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Abstract: This paper examines applying machine learning to the assessment of the quality of the
transmission in optical networks. The motivation for research into this problem derives from the
fact that the accurate assessment of transmission quality is key to an effective management of an
optical network by a network operator. In order to facilitate a potential implementation of the
proposed solution by a network operator, the training data for the machine learning algorithms are
directly extracted from an operating network via a control plane. Particularly, this work focuses
on the application of single class and binary classification machine learning algorithms to optical
network transmission quality assessment. The results obtained show that the best performance can
be achieved using gradient boosting and random forest algorithms.

Keywords: machine learning; optical networks; quality of transmission; classification; imbalanced
and incomplete data; practical applications

1. Introduction

Over the last decades, the demand for traffic and bandwidth in optical backbone
networks has constantly increased. Therefore, there is a need for efficient use of available
network resources. Apart from introducing new technological solutions enabling higher
transmission rates, a network operator needs to frequently reconfigure and reoptimize the
network in order to minimize capital expenditure (Capex) and operational expenditure
(Opex) [1–5]. Efficient use of available resources is of particular importance for dense
wavelength division multiplexed (DWDM) networks [6]. With their high bandwidth and
low cost, DWDM optical networks form the platform for implementing core physical
infrastructure by all major operators worldwide. They are currently penetrating important
new telecoms markets, such as the the data market and the access segment. Consequently,
DWDM network management is one of the main problems faced by optical network opera-
tors whereby an accurate assessment of transmission quality is a necessary prerequisite
to any realistic network reconfiguration plan. In this paper, we have therefore focused on
the problem of quality assessment in a DWDM network and propose a solution, which
can be relatively easily implemented by a network operator. This solution involves apply-
ing machine learning algorithms to a database that contains relevant information about
the network traffic and can be conveniently extracted from the DWDM system via the
control plane.

More specifically, this paper applies machine learning (ML) algorithms to a database
that has been taken directly by the control plane from a next-generation optical net-
work from a large telecom network operator within the software-defined network (SDN)
paradigm. ML techniques may prove helpful in improving the management of resources
within a modern optical network mainly because of their ever increasing complexity of
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infrastructure. An intelligent selection of the parameter values may improve the overall
network performance.

The use of data directly from an operational optical network, collected through a con-
trol plane and as input to ML algorithms is, not straightforward due to the large data size
and class imbalance. This class imbalance arises because practically all links are working in
an operational optical network, and nobody attempts to set up or especially keep allocated
a link that, for instance, has the bit error rate too high. Even though there is some knowl-
edge regarding nonworking links within a corporation, it is usually very scarce and poorly
documented. Furthermore, experiments on synthetic data may lead to overoptimistic pre-
dictive performance estimates as well as a failure to identify important obstacles. Therefore,
we propose a specially tailored approach using ML algorithms to solve this problem and
compare binary classification algorithms combined with different class imbalance compen-
sation techniques with single-class classification algorithms. In our solution, all attributes
are divided into subsets, and ML algorithms are compared for each subset of parameters.
As the measure of performance of selected machine learning algorithms, receiver operating
characteristics (ROC) and precision-recall curves were selected. When compared with [7,8],
this study presents a comprehensive approach to investigate the prediction quality of
machine learning algorithms applied to optical network design. We used an extended set
of classification algorithms and a combined dataset originating from two networks. We
systematically investigated the predictive utility of multiple attribute subsets, differing in
the scope of physical properties of network paths, and performed hyperparameter tuning
to ensure that each algorithm reveals its full predictive power potential.

The paper is organized as follows. Section 2 provides a review of the literature and
papers in this scientific field. Section 3 presents the data collection methodology, while
Section 4 describes the figures of merit of machine learning algorithms. The results and
discussion of the optical network simulations are presented in Section 5. The final summary
is provided in Section 6.

2. Related Work

SDN and knowledge-based networking (KDN) paradigms are instrumental in im-
plementing frequent network reconfiguration and reoptimization within a DWDM net-
work [9,10]. Central to SDN and KDN is an accurate estimation of transmission qual-
ity [11,12]. Therefore, a number of ML-based models have been proposed that synthetically
create the database and apply ML to such data [13,14]. However, modeling methods used
to create synthetic databases often place too high computational requirements for real-time
prediction, making them unscalable to large networks. Moreover, these models rely on
a number of parameters that may not be available to a network operator. In [15,16] , the
authors claim that ML technology will become an important means to providing indis-
pensable technical support to further increase communication capacity and improve future
communication stability by effectively identifying physical impairments in the network [17].
In the new generation passive optical networks (PONs) [18], ML-based algorithms have
also been successfully applied, particularly to the load-balancing problem [19].

