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Abstract: The successful outcomes of deep learning (DL) algorithms in diverse fields have prompted
researchers to consider backdoor attacks on DL models to defend them in practical applications.
Adversarial examples could deceive a safety-critical system, which could lead to hazardous situations.
To cope with this, we suggested a segmentation technique that makes hidden trigger backdoor
attacks more robust. The tiny trigger patterns are conventionally established by a series of parameters
encompassing their DNN size, location, color, shape, and other defining attributes. From the original
triggers, alternate triggers are generated to control the backdoor patterns by a third party in addition
to their original designer, which can produce a higher success rate than the original triggers. However,
the significant downside of these approaches is the lack of automation in the scene segmentation
phase, which results in the poor optimization of the threat model. We developed a novel tech-
nique that automatically generates alternate triggers to increase the effectiveness of triggers. Image
denoising is performed for this purpose, followed by scene segmentation techniques to make the
poisoned classifier more robust. The experimental results demonstrated that our proposed technique
achieved 99% to 100% accuracy and helped reduce the vulnerabilities of DL models by exposing
their loopholes.

Keywords: backdoor attacks; alternate triggers; data poisoning; adversarial examples; deep
learning models

1. Introduction

Deep learning (DL) models are trained on large datasets, and in the absence of GPUs,
their processing is a cumbersome job. In such circumstances, the common practice is to
use small datasets from untrusted sources, which is justifiable in benign environments;
however, in critical scenarios, untrusted datasets can result in data poisoning by backdoor
attackers. Taking datasets from unreliable sources (poisoned datasets) is considered a
poor approach to training, testing, or analyzing a classifier’s performance and drives the
model into great jeopardy, especially in the form of backdoor attacks [1]. Backdoor attacks
evolved as a popular approach for poisoning DL classification models [2–5]. The concept
of backdoor attacks was introduced in [6], where a backdoor was planted in any DL model
trained on the poisoned dataset. A backdoor trigger is used to activate a backdoor during
the inference phase. A trigger can be any small patch added to the image data to activate a
certain backdoor attack and ultimately deceive the classifier.

An attacker with access to (just a tiny portion of) the training data can add a “trigger”
to it and alter the results. A general assumption for accessing a backdoor trigger is the sole
proprietorship right of its owner. There are some solid reasons for negating this assumption,
as a very common way of achieving this is generating alternate triggers. The reason behind
the formation of alternate triggers is to give access to a third party to control the poisoned
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classifier without accessing the original backdoor. To put it another way, placing a backdoor
into a model not only gives the adversary access to the trigger but also allows anybody to
manipulate it in the same way. In practice, whoever this third party may be, they can use
cloud machine learning APIs to access DL services or pre-trained classifiers. The presence
of a patch triggers the classifiers to make a specific prediction during the inference phase
without affecting the classifier’s performance. The attacker might then use this triggered
classifier to misclassify any image during the test phase. For each backdoor attack, the
process of creating alternate triggers and identifying their success is primarily manual
and requires human involvement. This makes the suggested approach less efficient, since
human-in-the-loop makes the trigger-generating process not only time-consuming but
also error-prone.

However, some hidden trigger attacks have been proposed in the literature whereby
the poisoned data are accurately labeled but lack any visible trigger, making it challenging
for the victim to recognize the poisoned data visually. Moreover, their accuracy can be
challenged, as most of these solutions rely on an algorithmic approach to recover the
original backdoor trigger manually [7]. This attack involves a significant amount of manual
engagement. In order to find the critical parameters of alternate triggers, the user must
manually identify the adversarial instances generated for robust classifiers. In the same
way, a patch-based backdoor technique is utilized whereby the backdoor triggers are
selected without considering the dataset and the attack class [8]. Deep neural networks
(DNNs) trained on such datasets also have abnormal activations during inference, which are
detectable by the backdoor detection techniques. Therefore, patch-based backdoor attacks
are ineffective, since they fail to bypass the model development verification phase [9].

