
Citation: Suwais, K.; Almanasra, S.

Strike: Stream Cipher Based on

Stochastic Lightning Strike Behaviour.

Appl. Sci. 2023, 13, 4669. https://

doi.org/10.3390/app13084669

Academic Editors: Luis Javier

García Villalba and Ki-Hyun Jung

Received: 2 March 2023

Revised: 5 April 2023

Accepted: 5 April 2023

Published: 7 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Strike: Stream Cipher Based on Stochastic Lightning
Strike Behaviour
Khaled Suwais * and Sally Almanasra

Faculty of Computer Studies, Arab Open University, Riyadh 11681, Saudi Arabia
* Correspondence: khaled.suwais@arabou.edu.sa

Abstract: There is an increasing need for secure and fast encryption algorithms to support applications
and communication protocols, and business models. In this paper, we present an alternative stream
cipher (Strike) inspired by the stochastic behaviour of lightning strike phenomena. The novelty and
originality of Strike stem from the utilisation of lightning strike behaviour as a source for generating
random keystreams for encryption and decryption. Strike consists of three main functions: a function
for setting up the security attributes, a function for generating lightning strikes and converting them
to a keystream, and a function for plaintext encryption. The proposed stream cipher was tested
against several cryptanalysis and statistical attacks in addition to other performance tests. The results
show that Strike achieves high throughput on both high- and low-speed devices. Additionally,
security analysis shows that our cipher is resistant to cryptanalysis and statistical attacks.

Keywords: stream cipher; lightning strike; encryption; pseudorandom generator; data security

1. Introduction

New technologies, particularly Internet of Things (IoT) networks, enable the connec-
tion of numerous devices through the Internet. These large-scale networks utilise vast
amounts of obtained data to offer consumers a variety of applications. Nonetheless, this
creates substantial security risks related to the exchanged data. Indeed, these systems are
vulnerable to both traditional network attacks and novel threats that could compromise
their availability, security and privacy. Security services like data confidentiality and pri-
vacy are crucial, and the challenge is exacerbated by the enormous amount of data and
limited resources of some IoT devices. In this context, asymmetric encryption techniques
are commonly used to protect data privacy and confidentiality [1,2].

The European Network of Excellence for Cryptology (ECRYPT), which coordinated the
development of stream cipher algorithms in hardware and software, launched the research
project eSTREAM in 2004 [3]. The project approved several stream ciphers, including
Sprout [4], Fruit [5], LIZARD [6], Plantlet [7], Trivium [8], Mickey [9] and Grain series
ciphers [10]. Some lightweight stream ciphers are currently deemed dangerous [11,12]
despite significant progress in decoding techniques.

Numerous applications and systems process and communicate sensitive data. Such
data must be safeguarded by adhering to the strictest guidelines and best practices for
data confidentiality and privacy. Most symmetric encryption algorithms today are com-
putationally costly, mainly because they require several complicated operations that are
repeated numerous times [13,14]. They are thus unsuited for real-world applications or
devices with limited resources. Accordingly, lightweight cryptographic approaches have
been developed to lower the computing complexity of encryption.

Conventional encryption algorithms iterate a round function that includes complex
operations using static (fixed) cryptographic primitives. Such algorithms suffer from
high computing costs and are vulnerable to cryptanalysis attacks. According to NIST [15],
lightweight ciphers should be designed to accommodate devices with constrained resources.

Appl. Sci. 2023, 13, 4669. https://doi.org/10.3390/app13084669 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13084669
https://doi.org/10.3390/app13084669
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6530-5022
https://doi.org/10.3390/app13084669
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13084669?type=check_update&version=1

Appl. Sci. 2023, 13, 4669 2 of 19

This is possible by designing a simplified round function or reducing the function’s number
of iterations. On the other hand, keystream generation should follow a dynamic approach
in which the generator relies on regularly updating the set of security parameters to provide
random properties for higher immunity against cryptanalysis and statistical attacks.

Even the most modern static-based lightweight ciphers require at least 6–18 cycles,
requiring a substantial number of rounds [16,17]. In this study, we address the problems of
operation complexity, encryption time and resource utilisation of existing stream ciphers.
Stream ciphers that are designed to support low-resource computation devices usually
either suffer from performance issues or are subjected to different cryptanalysis attacks.
Hence, we present an alternative dynamic stream cipher to minimise complex operations,
thus reducing the encryption time while preserving the requisite security level. In our
method, each plaintext message is encrypted using a distinct set of cryptographic attributes.
The keystream is formed by performing a set of mathematical operations in a single
iteration. Upon generating one keystream block, all attributes are updated to generate a
new keystream for a new encryption process.