Here, we follow an alternative approach to the application of ML to the automatic
reconfiguration of an optical network that relies only on the data that are available to a
network operator via the control plane. Such an approach is distinct from the one followed
in [10,13]. Similar lightpath QoT estimation problems were also addressed in [20,21],
whereby the solution presented there mainly focused on an application of the SVM classifier;
meanwhile, in [22], the authors used the random forest algorithm. A similar approach was
also used in [23]. In all these cases, the system was trained and tested on artificial data,
which differs qualitatively from the approach taken in this paper. As already mentioned
here, we rely only on the data that are available to a network operator via the control
plane. The resulting training dataset is intrinsically imbalanced and, as already mentioned,
potentially small, thus making the adoption of ML methods that are specially tailored for
handling imbalanced datasets necessary.
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In [24], the author compared different means to dealing with class imbalance, including
data resampling and one-class classification. It was concluded that binary classification
with imbalance compensation is superior to single-class classification. A similar problem to
the one presented here was discussed in [25]. The results presented in this work suggest
that binary classification may be more effective than single-class classification for data with
complex multimodal distributions. In contrast, Lee and Cho used single-class classification
for unbalanced data and showed that it could outperform binary classification if the
unbalanced factor is high [26]. Their work inspired further research into the utility of
binary and one-class algorithms for optical network path classification, such as in [7,8].
The results suggested that the one-class approach can be a viable alternative to standard
binary classification in this application domain. However, binary classification with class
imbalance compensated by class weights still works reasonably well, and the more refined
SMOTE [27] and ROSE [28] techniques do not lead to improved predictive performance.
This work, therefore, revisits the binary classification approach using class weights for
imbalance compensation. We extensively and systematically explore the potential of
improving the prediction quality by evaluating the utility of different attribute subsets
corresponding to different physical network path properties, using a broader scope of
classification algorithms, and tuning their hype-parameters.

The literature are includes interesting attempts use artificial neural networks (ANNs),
where the inputs are channel loadings and launch power settings [29] or source-destination
nodes, link occupation, modulation format, path length, and data rate [30]. This work,
however, focuses primarily on standard ML algorithms, known to be well suited for tabular
data and capable of creating useful models even from small and imbalanced datasets.
With that being said, the multilayer perceptron, as the standard general-purpose neural
network architecture, is included in the experiments as well.

3. Problem Formulation

This work approaches transmission quality assessment as a binary classification task
in which a network path is to be classified as “good” (successfully deployed, i.e., meeting
transmission quality requirements or “bad” (not successfully deployed, i.e., not meeting
transmission quality requirements). This makes it possible to apply machine learning
algorithms to create models providing class or class probability predictions based on
available path attributes.

It is a well-established fact in the area of machine learning that a suitable selection
of attributes may significantly improve the accuracy of predictions. In this contribution,
therefore, the problem of attribute selection for machine learning algorithms used in models
predicting the quality of transmission in optical point-to-point connections of a DWDM
network is studied. Two approaches can potentially be considered when selecting at-
tributes. One of them is quantitative in nature and is based on the classical approach used
in machine learning that finds the attributes that are best correlated with the prediction
results. The other is rather qualitative and aims to exploit the well-established optical
transmission theory in optical networks. It has been observed that the presence of phys-
ical phenomena such as fiber attenuation, optical signal attenuation in a DWDM node,
polarization-dependent loss, EDFA amplifier noise, chromatic dispersion, polarization
dispersion, and nonlinear phenomena, including especially four-wave mixing, is related
to the quality of transmission in the optical links of a point-to-point DWDM network.
One would therefore expect that there exists a mapping that relates the parameters that
characterize these physical phenomena and the quality of transmission in point-to-point
DWDM network optical links. Considering such parameters as fiber attenuation, optical
signal attenuation in a DWDM node, polarization-dependent loss, EDFA amplifier noise
figure, chromatic dispersion, and polarization dispersion, the parameters characterizing
nonlinear phenomena present in optical fibers (e.g., the nonlinear fiber coefficient present
in the nonlinear Schrodinger equation) should therefore be instrumental in evaluating the
quality of transmission in point-to-point DWDM network optical links. However, these
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parameters are not readily available to a DWDM network operator via the control plane.
Further, in general, it is not a trivial matter to accurately extract the values of such a set of
parameters from an operating DWDM network primarily because it would require a major
effort and prompt a significant increase in operational expenditure (Opex), which would be
extremely difficult to justify at a DWDM network operator management board level. Other
methods, therefore, need to be considered. An approach that seems pragmatic and hence is
investigated here consists in first collecting a set of parameters characterizing a DWDM
network, which are readily available via the DWDM network control plane and thus can be
used to automatically create a database that characterizes the considered DWDM network.