Based on manual inspection, the significance of the results seems to be compromised
as human error comes into play and evades the trigger’s detection. In other words, the
manually proposed triggers are successful but result in a declined optimization. There-
fore, manual work causes unwanted errors, since some backdoor patterns may remain
unattended by human beings [10]. The need to overcome manual scene segmentation’s
downside is inevitable, and it must be replaced by automatic procedures to generate
alternate triggers.

In this paper, we aimed to automatically generate the alternate triggers from adver-
sarial examples of robust poisoned classifiers (classifiers where denoised smoothing is
applied). Therefore, we developed a novel threat model in which the poisoned classifier is
controlled by some anonymous attacker who does not have access to the actual backdoor.
Moreover, this paper presents an altered attack process where the manual work is replaced
by automating the image segmentation process to discover the triggered patches in the
poisoned classifiers. In this regard, we performed the denoised smoothing of the poisoned
classifier, followed by the perturbation of images to test the smoothed classifier. We then
examined the adversarial samples automatically to generate new effective triggers and ex-
tract the patches. We demonstrated how one may consistently construct multiple alternate
triggers comparable to or even more effective than the original trigger. To the best of our
knowledge, we are the first to implement an automatic method for generating alternate
triggers. The prominent contributions of this paper are the significant findings produced
using poisoned classifiers, which showed the existence of several potential triggers. This
characteristic is crucial for evaluating and analyzing backdoor attacks. We evaluated our
proposed mechanism on a benchmark dataset, i.e., ImageNet. The automatic alternate
triggers on backdoor attacks allowed us to inspect the adversarial examples in a meaningful
way, with significance for both the artificial intelligence and privacy industries, since they
demonstrated that backdoor attacks offer many new vulnerabilities that far surpass what
was previously anticipated.

Our main contributions are summarized as follows:

• We developed an interpretable effective alternate trigger that provides access to the
adversary and allows him to manipulate the alternate triggers.
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• We were the first to perform the automation of generating alternate triggers to replace
manual inspection for finding the patches on poisonous images, which reduced the
human-in-the-loop errors to a greater extent.

• We performed a comparative analysis with state-of-the-art techniques to prove the
effectiveness of our automatically generated alternate triggers. This proved that our
proposed mechanism enhanced the robustness of the hidden backdoor attacks by
making them undetectable by a defense mechanism at any stage.

• The rest of the paper is organized as follows. Section 2 describes the preliminary
details of backdoor attacks. Related work is reviewed in Section 3. Section 4 explains
the methodology of the proposed mechanism. Section 5 details the results obtained
by experimenting with the proposed mechanism on the benchmark dataset. Discus-
sions on the results achieved are presented in Section 6. Finally, Section 7 concludes
the paper.

2. Preliminary: Backdoor Attack

This section provides a comprehensive background for backdoor attacks working on
DL classifiers.

Adversarial attacks against DL models can be categorized according to their imple-
mentation, either during the inference phase or during the training phase [11]. Adversarial
attacks, also known as adversarial example attacks, typically fall under the category of
inference-time attacks [12–15]. Inference-time adversarial attacks tamper with the DL
model during the inference phase, whereas training-time attacks manipulate the samples
of the DL model during the training phase. The famous membership inference attacks [16]
and model inversion attacks [17] are also inference-time attacks. We also focused on a type
of inference-time attack, i.e., backdoor attacks [7].

A backdoor attack is an attack type wherein the DNN model is trained with particular
inputs, and once these inputs are fed with a special trigger, the DL system outputs the
corresponding predefined results. On the other hand, when a normal input is applied
without the special trigger, the system behaves normally. There are two major types of
backdoor attacks, i.e., poison-label attacks and clean-label attacks. The difference between
the two is the poisoning of their parameters. In poison-label attacks, the training examples
and labels are both poisoned, while in clean-label attacks, only the training examples are
poisoned [18]. The effectiveness of both these attack types depends upon their detection.
The lesser the detection of a poisoning attack, the stronger the attack is [19]. The most
common way of attacking with a backdoor is to arrange a poisonous class that triggers the
backdoor to misclassify various classes to form a target class. Hence, the attack success rate
is also considered to speculate on the effectiveness of the attack.