Our proposed stream cipher (Strike) is novel, as it is the first stream cipher inspired by
natural stochastic lightning strike phenomena. The novelty lies in the ability of designing
fast encryption algorithm that is secure and less complex to work on computing devices
with limited resources. The keys and parameters used in the model are extracted and
calculated using mathematical models that express the behaviour of lightning strikes at
different points in the given space. The strike starts randomly from a point x in a given
space and hits another random point y on the ground. The behaviour of the strike is
considered random and unpredictable, as a given strike is affected by several factors in
addition to its start and end points in a large space; these factors include voltage, number
of jumps, the distance of jumps and direction. In addition, Strike is considered feasible as it
includes straightforward update procedures for the cryptographic attributes, reducing the
computational complexity. As for error tolerance, Strike is resistant to channel failure since
a bit error in one key affects only the corresponding byte of the encrypted message.

Our main contributions lie in presenting a high-performance, secure stream cipher.
As for security, our design depends on the novel idea of utilising the stochastic behaviour
of lightning strikes, which is proven mathematically [18]. On the one hand, the strike
parameters are used as secure cryptographic primitives that are selected and updated
randomly. The number of iterations is minimised to speed up keystream generation.
Given that our cipher generates 16 bits of keystream in each round, it is usable in many
resource-constrained devices and real-world applications.

The remaining sections of the paper are organised as follows: in Section 2, a back-
ground on stream ciphers and lightning strike phenomena is presented. Section 3 discusses
the main issues related to existing stream ciphers. The main components of the Strike
stream cipher are presented in Section 4. In Section 5, we conduct a security analysis by
comparing the proposed cipher to the required cryptographic features. The efficiency of
Strike is demonstrated in Section 6. Finally, Section 7 concludes the paper. However, the
Abbreviations presents a list of abbreviations that appear in this document.

2. Preliminaries
2.1. Stream Ciphers

Stream ciphers are symmetric ciphers that generate pseudorandom sequences of bits
from a given secret key. These pseudorandom bits are later used for encrypting plaintext
using the XOR operation. Stream ciphers are widely and effectively used in securing TLS,
Bluetooth and 4G connections [19].

Stream ciphers take two input values: a secret key (K) and an initial vector (IV). The
length of the secret key is usually between 128 and 256 bits. The IV can be either a secret
or known value, but keeping it secret adds an additional level of security. The general
structure of stream ciphers is illustrated in Figure 1, where KS represents a keystream, and
PT and CT represent the plaintext and ciphertext, respectively.

Appl. Sci. 2023, 13, 4669 3 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 21

Stream ciphers take two input values: a secret key (K) and an initial vector (IV). The

length of the secret key is usually between 128 and 256 bits. The IV can be either a secret

or known value, but keeping it secret adds an additional level of security. The general

structure of stream ciphers is illustrated in Figure 1, where KS represents a keystream,

and PT and CT represent the plaintext and ciphertext, respectively.

Figure 1. Stream cipher encryption operation.

The keystream is computed as a function KsG such that Ks = KsG (K, IV). The

plaintext is encrypted as CT = PT ⨁ Ks, and the ciphertext is decrypted as PT = CT ⨁ Ks.

Note that the encryption and decryption operations are the same, as they perform the

same XOR operation. This justifies the absence of decrypt() functions in certain crypto-

graphic libraries; the encrypt() function can be used for both encryption and decryption

[19].

2.2. Lightning Strike Phenomena

Lightning is a natural phenomenon that originates randomly from thunderstorms

and clouds [18,20,21]. In this section, we describe the mathematical model behind light-

ning strike development. According to [18], a lightning strike develops through several

distinct phases. The first phase is called a stepped leader phase, where the head of the stroke

is initiated from its origin (cloud base). This head makes a series of random jumps down-

ward from its initialisation point toward the destination point (priori) on the earth’s sur-

face. The behaviour of the stepped leader creates a path between the cloud base and the

ground. The average speed of this phase is approximately 0.001 × 300 m/μs, including

pauses that the stepped leader makes between stochastic jumps.