In this study, the data were directly collected from the network monitoring system of
the real optical network of a large telecom operator. It was assumed that the optical channels
(lightpaths) operate in C-band. The network is located in Poland, with nodes corresponding
to network elements located in the main cities of the country. The network is extensive,
with an area of approximately 1000 km in diameter. The longest distance between the two
most distant nodes is 120 km, and the average distance between them is 60 km.

3.1. Data

The considered optical network uses both coherent and noncoherent transponders.
The coherent transponders belong to Ciena’s 6500 family. The transponder transmission
rates are 100 Gbit/s, 200 Gbit/s, and 400 Gbit/s. The modulation formats include Quadra-
ture Phase Shift Keying (QPSK) and Quadrature Amplitude Modulation (QAM): 16 QAM,
32 QAM and 64 QAM. The noncoherent transponders belong to Nokia’s 1626 family and
have bit rates of 2.5 Gbit/s and 10 Gbit/s.

A schematic of the data preparation process is shown in Figure 1. Figure 2 and in detail,
in Figure 3 are provided to facilitate the understanding of the attributes used, i.e.,: hop, hop
length, path, and transponder. The dataset contains 1070 optical channels (paths), for which
18 were unsuccessful paths (“bad”), and (1052) were successfully deployed (“good”).

NE—network element
CP—control plane
DB—data base
MMDT—manually managed data tables

Figure 1. Data preparation process.
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Figure 2. An example of optical network topology.

Light blue - path connecting transponders 1 and 1' present in hop 2

Dark blue - other paths present in hop 2
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Figure 3. Network subsection illustrating the meaning of the specific channel attributes occurring in
the studied database.

3.1.1. Path Description

Optical channels (lightpaths) have been described by attributes. The hop_lengths
attribute gives the length of each hop that forms an optical channel from its origin transpon-
der to the end. This is an important property because the signal-to-noise ratio depends on
the length of the fiber that connects the two transponders. There are usually more active
and commercial wavelengths in each such edge (hop). This is because these wavelengths
are used by paths other than the ones occupied by the path under consideration. All these
optical channels in an edge (hop) interact with each other through so-called nonlinear
phenomena, such as four-wavelength mixing, which affects the quality of transmission.

With this in mind, the num_of_paths_in_hops attribute was considered, which gives
the number of neighboring wavelengths (optical channels) of the network in a given edge.
The attribute hop_losses denotes the attenuation and, therefore, the optical losses in the
considered edge. Again, hop losses affect the signal-to-noise ratio. Hence, the correspond-
ing property is included. Another property, number_of_hops, denotes how many edges
occur in a given optical channel from the origin transponder to the destination transponder.
The number of hops affects the signal-to-noise ratio due to the optical regeneration taking
place at the network node.

The last two properties are closely related to the specific type of transponder used.
The transponder_modulation property stores information about the modulation format
of the transponder, e.g., 64QAM or QPSK. Since the modulation format is closely related to
the sensitivity of the receiver, this property is, therefore, very important. On the other hand,
the property transponder_bitrate is quite self-explanatory and provides the bit rate of a
given transponder. The bit rate of the transponder also affects the sensitivity of the receiver
and is therefore also included.
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3.1.2. Vector Representation

Path descriptions were transformed to a vector representation using an aggregation-
based technique. Each of the available edge properties can be aggregated by calculating
the following functions over all edges in the path:

• sum (*edge property name*.sum);
• mean (*edge property name*.avg);
• median (*edge property name*.med);
• standard dev. (*edge property name*.std);
• minimum (*edge property name*.min);
• maximum (*edge property name*.max);
• first quartile (*edge property name*.q1);
• third quartile (*edge property name*.q3);
• linear correlation with the edge’s ordinal number in the path:

(*edge property name*.cor).

This gives 27 attributes in addition to the 3 path attributes unrelated to individual edges.

3.1.3. Attribute Subsets

The available attributes as listed in the preceding subsection are divided into three
groups shown in Table 1. Based on the groups shown in Table 1, the attribute subsets
presented in Table 2 were derived and used in simulations.

Table 1. Available attributes divided into three groups.

Group Name Attributes

G1 (path-related) number_of_hops

hop_length
hop_lossesG2 (hop-related)

number_of paths_in_hops

G3 (trans-related) transponder_bitrate
transponder_modulation

Table 2. Attribute subsets.