On the contrary, the robustness of DL classifiers depends upon their strength against
adversarial attacks. To make the classifiers robust against adversarial attacks, the classifiers
are properly trained while keeping such attacks in view [20]. When applied to classifiers,
the adversarial examples show the imprudent behavior of the DL models that repeatedly
misclassify the input and result in an unexpected output. Adversarial attacks are pertur-
bations in the classifier input to deviate the model from accurate predictions [13], defined
as follows:

xadv = x + ε · sign (∇x J(h(x), y)) (1)

In Equation (1), x represents the actual input, while ε denotes the small values,
e.g., 0.007, that are injected as noise. ∇x represents the gradient of the loss function
relative to the input image. On the other hand, J(h(x), y) are the parameters of the function
J used to compute the cost of training the neural network.

The aim of an untargeted attack is to maximize the loss between h(x) and h(x′) until
the outcome is not equal to y. This attack can be transformed into a targeted attack by
changing y to y′i where y′i denotes the target label. This change results in a decrease in
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cross-entropy loss between the predicted outcomes and the target outcome. Thus, the loss
function is changed from ` (h (xi), yi) to ` (h (xi), y′i), where y′i 6= yi.

Minimize di f f erence (h(x) and h(x′)) where prediction 6= y (2)

Minimize loss (h(x′) and y′) where h(x′) = y′ (3)

In a targeted attack, there is an additional goal of minimizing the loss between h(x′)
and y′ until h(x′) = y′, along with maximizing the loss between h(x) and h(x′). An untar-
geted attack is formalized in Equation (2), while a targeted attack contains the additional
goal described in Equation (3) along with Equation (2).

3. Related Work

This section presents a detailed literature review on backdoor attacks and alternate triggers.
Generally, backdoor attacks are implemented by segmenting images; e.g., Saha et al. [3]

extended the standard backdoor attack in such a way that the trigger is hidden even
during model training. They suggested a hidden trigger backdoor attack, in which the
poisoned data are appropriately labeled with a true label and without any perceptible and
apparent trigger, making it difficult for the user to recognize the poisoned data by visional
observation. Similarly, a novel threat model was suggested by Sun et al. [21], where the
poisoned classifier is controlled by a third party that does not have access to the original
backdoor. Most of these techniques rely on an algorithmic approach to restore the initial
backdoor trigger, using a human-in-the-loop mechanism.

Zhang et al. [22] proposed a generalized attack framework and classified all the
work on backdoors as a subtype of this generalized framework. This work categorized
backdoor attacks into two distinct attack types, i.e., poisoning-based backdoor attacks and
non-poisoning-based backdoor attacks. BlindNet backdoor was proposed by Kwon and
Kim [23], where a blind-watermark method was introduced. The technique behind the
method was to create a blind-watermark sample that inserts an image into the input data
with a specific frequency band using Fourier transform. As a result, any model incorrectly
classifies the sample with that particular watermark. Qi et al. [24] talked about a physically
realizable gray-box deployment-stage attack. The technique is termed a subnet replacement
attack (SRA), which selectively modifies the model weights for embedding the backdoors
into DNNs.

The imperceptible input for generating adversarial examples was introduced by
Szegedy et al. [12], which stands as a pioneering work in the field of adversarial examples.
The authors presented unit analysis and negated the distinction between individual units
and random linear combinations of units. Later, Goodfellow et al. [13] exposed the linear na-
ture of neural networks and placed the total responsibility for this fragility on the linearity
of deep learning classifiers. The paper demonstrated the direct proportion of the optimiza-
tion capability of a model to the adversarial perturbation vulnerability. WaNet is a unique,
simple, and effective backdoor attack based on picture warping [25]. It generates backdoor
pictures with a tiny and uniform warping field to make the alteration imperceptible.