As the stepped leader touches the surface, the streamer phase is initiated. This phase

helps transfer charge between the earth and the cloud using the same path created by the

stepped leader. The average speed of the streamer is higher than that of the stepped leader

(0.01 × 300 m/μs), as it uses a previously created path with large currents with magni-

tudes exceeding hundreds of kilo-amperes (kA). A pause of a few milliseconds occurs

upon completing the streamer phase. The end of this phase initiates the dart leader phase.

The dart leader starts from the cloud base and moves down to the ground. The dart

leader is faster than the stepped leader since it uses a channel that is previously ionised.

As soon as the dart leader touches priori on earth, a return stroke is initiated but with a

much lower current. This procedure of dart leaders and return strokes continues for sev-

eral iterations, resulting in a lightning flash composed of consecutive strokes [20,22].

As depicted in Figure 2 [18], the stepped leader head is initiated at height h0 and

randomly makes j jumps towards the earth’s surface. The streamer is immediately initi-

ated back to the cloud. As time t passes, several dart leaders occur with less surge current

i. Once the current level reaches the minimum, the stroke stops.

Keystream

Generator

(KsG)

IV

K
Ks

⨁

PT

CT

Figure 1. Stream cipher encryption operation.

The keystream is computed as a function KsG such that Ks = KsG (K, IV). The plaintext
is encrypted as CT = PT ⊕ Ks, and the ciphertext is decrypted as PT = CT ⊕ Ks. Note that
the encryption and decryption operations are the same, as they perform the same XOR
operation. This justifies the absence of decrypt() functions in certain cryptographic libraries;
the encrypt() function can be used for both encryption and decryption [19].

2.2. Lightning Strike Phenomena

Lightning is a natural phenomenon that originates randomly from thunderstorms and
clouds [18,20,21]. In this section, we describe the mathematical model behind lightning
strike development. According to [18], a lightning strike develops through several distinct
phases. The first phase is called a stepped leader phase, where the head of the stroke is
initiated from its origin (cloud base). This head makes a series of random jumps downward
from its initialisation point toward the destination point (priori) on the earth’s surface. The
behaviour of the stepped leader creates a path between the cloud base and the ground. The
average speed of this phase is approximately 0.001× 300 m/µs, including pauses that the
stepped leader makes between stochastic jumps.

As the stepped leader touches the surface, the streamer phase is initiated. This phase
helps transfer charge between the earth and the cloud using the same path created by the
stepped leader. The average speed of the streamer is higher than that of the stepped leader
(0.01× 300 m/µs), as it uses a previously created path with large currents with magnitudes
exceeding hundreds of kilo-amperes (kA). A pause of a few milliseconds occurs upon
completing the streamer phase. The end of this phase initiates the dart leader phase.

The dart leader starts from the cloud base and moves down to the ground. The dart
leader is faster than the stepped leader since it uses a channel that is previously ionised.
As soon as the dart leader touches priori on earth, a return stroke is initiated but with a
much lower current. This procedure of dart leaders and return strokes continues for several
iterations, resulting in a lightning flash composed of consecutive strokes [20,22].

As depicted in Figure 2 [18], the stepped leader head is initiated at height h0 and
randomly makes j jumps towards the earth’s surface. The streamer is immediately initiated
back to the cloud. As time t passes, several dart leaders occur with less surge current i.
Once the current level reaches the minimum, the stroke stops.

The probability density function that represents the lightning strike is computed
by Equation (1):

P(I) = 0.5 · er f c(u0) (1)

where er f c(u0) is calculated in Equations (2) and (3) as follows:

er f c(u0) = 1− 2√
π

∑∞
n=0

(−1)n · u2n+1
0

n!(2n + 1)
(2)

u0 =
log(I)− log

(
Iµ

)
√

2 · Iσ

(3)

Appl. Sci. 2023, 13, 4669 4 of 19

According to [23], the mean value (Iµ) and standard deviation (Iσ) of the current peak
of the lightning can have the specific values shown in Table 1. The values are defined under
the assumption that strokes can have a positive or negative polarity.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 21

Figure 2. Lightning strike development through time t.

