expensive to construct and run. Moreover, there is the risk of experiencing
problematic issues with the entire system when the central control computer malfunctions.

In [39], authors designed ATSC for arterial intersections based on Reinforcement
Learning (RL). Its advantage is the ability to constantly learn during operation. Depending
on the perception of the traffic dynamics, the RL agent dynamically controls offsets and
green splits of the arterial intersections. The proposed algorithm is tested in simulation
software in 200 random traffic scenarios. Compared to a fixed-time signal scheme with
optimization of offset and green-split, results showed a reduction in the number of stops
and delays. Such an approach enables improvement during operation. Thus, traffic
control at signalized intersections should be based on adaptive approaches, rather than
conventional and actuated signals [40].

5. Intersection State Estimation

To implement an ATSC, the current state of the respective isolated intersection or
intersection network must be known. The state is related to the intersection level of service,
throughput, queue length, (average) vehicle speed, etc. Using the current intersection
state value, appropriate changes to the signal program can be made. Thus, urban traffic
state estimation is the subject of interest for many researchers. Researchers used different
data sources in the literature and explored various traffic state estimation methods. Thus,
research papers often can not be strictly categorized since the authors mostly combine
various data sources and methods. In general, the developed traffic state estimation
methods can be categorized into the following categories: (i) model-driven, (ii) data-driven,
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and (iii) streaming-data-driven methods [41]. A tabular overview of referenced papers in
this section is summarized in Table 1.

Table 1. Tabular overview of referenced papers regarding intersection state estimation.

Paper Year Data Source Type Applied Method Impact Benchmark

[42] 2022 Simulation,
FCD

Streaming-data
driven method

Bottleneck Probability
Estimation Using

STM

Bottleneck probability
estimated on the

simulated motorway
traffic scenarios

Evaluated on four
different simulated

motorway traffic
scenarios

[43] 2021 Simulation,
FCD

Streaming-data
driven method

Intersection state
estimation using STM

and Fuzzy logic

Intersection Traffic State
Estimation using STM Crossvalidation

[44] 2022 Simulation,
FCD

Streaming-data
driven method Statistical analysis Analysis of impact CVs

on STM accuracy Statistical validation

[45] 2021 GPS, FCD Data-driven method Data mining

Estimation of
congestion zones and

time-varying travel time
indexes

Real travel times,
historical dataset, and

state-of-the-art
method

[46] 2021 FCD Model-driven method Directed graph
Estimation of vehicle
density in every road

section
Realistic simulation

[47] 2021 Camera Streaming-data
driven method CNN Robust approach for

queue length estimation
Comparative analysis

to Yolo v3,4,5

[48] 2021 GPS Data-driven method Clustering
Congestion

identification on global
scale

Real data

[49] 2020 Street view
imagery Model-driven method GCN model Model based prediction

of congestion
Compared to Taxi

GPS dataset

[50] 2020 GPS Data-driven method

Schatten p-norm
model for

speed-matrix
completion

Monitor and visualize
traffic dynamics via

stochastic congestion
maps

kNN, NMF

[51] 2020 GPS Data-driven method Classification, STM Traffic state estimation
on citywide scale Cross-validation

[52] 2019 Camera Streaming-data
driven method

Background
difference and

AdaBoost classifier

Fast video-based queue
length detection

Compared to
traditional

Adaboost-based
method

[53] 2019 GPS Model-driven
Adaptive

multi-kernel support
vector machine

Short-term traffic flow
prediction Real data

[54] 2019 GPS Data-driven method Classification Turn-level congestion Cross-validation with
labeled data