Salman et al. [26] developed a denoised smoothing mechanism to defend pre-trained
classifiers against adversarial attacks. The technique works by taking an image classifier
and applying the denoiser approach to achieve randomized smoothing. The classifiers
can be tested on white-box and black-box scenarios. Similarly, some countermeasures
were taken against backdoor attacks, focusing on trigger-reconstruction-based defense
techniques [27,28]. This work was carried out to defend neural networks against the
surge in backdoor attacks. Wang et al. [27] focused on the vulnerabilities of DNN that are
exploited by backdoor attacks to misclassify the expected output. A brief comparison was
also conducted between TABOR and Neural Cleanse, i.e., a state-of-the-art trigger detection
method [28]. Koh et al. [29] presented data sanitization, a common defensive approach
against these attacks, filtering out any abnormal training points before training the model.
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In this study, the researchers proposed three approaches to circumvent a wide range of
typical data refinement defenses: closest-neighbor anomaly detectors, training loss, and
singular-value decomposition. There are some backdoor attacks related to communication
as well; although their shape differs from data breaches or data leakage, they result in the
same outcomes as backdoors. The same concerns were shown in [30]. Quadir et al. [31]
discussed the realm of cybersecurity, where the creation of intelligent systems has been
paramount in detecting malicious attacks. These sophisticated systems integrate advanced
artificial intelligence and machine learning algorithms to detect potential threats.

As a result, these firms obtain data that are private and secure, ensuring that they are
not used by others for their own gains to blackmail or threaten the user. In recent years,
data breaches or leaks have increased; if these data fall into the wrong hands, there could
be a lot of difficulties and a great deal of controversy, since personal data can be utilized
and managed without consent. There is no efficient and robust approach to detect whether
a website is a phishing website or not in real time, and no effective tracking ability to
determine where the data are going. Most of the attack types mentioned above relate to the
training of a model that associates an input pattern with a particular target label from an
adversary. These techniques mostly pick random samples and modify these samples by
applying backdoor triggers. However, most of these methods rely on adapting the standard
poisoning setting by generating less visible triggers. As a result, some defense mechanisms
have also been introduced based on a model’s trigger structure or latent representation.

None of these techniques, including denoised smoothing, provide formal guarantees,
and their evidence of robustness is also vague. These models lack perfection due to their
human-in-the-loop nature. These threat models are used when a third party lacks access to
the original backdoors, which paves the way to create alternate triggers for accessing the
poisoned classifier. Third parties usually utilize ML APIs to gain access to deep learning ser-
vices or pre-trained classifiers. This attack process shows how multiple substitute triggers
that are as effective as the original triggers or even more so can be consistently constructed
in this way. In these models, a human-involvement method prevails for generating triggers
and seeking to overcome the limitations of manual engagement. Specifically, the user
must manually study the adversarial instances generated for robust classifiers to identify
the critical parameters of alternate triggers. These attacks can be automatically generated
to evade detection, but the feasibility of automatic implementation remains a challenge.
The core contribution of our research lies in proposing a new method for constructing
alternative triggers, which could have significant implications for improving the quality of
deep learning systems against backdoor attacks.

4. Materials and Methods

Generating alternate triggers is a fundamental idea of this work, and the openness
to attacks is based on the initial trigger. Our method optimizes poisoned images close to
source images, having fixed the trigger in the feature space and comparable to targeted
visuals in the pixel space. An attack process is presented to demonstrate how to construct
several alternate triggers automatically with consistency, which is exactly as effective as the
initial trigger or even more robust, given only a trained model and a complete denial to
access the original trigger or training samples.

The proposed mechanism is divided into four phases to ensure the automatic genera-
tion of alternate backdoor attacks, as depicted in Figure 1. In the first phase, the denoised
smoothing of the poisoned classifier is performed, and a base classifier f is converted to the
smoothed classifier g, which is said to be robust according to the `2 norm. The perturbation
of adversarial images follows the denoised smoothing to obtain the saturated color of
the image. Afterward, the robust poisoned classifiers are utilized to create untargeted
adversarial examples. Next, the triggers are generated by picking the representative color
or cropping the image with a backdoor pattern. Finally, the model extracts the patches
automatically by deploying the non-local means (NL-Means) technique.
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The details of each phase are presents below.