The probability density function that represents the lightning strike is computed by

Equation (1):

𝑃(𝐼) = 0.5 ∙ 𝑒𝑟𝑓𝑐(𝑢0) (1)

where 𝑒𝑟𝑓𝑐(𝑢0) is calculated in Equations (2) and (3) as follows:

𝑒𝑟𝑓𝑐(𝑢0) = 1 −
2

√𝜋
∑

(−1)𝑛∙𝑢0
2𝑛+1

𝑛!(2𝑛+1)
∞
𝑛=0 (2)

𝑢0 =
𝑙𝑜𝑔(𝐼) − log (𝐼𝜇)

√2 ∙ 𝐼𝜎

 (3)

According to [23], the mean value (𝐼𝜇) and standard deviation (𝐼𝜎) of the current peak

of the lightning can have the specific values shown in Table 1. The values are defined

under the assumption that strokes can have a positive or negative polarity.

Table 1. Logarithmic normal distribution of lightning current parameters [23].

Mean (𝑰𝝁) Stand. Dev. (𝑰𝝈) Stoke Type

61.1 0.576 −stroke (less than 20 kA)

33.3 0.263 −stroke (greater than 20 kA)

33.9 0.527 +stroke

3. Related Works

Lizard is a lightweight stream cipher introduced by [6]. Lizard is designed for use

with power-constrained devices such as passive RFID tags. The hardware efficiency is the

consequence of merging a Grain-like design with the FP (1)-mode, a newly proposed

building concept for the state initialisation of stream ciphers. Lizard employs 120-bit keys,

64-bit IVs, and a 121-bit inner state length as part of its core processes. As a result, Lizard

can generate up to 218 keystream bits per key/IV pair, which makes it suitable with cur-

rently used communication protocols, such as Bluetooth, WLAN and HTTPS. The results

show that Lizard’s hardware design is more efficient than other hardware-based ciphers.

In addition, Lizard is suitable for applications that do not require high-speed encryption

rates.

In [24], the researchers presented a new lightweight RFID-based authentication solu-

tion that employs a stream cipher to ensure privacy between valid components. The sug-

gested method eliminates the inherent linearity of LFSRs by using a variety of keystream

generators such as And2LFSR, Geffe and majority-based. This allows for the construction

Figure 2. Lightning strike development through time t.

Table 1. Logarithmic normal distribution of lightning current parameters [23].

Mean (Iµ) Stand. Dev. (Iσ) Stoke Type

61.1 0.576 −stroke (less than 20 kA)
33.3 0.263 −stroke (greater than 20 kA)
33.9 0.527 +stroke

3. Related Works

Lizard is a lightweight stream cipher introduced by [6]. Lizard is designed for use
with power-constrained devices such as passive RFID tags. The hardware efficiency is
the consequence of merging a Grain-like design with the FP (1)-mode, a newly proposed
building concept for the state initialisation of stream ciphers. Lizard employs 120-bit
keys, 64-bit IVs, and a 121-bit inner state length as part of its core processes. As a result,
Lizard can generate up to 218 keystream bits per key/IV pair, which makes it suitable
with currently used communication protocols, such as Bluetooth, WLAN and HTTPS. The
results show that Lizard’s hardware design is more efficient than other hardware-based
ciphers. In addition, Lizard is suitable for applications that do not require high-speed
encryption rates.

In [24], the researchers presented a new lightweight RFID-based authentication so-
lution that employs a stream cipher to ensure privacy between valid components. The
suggested method eliminates the inherent linearity of LFSRs by using a variety of keystream
generators such as And2LFSR, Geffe and majority-based. This allows for the construction of
a nonlinear pseudorandom number generator (PRNG). For statistical analysis, the authors
employed a multiple polynomial quadratic sieve. The simulation results show that the
proposed authentication technique’s performance is affected by the kind of error control
code, nonlinear combinational functions and the degree of the generator polynomial.

The researchers in [25] developed a new deep learning-based key generation network
called DeepKeyGen that acts as a stream cipher generator to produce the secret key for
medical image encryption. DeepKeyGen’s main goal is to learn the mapping relationship
that describes how to convert a given image into a secret key. Security analysis demonstrates
that the keystream generated by DeepKeyGen is highly sensitive to change, possesses a
large key space, is pseudorandom, and is resistant to a variety of attacks. Statistically, only
entropy tests are applied. Further statistical and performance analysis is needed to ensure
the algorithm’s efficiency.