[55] 2018 GPS Data-driven method Data mining

Method for queue
length, level of service

and control delay
estimation

None

[56] 2018
Sensors,

floating car
data

Streaming-data
driven method Data fusion Robust traffic state

estimation approach Realistic simulation

[57] 2017 GPS Data-driven method SVM model Short-term traffic
prediction

Historical data-based
model, moving

average data-based
model, ANN model,

and k-NN model

[58] 2017 GPS Data-driven method Classification

Detecting traffic
congestion and

incidents from real-time
GPS traces

Cross-validation

5.1. Model-Driven Methods

Model-driven methods are based on knowledge of physical traffic flows where applied
models represent the physical flow. Models have high explanatory characteristics, which
means it is possible to explain the inaccuracy even if the estimation is inaccurate. However,
a poorly calibrated model can affect the performance of the estimation method [41].
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The authors of [48] modeled the traffic flow network based on taxi’s Global Positioning
System (GPS) trajectories. The proposed model can reflect the real state of the network,
where the nodes represent congested areas and the weight of the edges between nodes
represent the congestion coefficient. Scalability is the main benefit of this approach, which is
achieved by adjusting the size of the area represented by the node. Although the model was
reliable, relying on the GPS traces introduced certain limitations regarding the precision of
calculated distances and waiting times.

In [57], a short-term traffic prediction method is proposed based on a novel single-time-
step prediction model that simultaneously considers spatial and temporal characteristics of
the traffic. The obtained results confirmed the Support Vector Machine-based (SVM) model
applicability for short-term traffic speed prediction. The authors of [53] also researched
short-term traffic flow prediction. Although their work focused on improving short-term
traffic flow predictions, the authors proposed an SVM-based method with an adaptive
multi-kernel function and spatio-temporal correlation. The benefit of such an approach
is that the SVM has conventional features while using different kernel functions is more
suitable for time-varying traffic flow assessments. Conducted experiments imply that this
method can adapt to dynamic traffic flow characteristics on urban roads. Obtained results
also revealed certain delays between predicted traffic flow compared to the real values
used for comparison.

The authors of [49] proposed a Graph Convolutional Network (GCN) model for
evaluating the potential of estimating congestion areas. This method relies on road street-
view imagery and Point of Interest datasets, which are used as input for the GCN to
detect urban areas with a high probability of congestion. The proposed method reveals
the potential of exploiting open data to solve conventional challenges in urban traffic and
applying this method in different cities could give different results. To evaluate the method,
the authors used ground truth data derived from GPS data collected by taxi vehicles, and
GPS data have their limitations, as mentioned earlier.

5.2. Data-Driven Methods

The GPS is commonly used as a data source for data-driven methods. Required traffic
data are mostly collected by GPS-equipped taxis or delivery vehicles. Since GPS cannot
always provide accurate data, it is mostly used to determine conditions on the road level
using additional preprocessing. Thus, speed profiles for very large road networks can be
estimated and used in vehicle route optimization and traffic control [45]. In [54], turn-level
congestion is detected by analyzing features of GPS data. By using clustering, the proposed
method identifies spatial and temporal characteristics of congestion at the turn level, which
is the main contribution of this paper.

In [50], the authors developed an urban network-wide traffic state estimation method
capable of processing high-resolution GPS data. The proposed method divides the observed
area into cells with corresponding road segments and GPS records. Although the method
performs well and can differentiate road segments when the cell is located at the intersection,
the algorithm estimation accuracy is reduced in case of data loss during longer time periods.
The approach described in [58] also uses GPS data to detect traffic states. The proposed
method differentiates three traffic states: incident, slowed traffic and blocked traffic. Traffic
states are detected based on vehicle speeds extracted from GPS data and are classified
relative to speed thresholds. While this method does not require a learning process, the
chosen speed thresholds can affect its performance. Tišljarić in [55] provides another
illustration of how aggregated GPS data can be used to determine the queue length and the
level of service at an intersection. These techniques rely on GPS data components, such
as vehicle speed and position, which rely on the quantity of tracked cars and reliable GPS
data samples. As it takes some time to gather adequate GPS data and process them, it is
also crucial to consider the time delay brought on by data processing.

Relying on GPS data, the authors of [51] proposed a method for traffic state estimation
in an urban area on a city-wide scale. The proposed method represents data in the form
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of a Speed Transition Matrix (STM), where the transition is defined as a spatial change in
vehicle trajectory when traveling between two consecutive road segments. The speeds that
the vehicles had on the transition are calculated as harmonic mean speed, and it is written
to the corresponding cell in the STM. After creating STMs, traffic state estimation is carried
out based on the recorded data’s center of mass characteristic. Obtained results indicated
that the proposed method is suitable for traffic state estimation.