4.1. Phase 1: Denoised Smoothing of Poisoned Classifier

The main idea behind denoised smoothing is to make the classifiers robust against
relatively large random Gaussian perturbations. Randomized smoothing is organized to
transform the arbitrary model f into a smoothed model g to be considered as a certified
robust model according to the `2 norm. The base model f is not exhaustively trained to
become robust against Gaussian perturbations and hence classifies Rd (inputs to an arbitrary
classifier) to some target classes y. The input x of the smoothed classifier’s prediction g(x) is
a prediction of f with random Gaussian corruptions [32]. However, when x is perturbed by
isotropic Gaussian noise and queried, the smoothed classifier g returns the base classifier f
and is most likely certified as adversarially robust via randomized smoothing using the
following equation:

g(x) = argmax
cεY

P( f ◦ D(x + δ)= c) (4)

where
δ ∼ N

(
0, σ2 I

)
(5)

In Equation (4), P denotes the function with several arguments, where f is the pre-
trained classifier, D is a custom-trained denoiser, and the actual input x is added to the noise
δ In this equation, σ denotes the noise level and controls the difference between accuracy
and robustness. Hence, the robustness of a smoothed classifier automatically increases
when the value of σ increases, on the other hand, its standard accuracy decreases.

Randomized smoothing is a good option while smoothing the classifiers, but the
problem lies in making a classifier robust, especially when no retraining is performed in
the underlying model. Randomized smoothing works well in its entirety; however, the
retraining problem is still unresolved and has not been investigated yet. This incapacity
of randomized smoothing is not due to the robustness of the base classifier f to some
arbitrary large Gaussian perturbations; instead, it is due to the presence of off-the-shelf
pre-trained models [26]. Hence, by applying the custom-trained denoiser to the classifier
f, the Gaussian perturbations can be made more robust, thus making it “suitable” for
randomized smoothing. Standard classifiers are not usually trained to make them robust
against Gaussian perturbations.

Denoised smoothing is a general method to render randomized smoothing to make
the classifiers effective for pre-trained models. The basic idea is to endorse the already
utilized pre-trained classifiers by using randomized smoothing without any modification
to the classifiers when obtaining non-trivial certificates. The black-box approach is utilized,
which has no access to the internal structure of pre-trained classifiers. The denoising of
classifiers avoids the usage of Gaussian noise augmentation for training the underlying
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classifier f ; instead, it utilizes an image-denoising pre-processing approach before directing
these inputs through f. In other words, denoise smoothing is intended to remove the
Gaussian noise utilized in randomized smoothing. This work is materialized by extending
the classifier f with the custom-trained denoiserDθ : Rd→ Rd. Thus, the new base classifier
can be defined as f ◦ Dθ : Rd → Y.

Formally, the denoised smoothing can be characterized as follows:

f ◦ Dθ : g(x) = argmax
cεY

P[ f (Dθ(x + δ)) = c] where δ ∼ N
(

0, σ2 I
)

(6)

Here, the classifier g guarantees fixed prediction within an `2 ball of radius R and
centered at x. Applying the randomized smoothing here makes the new classifier f ◦ Dθ

more robust, not the old pre-trained classifier f.
Thus, denoised smoothing is used to make robust poisoned classifiers. The robust

classifiers are guaranteed to be robust since denoised smoothing is a validated defense. The
smoothed classifier’s adversarial examples are then perceptually significant to analyze, as
shown in Figure 2.
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Figure 2. Visualization of adversarial sample from the robust poisoned classifier. The left image
represents the clean image, and the right demonstrates the denoised smoothing.