Groups Combination Attribute Subsets

G1 S1
G2 S2
G3 S3

G1 + G2 S4
G1 + G3 S5
G2 + G3 S6

G1 + G2 + G3 S7

4. Machine Learning Algorithms

The objective of this work is to investigate the predictive performance of classification
models for optical path quality assessment using different sets of attributes describing their
properties. Since algorithm properties such as model representations and generalization
mechanisms may have substantial impact on their capability of effectively utilizing different
sets of attributes, this study uses several different algorithms. This is a relatively diverse
and quite broad selection of the most popular classification algorithms, both in research
and applications. They are capable of providing the best possible level of prediction
quality for tabular data. The algorithms are briefly characterized in the corresponding
subsections below. These descriptions highlight their most important properties that make
them interesting and useful, justifying their selection for this study. The final subsection
presents the applied model evaluation methods.
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4.1. Logistic Regression

The logistic regression algorithm uses a generalized linear model representation with
a logit link function. Model parameters are fitted by minimizing the logarithmic loss on
the training set [31]. The resulting model provides class probability predictions which are
well calibrated. The algorithm is relatively resistant to overfitting unless used for high-
dimensional data. In the latter case, regularization can be applied to further reduce the risk
of overfitting. The internally used solver for logarithmic loss minimization and the type
and strength of regularization are controlled by adjustable hyperparameters. Comparing
logistic regression, as a relatively simple algorithm with a limited-capacity model space,
to more refined classification algorithms makes it possible to verify whether their added
complexity pays off in the optical channel application domain.

4.2. Support Vector Machines

Support Vector Machines (SVM) use a linear decision boundary for separating classes
but can also fit to linearly inseparable data via separation constraint relaxation (“soft-
margin”) and by using kernel functions for implicit input transformation [32–34]. The algo-
rithm solves a quadratic programming problem with the objective of classification margin
maximization and with constraints controlling the fit to the data. This makes it resistant to
overfitting even for small and multidimensional datasets, which is an important advantage
in our application domain. Important adjustable hyperparameters include the cost of
constraint violation as well as the type and parameters of the kernel function.

Model predictions are obtained based on the decision function proportional to the
signed distance of the classified instance to the decision boundary. An optional logistic
output transformation known as Platt’s scaling, with parameters adjusted for maximum
likelihood, makes it possible to obtain class probability predictions [35].

4.3. Random Forest

The random forest algorithm creates a model ensemble consisting of multiple decision
trees, grown based on multiple bootstrap samples from the training data [36]. To make
trees in the ensemble more diverse, which is essential for ensemble modeling, split selection
is randomized by random attribute sampling at each node. Trees are grown to a maximum
or near-maximum depth and remain unpruned, which makes them even more likely to
differ. With dozens or hundreds of diversified trees, random forests are usually highly
accurate and resistant to overfitting. The algorithm’s sensitivity to hyperparameter settings
is limited, making it easy to use, and sometimes tuning the number of trees and the number
of attributes randomly drawn for split selection at each node offers some improvement.

Predicted classes are determined by the unweighted voting of class labels predicted
by particular trees. Predicted class probabilities can be obtained based on vote distribution.
An additional useful capability of the algorithm is providing variable importance values,
i.e., measuring the predictive utility of available attributes. The most useful type of variable
importance is the mean decrease of accuracy resulting from a random permutation of
attribute values, estimated using out-of-bag training instances [37].

4.4. Gradient Boosting

Boosting is another approach to ensemble modeling in which models are created
sequentially, with each subsequent model supposed to best contribute to the combined
predictive power of the ensemble by compensating for the imperfections of the previously
created ones [38,39]. Gradient boosting uses regression trees as ensemble components,
grown so as to optimize an ensemble quality function composed of a loss term, which
measures the level of fit to the training data, and a regularization term, which penalizes
model complexity [40].

Gradient boosting with logarithmic loss and a logit link function is applicable to
binary classification. The resulting models usually provide a very high level of prediction
quality, on par with or better than that obtained by random forest models. The algorithm is
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however more prone to overfitting which may occur if too many trees are grown, so setting
or tuning the ensemble size requires some care.

4.5. k-Nearest Neighbors

The k-nearest neighbors or k-NN algorithm belongs to the family of memory-based
learning algorithms which essentially store the original labeled training data as their only
model representation to be used at the prediction phase. In the case of k-NN classification,
the true class labels of k training instances closest to the instance for which the prediction
is being made are used to determine the predicted class label by voting and are possibly
weighted [41]. The algorithm can be used with arbitrary distance measures, with the
Euclidean distance being the most popular choice, unless some properties of the application
domain knowledge suggest another more appropriate metric. Vote weights, if used, are
typically inversely proportional to the distance between the neighbor and the instance
for which the prediction is being made. Vote distribution can be also used to obtain class
probability predictions.

With a distance measure well suited to the domain and appropriately selected k to
control the risk of overfitting, the resulting predictions may be competitive to those of
other more refined algorithms. The computational expense of nearest neighbor search is
mitigated by using tree structures for fast indexing.