Data-driven traffic state estimation methods rely on historical data, using statistical
methods and machine learning techniques to determine real-time traffic states based on
features found in historical data. Dependence on historical data has its drawbacks. Thus,
such methods are prone to failure if an irregular event occurs or traffic trends change in the
long term, especially in the case without having these two cases in the historical data [41].
Furthermore, low penetration of GPS-equipped vehicles leads to inaccuracy because of a
lack of data. Additionally, this estimation method can also benefit from real-time traffic data
sources directly into the estimation model, creating the foundation for the third approach
described in continuation.

5.3. Streaming Data-Driven Methods

In contrast to previously mentioned methods, streaming-data-driven methods do
not require historical data, which makes them robust to unpredictable events. They rely
on streaming data and weak assumptions without capabilities for future prediction. For
accurate estimation, these methods require large amounts of (real-time) streaming data [41].

The mentioned STM-based method combined with Fuzzy-based systems used for
intersection traffic state estimation is also applied in [43]. The road network is divided into
segments of equal lengths, and CV speeds were collected to create STMs for each transition.
Each STM is normalized as the input for the proposed fuzzy logic-based decision system.
Based on the center of mass characteristic and applied set of IF-THEN rules, the fuzzy logic
gives as output the bottleneck probability ranging from 0 to 1. The method is tested using a
simulated environment containing an isolated intersection. Obtained results revealed the
congestion’s spatial and temporal characteristics, indicating that this method can be used
for intersection traffic state estimation.

Another application of STMs is described in [42] where it is used for bottleneck
probability estimation on motorways. The proposed method computes vehicle speeds
on consecutive motorway segments, and speeds are represented with STMs. Evaluation
of the proposed method on different scenarios resulted in total accuracy of 92%, which
indicates possible application on motorways with high CV penetration rates where CVs are
used as mobile sensors. Thus, in [44] various CV penetration rates were tested to analyze
STM accuracy. The results indicated that STM accuracy decreases during morning and
afternoon rush hours. Furthermore, results also indicated that adding new CVs has much
more impact on penetration rates up to 30% compared to penetration rates above 30%.

To estimate the queue tail location, the approach defined in [56] fuses traffic detector
data with the location and speed of the CVs in a mixed traffic flow containing conventional
HDVs and CVs. To compensate lack of data at low penetration rates, the authors developed
a probability-based approach making the proposed method robust to varying penetration
rates of CVs. The results showed that the proposed method requires only one spot detector
upstream of the link. In [46], the authors also relied on data fusion from different sources.
The proposed method for traffic state estimation on urban networks utilizes data from three
data sources: stationary flow sensors, turning ratios, and floating car data. The benefit of
the proposed method is that it requires only turning ratios as an input, thus, road outflows
modeling is avoided. This benefit can also be the main drawback since the method relies
on turning ratios estimated from stationary flow sensors.

Streaming data-driven methods also include methods based on the data obtained
from various sensors for collecting motion information, such as transport video detectors,
microwave radars, infrared sensors, ultrasonic sensors, passive acoustic sensors, and
others [59]. The authors of [47] developed a video-based vehicle queue length estimation
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method. The proposed method detects vehicles as objects, and queue length is calculated as
the number of detected objects multiplied by the average vehicle length. Similarly, in [52],
the authors proposed a real-time video-based vehicle counting method for urban roads. The
proposed vehicle counting method is used for each lane depending on the traffic congestion
degree determined by the foreground area ratio. A quick area-based method for calculating
the number of vehicles is used when the traffic is deemed to be congested. Otherwise,
an approach that uses background difference and an Adaboost classifier to recognize and
count vehicles quickly is used. The proposed video-based methods were robust to heavy
traffic with accurate vehicle counts compared to ground truth data. Both methods have
common drawbacks—the video quality can be affected by environmental changes (weather,
lightning, etc.), and the estimation error increases as traffic volumes increase.