4.2. Phase 2: Perturbation of Images for Testing the Smoothed Classifier

Our proposed Algorithm 1 ascertains the next phase as the perturbation of images of
the smoothed classifier. The perturbation is denoted as generating the adversarial example,
as shown in step 2 of the algorithm, where a targeted backdoor attack is generated. We
generate a targeted adversarial attack, so the argmin function is applied along with its
parameters, where y is the target class, and we want f (xadv) 6= y. As mentioned in [7], the
colors become more saturated in local color regions when larger perturbations are applied,
e.g., ε = 20/60. However, this is contradictory to proposals where smaller perturbations are
usually tested to generate adversarial examples, as explained by Goodfellow et al. [13].

Algorithm 1 Construction of alternate triggers using smoothed adversarial technique.

Input: A poisoned classifier f, the denoised smoothing mechanism DS, the dataset (x,y).
1. Conversion of an already poisoned classifier f to a robust smoothed classifier.
2. Generate adversarial examples (smoothed):

xadv = argmin
||x∗−x||ρ

L(DS· f (x∗), y)

3. Image segmentation using HSV color spacing.
4. Selection of the regional backdoor patterns automatically, i.e., without human interaction, and the construction of the color as
well as cropped patches from selected backdoor patterns.

Thus, we applied a larger perturbation size, i.e., ε = 60, in our image segmentation
technique to make the perturbation colors prominent. The basic idea behind the larger value
was to have large perturbations of images to obtain the color saturation of smooth poisoned
classifiers. Therefore, these parts of the images become more and more prominent; on the
other hand, these regions are substantially less noticeable when tested on a clean classifier.
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4.3. Phase 3: Examining Adversarial Samples

The colors made by the association between local color areas and the backdoor usually
relate to the color of the backdoor. These color regions provide us with important knowl-
edge regarding the initial trigger. Figure 3 shows different poisoning results in the form of
dissimilar color spots, which were exposed after the denoised smoothing was applied to
these images.
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The purpose of showing these irregular color spots was to highlight our obliviousness
to the original backdoor and the targeted class. However, we had to examine the images as
proposed in our algorithm and generate the untargeted adversarial examples. Therefore,
the poisoned classes became evident after generating the adversarial example.

4.4. Phase 4: Generating the New Effective Triggers

To generate adversarial samples, we used basic image operations. There are two com-
mon methods to generate the next triggers, either (i) picking a representative color from
a backdoor pattern, or (ii) cropping an image with a backdoor pattern. However, we
employed both these methods, since the novelty in our approach is the selection method
of representative pixels. In previous works, the representative pixels were chosen manu-
ally; however, here, we automated the whole procedure of alternate trigger creation. The
patches were extracted by the non-local means (NL-Means) technique to patch-wise filter
the sub-images.

The estimation of NL-Means [v]i for any pixel i was calculated as follows:

NL−Means [v]i = ∑
jεI

ω (i, j) [v]j (7)

Here, [v]i and [v]j represent the intensities of the pixels at the locations i and
j, respectively. Similarly, ω (i, j) is the measure for managing the similarity between
pixels i and j. It is worth noting here that the similarity index satisfies the equations
0 ≤ ω (i, j) ≤ 1 and ∑j ω (i, j) = 1. In the same way, the similarity of weights depends
upon two things: first, the similarity at the gray level, and second, the Euclidean distance
between the two vectors, i.e., N[v]i and N[v]j, while N[v]k denotes a fixed-size square
vicinity centered at pixel k [33].

The pixel locations were extracted through image segmentation using color spaces
in OpenCV. The image was read to find the connected components using the ‘bwlabel’
function, which helped to identify the colors prominent in the backdoor patterns. The
bounding box was drawn around the connected regions to determine our image’s most
dominating colors. To display the most dominating color in the image, the area was
calculated for each connected region, and the region with a large area was selected. As
for the cropped patch, we cropped the regions with the larger area around these pixels
as cropped patches (step 4 of the algorithm). The ImageNet dataset was used to assess
our attack against the poisoned classifier. Moreover, this approach was more practical
and effective than baseline approaches in identifying possible alternate triggers for several
commonly used backdoor poisoning methods. These alternate triggers had an attack
success rate comparable to or higher than that of the original backdoor.
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5. Results

We evaluated our proposed mechanism on a benchmarked dataset: ImageNet. The
automatic generation of alternate triggers on backdoor attacks allowed the inspection
of adversarial examples, with significance for both the artificial intelligence and privacy
industries, since it demonstrated that backdoor attacks offer new vulnerabilities to far
surpass what was previously anticipated. We implemented our proposed mechanism to
evaluate its performance in terms of accuracy.