Appl. Sci. 2023, 13, 4669 5 of 19

Another stream cipher for image encryption is presented in [26]. The stream cipher is
designed to ensure the safe transmission of images between different parties. As part of the
pixel manipulation process, a combination of two-dimensional discrete wavelet transforms
and the Arnold mapping algorithm are used. The experimental results demonstrate that
the proposed stream cipher is secure in terms of randomness and statistics. However, the
work does not provide sufficient detail about the performance of the cipher in terms of
speed and throughput.

In [27], an image encryption cipher based on fixed-point chaotic maps is proposed.
The correlation coefficient, differential attack, histogram and information entropy are some
of the security analyses that are used in the process of evaluating the algorithm. Statistically,
correlation coefficient analysis is performed, and the tests demonstrate resistance to entropy
attacks. However, the algorithm’s throughput is low (186.84 Mb/s) compared to other
existing secure stream ciphers. In addition, other statistical tests are needed (e.g., NIST
tests) to ensure its resistance to statistical attacks.

A stream cipher based on adding offsets to the two-dimensional coupled map lattice
(2D-CML) is developed in [28]. The technique proposes adding distinct offsets to each
lattice. The offset 2D CML model outperforms the original 2D-CML model in terms of
its chaotic qualities; specifically, it has larger Lyapunov exponents (LE). It also produces
more uniform chaotic sequences than the original model. Statistically, the Chi-square
test, correlation coefficient and NIST SP800-22 suite analysis are performed. The research
findings demonstrate that the algorithm is secure against statistical and cryptanalysis
attacks. However, the throughput of the algorithm is low (around 22 Mbit/s), and this
performance limitation would be challenging in many applications.

As part of the recent progress in IoT security, an alternative lightweight cipher scheme
(LoRCA) is proposed in [29]. This cipher is based on a dynamic, key-dependent structure
that offers data secrecy using minimal resources. Statistically, the cipher successfully passed
several tests, which suggests that it is resistant to statistical attacks. However, the cipher
must be verified in terms of performance, as no performance results on the throughput of
the algorithm are indicated.

In [30], a unique resilient symmetric image encryption structure (IES) is introduced.
IES generates a one-time session key by combining the image with a shared key. Statistically,
IES is tested against entropy, PSNR and the correlation test. The results show that IES
is secure against statistical attacks. However, its performance in terms of encryption
throughput seems to be affected by the costly computations of chaos-based cryptosystems.
Such performance makes IES suitable for highly secure applications that do not require
high throughput rates.

A stream cipher based on Linear Feedback Shift Register (LFSR) is proposed in [31].
The cipher aims to enhance the length of the sequence by integrating LFSR and a genetic
algorithm (GA). The authors claim that the length of the generated sequence is more than
the maximum length of LFSR. As for statistical analysis, key sequence, uniformity and
autocorrelation analysis are performed. The results show that the proposed stream cipher is
resistant to statistical and cryptanalysis attacks. Nevertheless, achieving a high encryption
rate was not this work’s main goal. Hence, it does not provide sufficient data on the
performance of the stream cipher.

An alternative stream cipher system based on an analogue–digital hybrid chaotic
system is proposed in [32]. The hybrid model can generate digital chaotic maps without
degeneration. It also ensures the synchronisation of analogue chaotic systems, which is
necessary for effective decryption. Moreover, the stream cipher offers the advantages
of a massive key space, near-indefinite cycle duration, and strong security. Statistically,
NIST and TestU01 analyses are performed. The results show that the cipher is resistant to
statistical attacks. However, no proofs are provided concerning the efficiency of the cipher
in terms of encryption rate and throughput.

In [15], a stream cipher based on a chaotic system in conjunction with two nonlinear
feedback shift registers (NFSRs) is proposed. The cipher is presented as a lightweight

Appl. Sci. 2023, 13, 4669 6 of 19

encryption algorithm for devices with limited computational resources. Several statistical
analyses are discussed, including NIST and entropy tests. The results indicated that the
cipher is secure against statistical attacks. The evaluation of hardware resources and
throughput demonstrates the model’s capability to operate on resource-limited devices.
However, the throughput of the cipher is less than 100 Kb/s, which makes it unsuitable for
high-speed encryption.

LESCA (LightwEight Stream Cipher Algorithm) is a lightweight stream cipher pro-
posed by [17]. The cipher comprises two major functions: a round function based on
cryptographic primitives and a function for updating those primitives. The round function
is responsible for converting each plaintext/output input sequence to word precision, while
the updating function updates all primitives using permutation tables. The proposed cipher
outperforms other lightweight stream ciphers. LESCA is also validated statistically; the
statistical tests show that LESCA is secure against statistical attacks. However, LESCA’s
potential applications for secure high-speed communication are limited.