6. Impact of Mixed Traffic Flows on Traffic Signal Control

The introduction of CVs alters traffic flow dynamics, increasing the effective road
capacity as the penetration rate of CVs rises. Driven by advanced sensing and computing
capabilities, and by utilizing V2X communication CVs can percept the environment. They
also share onboard data (speed, position, and heading) in real-time with the environment
through V2X communication. Thanks to sensing technology and real-time communication,
vehicles are becoming also a good basis for developing new ITS-related applications and
services. Exchanging traffic information CVs will have timely information about the traffic
state and can recommend the driver’s ideal vehicle speed or alternative route. Relying on
computation capabilities, CAVs will be part of a multi-agent system, where each vehicle
will make decisions based on available data, which means CVs will affect traffic flow
characteristics, increasing throughput and reducing delays. CVs are the vehicles with more
information and recommendations, while CAVs are the vehicles with more information
and orders. It is important to emphasize drivers’ compliance in CVs as they receive
recommendations from the TSC contrary to CAVs that receive the orders.

To enhance the performance of CV applications at low penetration rates, the authors
of [60] proposed a new method to estimate the speeds and positions of CVs and non-
connected vehicles. The proposed method utilizes the information collected from CVs
and the speeds and flows of conventional vehicles collected from loop detectors. Thus,
the proposed method estimates the forward movement of conventional vehicles based
on collected data from CVs and sensors. Obtained results showed that estimation error
increases as the CVs penetration rate decreases. Furthermore, estimation error decreases as
the traffic demand decreases. For CVs penetration rates above 20%, the CVs-based TSC
strategy outperformed the commercial EPICS adaptive control in terms of minimizing
travel time delay and the number of stops. EPICS is an adaptive control system for
individual intersection optimization developed by PTV Group. It calculates signal program
parameters every second based on real-time traffic conditions, and depending on current
conditions system decides whether the phase needs to be adjusted [61]. Results presented
in [62] also indicated that the penetration rate of CVs above 20% improves traffic operations
compared to existing approaches. The authors developed algorithms for mixed flow traffic
state estimation, where the mixed traffic flow is contained of CVs and conventional vehicles
without communication capabilities (both types of vehicles are HDVs). The CVs and
sensors provided information about traffic, and the proposed methodology adjusted signal
timing accordingly. Testing in a simulated environment on five scenarios indicated that
even at the 10% penetration rate of CVs, the number of completed trips increased by 3.2%.

From the above mentioned facts, it can be observed that the penetration ratio of CVs
affects the traffic flow dynamics, although the CVs only provide onboard data. Being
able to operate independently of the driver suggests that the CAVs could be used as the
actuators in mixed traffic flows executing orders obtained from the TSC. Results from [21]
indicated that the increase in road capacity happens gradually before the penetration
rate of CAVs reaches 30%. Road capacity growth rate is mainly determined by the CAV
capability on the desired time gap when the CAV penetration rate is over 30%. The traffic
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system performance improves as the percentage of CVs and CAVs increases. Thus, because
their current market penetration rate is low, improving TSC is still challenging for traffic
engineers to open new research/application areas.

The use of CVs and CAVs is expected to have advantages such as increased road
capacity, traffic safety, and efficiency. As mentioned above, acting as mobile sensors, CVs
will provide rich real-time information to the TSC system. Based on provided data TSC
system have better insight into the traffic state, and gathered information is used for
optimizations of signal programs. Therefore, the TSC system can also inform drivers about
the current traffic state, recommending the driver’s optimal speed profile and/or route.
Currently, it is up to the driver if he will follow the recommendations. CAVs are also
mobile sensors but provide even more information to TSC systems since CAVs are usually
equipped with more sensors than CVs. Moreover, CAVs can be controlled by the TSC
system, where the TSC system informs CAVs about signal phase timing and sequence. With
such information, a particular CAV can alter its speed and route to reduce travel time and
emissions. With a sufficient penetration rate, CAVs can affect the speed of other vehicles
in traffic flow. However, a heterogeneous traffic flow made up of conventional HDVs,
CVs, and CAVs will exist for a while before the CAVs are fully deployed, which could
cause uncertainty in the existing transportation system. How much and in which way will
the existing transportation system be affected is currently unknown. Furthermore, it is
necessary to assess the connection between CVs and CAVs penetration rates and potential
improvements in road capacity. A tabular overview of referenced papers regarding the
impact of mixed traffic flows on TSC is summarized in the Table 2.