4.6. Multilayer Perceptron

The multilayer perceptron or MLP algorithm is the most widely used general purpose
neural network architecture, in which a classification or regression model is represented
by a set of neuron-like processing units organized into layers with feed-forward weighted
connections [42]. Using nonlinear activation functions in one or more layers, such models
can overcome the limitations of linear or logistic regression. The logistic of hyperbolic
tangent functions are standard activation function choices, but recently the ReLU (rectified
linear unit) function has become more popular, as it makes it possible to avoid the vanishing
gradient problem in networks with more layers [43].

When applied to classification, the multilayer perceptron algorithm can be trained to
minimize the logarithmic loss. While slower and more sensitive to parameter setup than
logistic regression, it can represent more complex relationships between input attributes
and class probabilities.

4.7. Model Evaluation

The n × k-fold cross-validation procedure was used to evaluate models. It effectively
uses all available data for both model creation and model evaluation by randomly dividing
into k equal-sized subsets. Each of these serves as a test set to evaluate the model created at
the union of the other subsets. This results in low evaluation bias and variance. For even
further variance reduction, this process is repeated n times. The true class labels and predic-
tions for all n× k iterations are then combined to calculate prediction quality measures. Due
to significant class imbalance, a random subdivision into k subsets by stratified sampling
was performed. Roughly the same number of minority class instances in each subset was
retained. We used k = 5 and n = 50. While the latter may appear untypically large, it
is both computationally affordable and desirable when working with small data for the
maximum reliability of model evaluation.

Since misclassification error or classification accuracy are not useful for data with
imbalanced classes and since all algorithms used for the experimental study can deliver
class probability predictions besides class label predictions, predictive performance was
measured using precision-recall (PR) and receiver operating characteristic (ROC) curves.
They visualize all possible model operating points, obtained by comparing class probability
predictions against the whole range of possible threshold values. In the case of precision-
recall curves, these points correspond to different tradeoffs between the precision (the share
of positive class predictions that are correct) and the recall (the share of positive instances
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which are correctly predicted as positive). In the case of ROC curves, they correspond
to different tradeoffs between the true-positive rate (the same as the recall) and the false-
positive rate (the share of negative instances incorrectly predicted to be positive). The
“bad” class was considered positive, and “good” class was considered negative for this
evaluation. The corresponding areas under the curve (PR AUC, ROC AUC) served as the
overall aggregated measures of predictive performance over all possible cutoff thresholds.

These two measures may favor different models. PR curves are much more sensitive
to false positives under class imbalance, and to maximize PR AUC, which is the average
precision over the whole range of recall values, a model has to prevent a substantial share
of its “bad” class predictions from being incorrect, even if it also prevents it from correctly
detecting some of truly “bad” paths. To maximize ROC AUC, on the other hand, it is
sufficient to avoid making incorrect “bad” class predictions for a substantial share of paths
that are actually “good”, which makes it possible to focus on detecting as many “bad” paths
as possible. The preference for one or the other may depend on the particular application
scenario and the corresponding business costs of incorrect predictions. We therefore present
both these evaluations, and separately optimize hyperparameters with respect to PR AUC
and ROC AUC.

5. Results

The following algorithm implementations were used in the experimental studies that
were carried out [44]. For each proposed algorithm, the hyperparameters have been tuned,
which are also described in the Table 3.

1. LR: LogisticRegression:

• class_weight—weights for handling class imbalance;
• solver—the algorithm to use in the optimization problem;
• penalty—regularization type;
• c—the inverse of regularization strength.

2. SVC: SupportVectorClassifier:

• class_weight—weights for handling class imbalance;
• c—the cost of constraint violation;
• gamma—the kernel parameter;
• kernel—the kernel type to be used in the algorithm.

3. RFC: RandomForestClassifier:

• class_weight—weights for handling class imbalance;
• n_estimators—the number of trees in the forest;
• min_samples_split—the number of samples required to split a node;
• max_depth—the maximum tree depth.

4. GBC: GradientBoostingClassifier:

• n_estimators—the number of trees (boosting iterations);
• min_samples_split—the number of samples required to split a node;
• max_depth—the maximum tree depth.

5. KNC: KNeighborsClassifier:

• n_neighbors—the number of neighbors considered when making prediction;
• leaf_size—the size of the leaf in the neighor search tree;
• p—the power parameter for the Minkowski metric.