5.1. Dataset Selection

An already poisoned classifier was utilized on the ImageNet dataset with a 224 × 224
image, whereas a 30 × 30 alternate trigger was used. To evaluate the automation of the
image segmentation technique, we employed a binary classifier and took 15 distinct pictures
of the panda class from the ImageNet dataset. For the poisoning of images, we adopted
the same images as those utilized by Sun et al. [7]. These poisoned images were used to
demonstrate the effects of denoised smoothing. As far as the noise level of the classifier is
concerned, the noise level was kept higher than the ordinary value, i.e., 1.00. Similarly, a
large epsilon value was utilized, e.g., ε = 60, to highlight the features of the images so that
the colors were clearly visible and easily detected by the image classification mechanism.

5.2. Denoised Smoothing

Adversarial examples of the smoothed classifier were calculated by this approach.
The actual denoised image formed by the model to extract the color and cropped patch
for attacking the poisoned classifier is depicted in Figure 4. With the help of the denoised
image results, we noticed some prominent color regions, which were largely related to the
backdoor colors. This implied that these local color patches could effectively reveal the
color of the initial trigger.
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5.3. Masking

The simple segmentation method effectively located the backdoor pattern colors. It
is obvious from our results that the technique was successful in automatically extracting
the alternate triggers from the poisoned classifiers. A HSV color space was generated from
the RGB image. Because colors are more localized and recognizable in this color space,
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HSV was the preferred choice. The images were segmented further using OpenCV tools.
Hence, a basic understanding of OpenCV’s color spaces for visual color segmentation was
acquired. This segmentation approach was simple, rapid, and reliable. A minor depiction
of the masking results is shown in Figure 5.

Figure 5. Extraction of backdoor pattern through masking.

5.4. Automation of Image Segmentation and Comparison with Existing Techniques

The previously utilized method employed a manual representation of pixels to extract
the color that was thought to indicate suspicious regions (triggers) and further selected as a
potential alternate trigger. However, we automatically generated the alternate triggers by
deploying the image segmentation technique through color and cropped patches. Since
the cropped patch results were more significant than the color patch results, as shown in
Figure 6, we compared our cropped patch results with other techniques. To show the results,
we selected four images out of 15. The cropped patch results of the automatically generated
triggers achieved accuracies of 98.89%, 100%, 100%, and 98.89% on image1, image2, image3,
and image4, respectively, as shown in Table 1a and Figure 6a. Table 1b and Figure 6b show
the results of the human-in-the-loop approach, with accuracies of 73.4%, 99.8%, 80.8%, and
96% on image1, image2, image3, and image4, respectively. A brief comparison was also
made between the human-in-the-loop and automatic approaches, as shown in Table 1c. It
can be observed that the results obtained by the automatically generated triggers were far
better than those of the triggers generated through the human-in-the-loop method.

Table 1. Comparison of human-in-the-loop technique and our automatic technique for attack success rates.

(a) Automatically Generated
Patches

(b) Triggers Generated from
Human-In-The-Loop Approach

(c) Accuracy Comparison of
Cropped Patches

Color Patches Cropped Patches Color Patches Cropped Patches Our Results Previous Results

Image 1 96.67 98.89 93 73.4 98.89 73.4
Image 2 94.44 100 98.4 99.8 100 99.8
Image 3 91.11 100 97.4 80.8 100 80.8
Image 4 94.44 98.89 97 96 98.89 96.8
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5.5. Bounding Box around Backdoor Region

We used a binary mask to extract the colors of the backdoor pattern. To extract the
patches, the label was computed for each connected region using the Label function of
OpenCV. The label denoted a continuous region; we could simply iterate over all non-
background labels. The first continuous region or linked component belonged to label 1,
the second connected component belonged to label 2, and so on. This method detected the
image’s numerous blobs. A bounding box was drawn around these labels, as shown in
Figure 7, which illustrates a bounding box for a continuous region.
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Figure 7. Drawing of bounding boxes around connected regions to extract the most effective color
and cropped patches. These bounding boxes further selected the most dominant color region with a
larger area.