Table 2. Tabular overview of referenced papers regarding the impact of mixed traffic flows on TSC.

Paper Year Data Source Type Applied Method Impact Benchmark

[60] 2019 CVs, loop
detectors Model-driven method

Gipps’ car-following
model-based CV

signal control

Estimation vehicle
position and speed

Intersection capacity
utilization, EPICS

[62] 2020 Simulation, CV Data-driven method
TSE algorithms for
partially connected

networks

Better overall
performance compared
to existing signal plan

Real-world Vissim
simulation

[21] 2018 Simulation Model-driven method Two-lane cellular
automation

Road capacity growth
rate is determined by
CAV characteristics

Validation against
real-world dataset

7. Connected and Autonomous Vehicles Based Traffic Signal Control

Traffic signals and vehicles are mutually dependent. Increased traffic demand needs
different signal programs than decreased traffic demand to ensure maximum intersection
throughput. Conventionally, research on TSC did not consider the characteristics of the traf-
fic flow on the microscopic level (information about individual vehicles and their priorities).
In reality, signal timing influences the movements of individual vehicles and, thus, their
performances (such as emissions and fuel consumption). The most significant contribution
to reducing Greenhouse Gas (GHG) emissions have eco-driving and platooning, while
faster travel significantly contributes to the increase of GHG emissions [63]. Individual
vehicle performances are the critical input to traffic control methods on how to adjust
signal timing best [64]. The TSC system relies on the following control parameters when
changing the signal program: green time, offset, change interval, and cycle length. TSC
system balances these parameters among multiple intersections to reduce delays and the
number of stops regarding the controlled small intersection network.

Regarding current research, CAV-based TSC methods are usually designed first for
isolated intersections, then extended to corridors and even intersection networks. However,
the method extension is followed with the modification of the objective function to consider
the coordination of all the intersections [64]. Common approaches to solving TSC problems
are centralized and decentralized approaches and are applied in the case of mixed traffic
flows also. Centralized approaches usually compress optimization problems of multiple
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constraints to a single objective problem (e.g., the objective is to increase intersection
throughput). Decentralized approaches assume that the neighboring intersections’ traffic
information is known as environmental input. Although distributed approaches can reduce
computation complexity, those approaches may produce only locally optimal results.

Good examples of centralized approaches are [65,66]. In [65], the authors proposed
adaptive coordination in the CV environment, which relies on data gathered from CV on-
board units. Adaptive coordination incorporates dynamic programming and Mixed-integer
Linear Programming (MILP). The proposed methodology uses Dynamic Programming (DP)
to reduce vehicle delay at the intersection level for coordinated and uncoordinated phases.
MILP is used to optimize offsets along the corridor. Although the method utilizes real-time
data from CVs, in the case of CVs low penetration rate, the lack of data is compensated
with the data from stop bar traffic detectors. Thus, on average flow data, corridor-level
optimization was conducted offline to determine optimal cycle length. Similarly, in [66]
the authors developed a signal timing optimization and coordination framework based on
mixed-integer nonlinear programming. Problem complexity is reduced by decomposing
the problem into two levels: intersection level, where DP is used to optimize phase duration,
and corridor level, where the offsets of all intersection signal programs are optimized. The
method was tested in a simulation environment under various scenarios, and obtained
results revealed that the proposed method outperformed traditional actuated signal timing
and coordination plan. Furthermore, while the signal coordination scheme was favorable
for corridors with high traffic volumes, signal coordination had limited benefits for inter-
sections with low traffic volumes. Distributed-Coordinated methodology for signal timing
optimization in connected urban street networks is proposed in [67]. With the underlying
assumption that all vehicles and intersections are connected and can share information,
the network is decomposed into multiple individual intersections. For each intersection, a
MILP needs to be solved. Such an approach is a real-time and scalable solution technique
for signal timing optimization, where the timing decisions are made at the intersection level.
Another distributed approach example is proposed in [68], where the authors used a back-
pressure-based signal optimization method, combining fixed phase sequences with spatial
model predictive control. Each intersection is controlled independently, while traffic queue
lengths from surrounding intersections are used as input data. The main idea is to balance
queue lengths among the intersections, thus, the traffic volume is evenly distributed over
the traffic network. The results showed that even the distribution of queue lengths reduces
travel time and increases network throughput. In [69], the authors based their research on
the possibility of applying imaginary waiting queues and the back-pressure optimization
method for intersection management. Imaginary queues are calculated periodically based
on the traffic sensors’ data that the intersection management system receives. The signal
program for the traffic light is determined based on the calculated imaginary queues. The
key difference is that the proposed method determines the phase schedule and duration
based on historical data.