6. MLPC: MLPClassifier:

• hidden_layer_sizes—the number and shapes of hidden layers;
• activation—the activation function of neurons;
• solver—the optimization algorithm;
• alpha—the regularization parameter;
• learning_rate—the learning step size.
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Each algorithm was applied to each attribute subset presented in Section 3.1, with in-
dependent hyperparameter tuning in each case. Table 3 presents the most important
hyperparameters of particular algorithms that were tuned, along with the range of values
considered for tuning and default settings.

Table 3. Hyperparameters tuned for particular algorithms.

Algorithm Hyperparameter Values Default

LR

class_weigth ‘balanced’ None
solver ‘lbfgs’, ‘liblinear’ ‘lbfgs’
penalty ‘l1’, ‘l2’, ‘elasticnet’ ‘l2’
c 100, 10, 1.0, 0.1, 0.01 1

class_weigth None, ‘balanced’ None
c 0.1, 1, 10, 100 1
gamma ‘scale’, ‘auto’ ‘scale’SVC

kernel ‘linear’, ‘rbf’ ‘rbf’

RFC

class_weight None, ‘balanced’ None
n_estimators 25, 100, 250, 500 100
min_samples_split 3, 7, 10, 13 2
max_depth None, 2, 3, 5 None

n_estimators 25, 100, 250, 500 100
min_samples_split 3, 7, 10, 13 2GBC
max_depth 1, 2, 3, 5 3

KNC
n_neighbors 2, 3, 5, 10, 15 5
leaf_size 20, 25, 30, 35 30
p 1, 2 2

hidden_layer_sizes (100), (50), (50,50) (100)
activation ‘tanh’, ‘relu’ ‘relu’
solver ‘sgd’, ‘adam’ ‘adam’
alpha 0.0001, 0.05 0.0001

MCPL

learning_rate ‘constant’, ‘adaptive’ ‘constant’

Table 4 shows the best settings obtained by hyperparameter tuning. Only nondefault
values are included. It can be seen that for each algorithm, the best settings usually differ,
sometimes substantially, depending on the attribute subset and performance measure used.
Despite imbalanced classes, the balanced setting of the class_weights parameter, which
is available for most of the algorithms, does not always appear to help. For the multilayer
perceptron, a single hidden layer is usually sufficient.

Table 4. The best hyperparameter settings for particular algorithms and attribute subsets identified
by tuning.

Model Subset Best PR Parameters Best ROC Parameters

S1 C = 0.1, class_weight = ‘balanced’, penalty = ‘l1’, solver = ‘liblinear’ C = 100, class_weight = ‘balanced’

LR

S2 C = 0.01, class_weight = ‘balanced’ C = 0.01, class_weight = ‘balanced’, penalty = ‘l1’, solver = ‘liblinear’
S3 C = 0.01, class_weight = ‘balanced’, penalty = ‘l1’, solver = ‘liblinear’ C = 0.01, class_weight = ‘balanced’, penalty = ‘l1’, solver = ‘liblinear’
S4 C = 0.01, class_weight = ‘balanced’ C = 0.01, class_weight = ‘balanced’, penalty = ‘l1’, solver = ‘liblinear’
S5 C = 10, class_weight = ‘balanced’ C = 0.01, class_weight = ‘balanced’
S6 class_weight = ‘balanced’, solver = ‘liblinear’ C = 0.01, class_weight = ‘balanced’, solver = ‘liblinear’
S7 class_weight = ‘balanced’, solver = ‘liblinear’ C = 0.01, class_weight = ‘balanced’, solver = ‘liblinear’

S1 C = 0.1, gamma = ‘auto’ C = 0.1, class_weight = ‘balanced’, kernel = ‘linear’

SVC

S2 C = 100 C = 0.1, class_weight = ‘balanced’, gamma = ‘auto’
S3 C = 100, kernel = ‘linear’ C = 0.1, class_weight = ‘balanced’, kernel = ‘linear’
S4 C = 100 C = 0.1, class_weight = ‘balanced’
S5 C = 1, class_weight = ‘balanced’, gamma = ‘auto’ C = 1, class_weight = ‘balanced’, gamma = ‘auto’
S6 C = 0.1, gamma = ‘auto’, kernel = ‘linear’ C = 0.1, class_weight = ‘balanced’
S7 C = 0.1, kernel = ‘linear’ C = 0.1, class_weight = ‘balanced’, gamma = ‘auto’
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Table 4. Cont.