The area of these regions was calculated through the regionprops function, which is
used to count the number of pixels in a connected region. The label with a greater area was
selected as the most dominating region. The centroid function helped to find the center of
these labels or connected components that were used to develop alternate triggers with
the same size as the backdoor trigger used throughout the ImageNet poisoned classifiers,
which was 30 × 30. Two triggers were generated with the help of this process, i.e., the color
patch trigger and cropped patch trigger.

The color and cropped patches were both produced from the adversarial cases as
shown in Figure 8, which was built by targeting hidden trigger backdoor attack (HTBA)
using the ImageNet dataset.
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Figure 8. The color and cropped patch triggers are generated through image segmentation using
HSV color space and OpenCV functions. These distinct triggers are more effective than the original
backdoor trigger.

6. Discussion

We evaluated the accuracy of the automatic approach by comparing it with state-
of-the-art methods: original backdoor trigger [3], human-in-the-loop [7], and randomly
cropped patches [3,7]. The automatic approach improved the accuracy by roughly 85.07%
as compared to the original backdoor trigger, human-in-the-loop, and randomly cropped
patches, as shown in Table 2. This showed that our approach obtained high accuracy as
compared with existing techniques, which proved the robustness of our approach. The
statistics in Tables 1 and 2 present an accuracy of well over 98% for automatically generated
triggers, whereas the manual work corresponded to a significant variation in accuracy
between 73.4% and 99.8%. It can be observed that the results obtained by automatically
generated triggers were far better than those of the triggers generated through the human-
in-the-loop method. Hence, it is preferable to automate the image segmentation process and
identify the triggered pixels to overcome the limitations caused by the manual examination
of images.

Table 2. The attack success rate of different techniques showing the highest percentage.

Trigger Technique Accuracy

Original backdoor trigger 94
Human-in-the-loop 99.8

Randomly cropped patches 14.93
Proposed automatic approach 100

Our approach could be considered to expose privacy vulnerabilities in classifiers
poisoned by backdoors. Even though the initial backdoor was hidden, we demonstrated
how to extract substitute triggers. On the other hand, our study found that machine learning
researchers who train and implement their models need to be more attentive regarding
cleaning their data. Otherwise, backdoored classifiers may be far more dangerous than
initially believed.

7. Conclusions

In this paper, poisoned classifiers were used to extract alternate triggers without
having access to the original trigger. We suggested an automated strategy to create poisoned
classifiers in our adversary model. Previously, this work has been carried out with the
human-in-the-loop method. According to our findings, smoothed adversarial instances of
robust poisoned classifiers potentially revealed patterns that were related to backdoors. Our
backdoor attack technique created new alternate triggers using these backdoor patterns, and
it was discovered that they functioned analogously or even better than the original backdoor.
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Our paper highlights the vulnerability of the poisoned classifier. Overall, our findings
revealed that, contrary to what prior work has implied, a hidden backdoor is not required
to modify poisoned classifiers, emphasizing the true vulnerability of poisoned classifiers
in realistic circumstances. Secondly, the human-in-the-loop approach was eliminated,
and the automatic method of extracting alternate triggers with a higher success rate than
the original backdoor triggers was successfully implemented. Compared to the original
backdoor triggers, these automated alternate triggers were more successful in highlighting
the susceptibility of the poisoned classifier to an adversary with no need to access the
original trigger. We believe our promising results can facilitate future research to analyze
and develop more robust defense models that can be deployed in critical real-world
applications in the presence of adversaries.
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