Tabular overview of referenced researches in this section is summarized in Table 3.
The above researches portray the application possibilities of CVs and CAVs in the area of
TSC. The computing and communication capabilities of CAVs allow them to be decision-
making agents in a multi-agent system. In this context, decision-making means that the
CAVs cooperating with other CAVs in real-time can replace conventional TSC, making
intersections autonomous. Implementation of autonomous intersections is enabled by
infrastructure through V2X communication and CAVs decision-making possibility. Au-
tonomous intersections are a complex topic that requires a lot of components in terms of
communication, infrastructure, and security. A possible approach for the autonomous inter-
section implementation is vehicle platooning, where the vehicles are grouped, maintaining
speed and distance. Platoons are coordinated with a leading vehicle, which negotiates
the right of way on behalf of the following vehicles [70]. In [71], the authors researched
platooning and proposed a scenario of a four-way autonomous intersection in a simulated
environment. Applying the Platoon-based Delay Minimization function, results indicated
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that the average delay is reduced up to 40%. This research considered the ideal situation
with CAVs and autonomous intersections. However, considering humans’ imperfections,
the question arises of how such a system would work with the HDVs. Research results
indicated that the average delay increases for all vehicles if there is more than 5–10% of
HDVs, where the CAVs were blocked by HDVs [72]. Nevertheless, CVs and CAVs can
contribute to alleviating congestion on isolated intersections and corridor intersection
configurations with their improved driving characteristics. Namely, CVs and CAVs have a
better responses to traffic control signals due to faster reactions to signal change, shorter
space and time headways, platooning, and data sharing as described in [70,71].

Table 3. Tabular overview of referenced papers regarding CV and CAV based TSC.

Paper Year Data Source Type Applied Method Impact Benchmark

[66] 2020 Simulation,
real-world data Model-driven method

Traffic signal
coordination

formulated as MINLP

Improved traffic signal
performance

Compared to existing
actuated signal timing

[69] 2018 Real-world
data Model-driven method Back-pressure based

ATSC
Reduced average

vehicle travelling time

Fixed-cycle and
Backpressure

algorithms

[67] 2017 Simulation Model-driven method

Distributed-
coordinated

methodology for
signal timing
optimization

The algorithm
controlled queue length,
maximized intersection

throughput and
reduced travel time

Tested on different
scenarios in
simulation

[65] 2017 Real-world
data Model-driven method

Two-level
coordination

algorithm

Offset optimization
along corridor

Actuated-
coordinated signal
control by Vissim

[71] 2017 Simulation Data-driven method
Platoon-based

intersection
scheduling algorithm

Reduce average delay
per vehicle by up to 50%

Evaluation in
simulated

environment

8. Discussion

From the reviewed papers can be concluded that TSC is a topic that produces high
research interest in the field of traffic engineering. Although TSC is a well-founded research
topic, TSC is still a focus of interest for many researchers applying new findings from opti-
mization, control and machine learning, and with the emergence of CVs and CAVs the field
of TSC gained new application possibilities because of CVs and CAVs communication/data
sharing capabilities. Regarding the applicability of CVs and CAVs in TSC, questions such
as the influence of the penetration rates, data sampling rates, and data processing method-
ologies can be singled out. In [21], it is stated that CAVs can increase road capacity because
of their capability to obtain more precise driving condition parameters compared to HDVs.
The authors observed that the increase of the road capacity happens gradually before the
CAVs penetration rate reaches 30% penetration rate, and above 30% penetration rate the
increase of road capacity depends on CAV capability to maintain the minimum time gap.
A similar observation is noticed in research [60–62]. Although the authors conducted the
research independently on different models, they observed that a CV penetration rate of
20% improves system performance.