Model Subset Best PR Parameters Best ROC Parameters

RFC

S1 class_weight = ‘balanced’, max_depth = 2, min_samples_split = 10,
n_estimators = 25 max_depth = 2, min_samples_split = 3, n_estimators = 500

S2 min_samples_split = 13 min_samples_split = 7, n_estimators = 500
S3 class_weight = ‘balanced’, min_samples_split = 10 class_weight = ‘balanced’, max_depth = 2, min_samples_split = 10,

n_estimators = 500
S4 min_samples_split = 13, n_estimators = 250 max_depth = 5, min_samples_split = 3, n_estimators = 250
S5 max_depth = 3, min_samples_split = 10, n_estimators = 250 max_depth = 5, min_samples_split = 10
S6 min_samples_split = 13, n_estimators = 250 max_depth = 5, min_samples_split = 13, n_estimators = 500
S7 min_samples_split = 13, n_estimators = 500 max_depth = 5, min_samples_split = 3, n_estimators = 500

GBC

S1 max_depth = 5, min_samples_split = 12 max_depth = 2, min_samples_split = 12, n_estimators = 25
S2 min_samples_split = 12 min_samples_split = 3, n_estimators = 500
S3 max_depth = 2, min_samples_split = 3, n_estimators = 25 max_depth = 2, min_samples_split = 3, n_estimators = 25
S4 min_samples_split = 8 max_depth = 5, min_samples_split = 3
S5 max_depth = 2, min_samples_split = 12 max_depth = 5, min_samples_split = 8
S6 max_depth = 2, min_samples_split = 12 max_depth = 2, min_samples_split = 3
S7 max_depth = 2, min_samples_split = 12, n_estimators = 250 min_samples_split = 8

KNC

S1 leaf_size = 25, n_neighbors = 15 n_neighbors = 15
S2 n_neighbors = 2 leaf_size = 35, n_neighbors = 15, p = 1
S3 n_neighbors = 2, p = 1 leaf_size = 20, n_neighbors = 10, p = 1
S4 leaf_size = 20, n_neighbors = 3 leaf_size = 20, n_neighbors = 15, p = 1
S5 p = 1 n_neighbors = 15, p = 1
S6 n_neighbors = 2 leaf_size = 25, n_neighbors = 15, p = 1
S7 leaf_size = 35, n_neighbors = 2 leaf_size = 20, n_neighbors = 15, p = 1

S1 solver = ‘sgd’ activation = ‘tanh’, solver = ‘sgd’

MLPC

S2 activation = ‘tanh’, alpha = 0.05, hidden_layer_sizes = (50), learning_rate =
‘adaptive’ activation = ‘tanh’, learning_rate = ‘adaptive’

S3 activation = ‘tanh’, hidden_layer_sizes = (50,) activation = ‘tanh’
S4 activation = ‘tanh’, hidden_layer_sizes = (50,50) activation = ‘tanh’, learning_rate = ‘adaptive’
S5 hidden_layer_sizes = (50,50) activation = ‘tanh’, hidden_layer_sizes = (50,50)
S6 activation = ‘tanh’ activation = ‘tanh’, hidden_layer_sizes = (50),

learning_rate = ‘adaptive’
S7 activation = ‘tanh’, alpha = 0.05 activation = ‘tanh’, alpha = 0.05, solver = ‘sgd’

The obtained PR and ROC curves are presented in Figures 4 and 5: each plot cor-
responds to a single algorithm and presents the curves for different attribute subsets.
The values of the corresponding areas under these curves, summarizing the overall predic-
tive performance, are presented in Tables 5 and 6. For easier comparison, the latter are also
visualized by barplots in Figure 6 and 7.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e) (f)

Figure 4. PR curves for particular algorithms and attribute subsets. (a) LR classifier; (b) SVC classifier;
(c) RF classifier; (d) GB classifier; (e) KN classifier; (f) MLP classifier.

(a) (b)

(c) (d)

(e) (f)

Figure 5. ROC curves for particular algorithms and attribute subsets. (a) LR classifier; (b) SVC classi-
fier; (c) RF classifier; (d) GB classifier; (e) KN classifier; (f) MLP classifier.
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Table 5. PR AUC values for particular algorithms and attribute subsets.

Model S1 S2 S3 S4 S5 S6 S7

LR 0.094 0.096 0.189 0.096 0.101 0.167 0.167
SVC 0.148 0.131 0.253 0.128 0.177 0.167 0.162
RFC 0.116 0.385 0.363 0.383 0.238 0.461 0.457
GBC 0.09 0.389 0.356 0.392 0.196 0.448 0.45
KNC 0.144 0.197 0.387 0.202 0.217 0.24 0.22

MLPC 0.117 0.083 0.189 0.101 0.178 0.175 0.175

Table 6. ROC AUC values for particular algorithms and attribute subsets.

Model S1 S2 S3 S4 S5 S6 S7

LR 0.818 0.799 0.687 0.797 0.896 0.898 0.898
SVC 0.816 0.799 0.561 0.795 0.899 0.87 0.872
RFC 0.818 0.856 0.718 0.854 0.897 0.915 0.917
GBC 0.806 0.833 0.72 0.836 0.896 0.891 0.894
KNC 0.683 0.739 0.625 0.737 0.789 0.79 0.797

MLPC 0.816 0.797 0.677 0.789 0.897 0.888 0.885

Figure 6. PR AUC values for particular algorithms and attribute subsets.