Considering the CV’s capability to share onboard data, data-driven methods and
streaming-data-driven methods are reasonable choices for real-time traffic control applica-
tions even with their pros and cons. While data-driven methods can provide information
about conditions on turn-level [54] or even on network level [45], they rely on historical
data which means they are prone to failure if an irregular event occurs (e.g., traffic acci-
dent). However, streaming-data-driven methods are relying on streaming data and weak
assumptions which require large amounts of data. They are more robust to unexpected
events and include data from various sensors [41,59].

Driven by the results of the STM applications in [42], it is evident that STMs are
one approach for processing real-time data from CVs and CAVs. Thus, future work
will be focused on TSC systems for mixed traffic flows, especially the exploration of CV
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applications in TSC, with the final goal of developing STM-based TSC. The idea of the
development will be how to apply the STM to estimate the state of the intersection with the
final goal to achieve ATSC, meaning that the obtained information about the state of the
intersection will be used as input for the TSC. In the early stage, the goal is to implement
the methodology for an isolated intersection and then to upgrade the methodology to more
(2 to 4) consecutive intersections or, hopefully, a small network of intersections. To achieve
these research goals, it is mandatory to make further research on CV penetration rates
and data sampling rates. Results in [44] indicated that STM accuracy varies depending on
CV penetration rate where accuracy was decreased during morning and afternoon rush
hour, and that is the result of vehicles being stationary. If vehicles are stationary there is a
reduced chance of making transitions and STM lacks data. That problem can be alleviated
by increasing the number of transitions, however, an increased number of transitions
increases the number of generated STMs. The number of transitions and data sampling
rate can be determined by performing a sensitivity analysis while the problem of stationary
vehicles could be resolved utilizing pattern recognition and machine learning techniques.

9. Conclusions

This paper provides an overview of the current research area state of mixed traffic
flows and TSC to alleviate traffic congestion. Causing additional expenses and reducing
the quality of life, urban congestion is one of the major problems for every city. Moreover,
congestion even affects the development and economic growth of the cities.

The available traffic data sources limit current TSC solutions. Conventional data
sources cover only a section of the road in a fixed location, meaning they can provide limited
information about vehicles and traffic flows. The rising popularity of CVs changes the
traffic characteristics of urban areas. Many researchers explored topics of CV applications
in TSC, and most of the results imply that the presence of CVs increases road capacity.
Researches imply that the impact of CVs significantly depends on CVs penetration rates.
CVs also affect traffic flow dynamics due to their different driving characteristics, and the
results vary depending on road type. Thus, the necessary penetration rate of CVs to achieve
reliable results remains an open question.

New TSC strategies are complex and require high-resolution data, which CVs can
provide. In that context, the availability of real-time traffic data on the microscopic level
originating from CVs opens new research possibilities and enables new traffic and infras-
tructure management solutions. The problem of real-time processing of such data is evident
and streaming data methods are a possible solution for this. One promising approach is
based on STMs with the possibility of covering urban motorway and intersections traffic
scenarios, especially since bottleneck locations and their intensity can be estimated with
STMs. Nevertheless, more in-depth insight into the traffic network state can be gathered
enabling the development of new TSC approaches using this microscopic-level data. New
solutions also apply to TSC, where signal programs can have an effect on a city’s traffic
flow dynamics.
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ACC Adaptive Cruise Control
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ATSC Adaptive Traffic Signal Control
CAVs Connected Autonomous Vehicles
CNN Convolutional Neural Network
CVs Connected Vehicles
DP Dynamic Programming
FTSC Fixed Time Signal Control
GCN Graph Convolutional Network
GPS Global Positioning System
HDV Human Driven Vehicle
ITS Intelligent Transportation Systems
kNN k-Nearest Neighbors
LIDAR Light Detection and Ranging
MILP Mixed-integer Linear Programming
NMF Non-negative Matrix Factorization
RADAR Radio Detection and Ranging
RL Reinforcement Learning
SAE Society of Automotive Engineers
STM Speed Transition Matrix
SVM Support Vector Machine
TSC Traffic Signal Control
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
V2X Vehicle-to-everything
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