Figure 7. ROC AUC values for particular algorithms and attribute subsets.

Several conclusions can be drawn from the results obtained:

• The best prediction corresponds to a PR AUC of about 0.5 and an ROC AUC of about
0.92;

• Depending on the choice of cutoff thresholds, model, operating points are possibly
achieving the true-positive rate of more than 0.9 with the false-positive rate below 0.2
or both the recall and precision above 0.5;

• PR curves and PR AUC values reveal more substantial predictive performance differ-
ences than do ROC curves and ROC AUC values, which is to be expected for heavily
imbalanced data;
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• The best models are obtained using the random forest and gradient boosting al-
gorithms, which seem to deal best with the problems of small data size and class
imbalance;

• Subsets S6 and S7 were found to be the most useful in the experiments carried out;
• The utility of smaller attribute subsets depends more on the adopted performance

measure than on the algorithm, and in particular, attribute subsets S1 and S5 are the
least useful with respect to PR AUC, while attribute subset S3 is the least useful with
respect to ROC AUC.

It is not surprising that subsets S6 and S7 appear to have the largest impact for
performance with respect to both ROC and PR since these subsets contain the largest
number of attributes. Most intriguing ,however, is the contribution of S3 subset, i.e., the
attributes corresponding to transponder parameters. These attributes make it possible to
achieve reasonably good performance with respect to the area under the precision-recall
curve, comparable to that of the S2 and S4 attribute sets, but the performance with respect
to the area under the ROC curve is clearly inferior when compared with any other subset.
Furthermore, it should be noted that the S4 attribute set that contains almost all attributes
except those related to transponder parameters cannot outperform the S3 subset with
respect to PR without adding transponder-related attributes. Thus, there is a significant
improvement in performance resulting from including transponder parameters when
considering PR. However, with respect to ROC the performance improvement resulting
from transponder-related parameters appears to be only marginal (i.e., there is only a minor
difference between ROC AUC values for the S4 and S7 subsets).

It is also worth noting that there is a significant difference in performance with respect
to PR in the case of the S5 and S7 subsets, which is not mirrored in the ROC results. In the
case of ROC, the most complete sets, i.e., S5, S6, and S7, show almost identical performance.
However, for PR, this is not the case. Finally, we observed that the S1 subset, which is
essentially only one parameter, leads to a surprisingly good performance in the case of
ROC but not in the case of PR. This last case stresses again the fact that due to severe class
imbalance, PR analysis is a much more reliable predictive performance evaluation method
than is ROC analysis since ROC tends to give an overoptimistic picture. Accordingly, PR
analysis provides more reliable observations regarding the predictive utility of different
attribute subsets than does ROC analysis.

6. Conclusions

In summary, our study shows that with an appropriately adjusted cutoff threshold
for class probability predictions, one can obtain operating points with both the precision
and recall above 0.5 or with a true-positive rate of more than 0.9 and a false-positive rate of
less than 0.2. The best performance was obtained using the gradient boosting and random
forest algorithms. Using these algorithms, the best level of predictive performance with
the area under the precision-recall curve is about 0.5 and the area under the ROC curve is
about 0.92.

The results presented in this article fill some gaps left by prior work and lay more
solid grounds for future work. In particular, this extended study uses a broader set of
state-of-the-art machine learning algorithms and more systematically evaluates the utility
of different attribute subsets, corresponding to different properties of network paths and
their components. For the best identified setups, the achieved level of the area under the
precision-recall curve exceeds that reported previously [7]. Under severe class imbalance,
this is the most reliable performance metric, and the obtained value of 0.5 indicates a more
practically useful tradeoff between the capability to detect bad paths and the tendency to
misdetect good paths as bad.

Despite the progress our study represents, there remains space for further improve-
ments in future work. Promising directions include examining the possibility of trained
model transfer between different networks and enhancing network path descriptions by
using additional attributes derived from physical channel properties.
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Encouraging results obtained with one-class classification algorithms [8,45] suggest
that it may be possible to combine binary and one-class classifiers into an even more
successful hybrid model. Each of these future research lines would definitely benefit from
more data, covering a wider range of network topologies and equipment and with a more
comprehensive representation of unsuccessful path designs.
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1. Kozdrowski, S.; Żotkiewicz, M.; Sujecki, S. Ultra-Wideband WDM Optical Network Optimization. Photonics 2020, 7, 16.

[CrossRef]
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