Finally, a speech encryption algorithm is presented in [33]. The proposed algorithm
pre-processes the original speech by deleting the unvoiced bits of the signal in order to
choose the necessary data for encryption. The algorithm uses PRNG based on two 256-bit
shift registers. One of the registers is linear, while the other is nonlinear. This allows the
algorithm to expand its key space, which makes it secure against brute-force attacks. For
statistical analysis, correlation coefficient, SNR and PSNR analysis are performed. The
experimental results show that the generated keystream has high sensitivity, reduced
correlation and a uniform histogram. However, the research does not provide sufficient
analysis of the performance of the proposed cipher. Table 2 presents a summary of the
comparison of related works presented in this study.

Table 2. Comparison of related works.

Work Method(s) Limitation

[6] Self-shrinking generator method
Efficient as hardware implementation, but it is not
suitable for applications that require high-speed
encryption rates

[15] Chaotic system in conjunction with
two NFSRs

Low encryption speed, which makes it unsuitable
for high-speed encryption-based applications.

[17] Round function and permutation table Limited potential application for secure
high-speed communication.

[24] And2LFSR, Geffe and majority-based
Performance is affected by the kind of error control
code, nonlinear combinational functions and the
degree of the generator polynomial

[25] Deep learning–based key
generation network

Lack of performance analysis to examine the
algorithm’s efficiency

[26] 2D discrete wavelet transforms and the
Arnold mapping algorithm

Lack of performance analysis to examine the
algorithm’s efficiency

[27] Fixed-point chaotic maps Low performance and lack of sufficient
statistical testing.

[28] Two-dimensional coupled map lattice Low encryption speed, which makes it unsuitable
for high-speed encryption-based applications.

[29] Dynamic key-dependent structure Lack of performance analysis to examine the
algorithm’s efficiency.

[30] Chaos-based cryptosystem Suitable for highly secure applications that do not
require high throughput rates.

[31] LFSR and a genetic algorithm Lack of performance analysis to examine the
algorithm’s efficiency

[32] Analogue–digital hybrid chaotic system Lack of performance analysis to examine the
algorithm’s efficiency

[33] PRNG based on two 256-bit
shift registers

Lack of performance analysis to examine the
algorithm’s efficiency

Appl. Sci. 2023, 13, 4669 7 of 19

4. The Proposed Stream Cipher (Strike)
4.1. Mathematical Model of Strike Cipher

In this section, we introduce the detailed structure of our proposed stream cipher
(Strike). The mathematical model of Strike is inspired by the lightning strike development
model mathematically described in [18]. The model assumes that every single point can be
presented in a Cartesian coordinate system (x, y, z). If a plane with z = 0 is chosen, the point
will directly touch the surface of the ground. The stepped leader head starts at a given
point at height h0 and moves downward to the ground, as depicted in Figure 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 21

[26]

2D discrete wavelet transforms

and the Arnold mapping algo-

rithm

Lack of performance analysis to examine the algo-

rithm’s efficiency

[27] Fixed-point chaotic maps
Low performance and lack of sufficient statistical

testing.

[28]
Two-dimensional coupled

map lattice

Low encryption speed, which makes it unsuitable for

high-speed encryption-based applications.

[29]
Dynamic key-dependent struc-

ture

Lack of performance analysis to examine the algo-

rithm’s efficiency.

[30] Chaos-based cryptosystem
Suitable for highly secure applications that do not re-

quire high throughput rates.

[31] LFSR and a genetic algorithm
Lack of performance analysis to examine the algo-

rithm’s efficiency

[32]
Analogue–digital hybrid cha-

otic system

Lack of performance analysis to examine the algo-

rithm’s efficiency

[33]
PRNG based on two 256-bit

shift registers

Lack of performance analysis to examine the algo-

rithm’s efficiency

4. The Proposed Stream Cipher (Strike)

4.1. Mathematical Model of Strike Cipher

In this section, we introduce the detailed structure of our proposed stream cipher

(Strike). The mathematical model of Strike is inspired by the lightning strike development

model mathematically described in [18]. The model assumes that every single point can

be presented in a Cartesian coordinate system (x, y, z). If a plane with z = 0 is chosen, the

point will directly touch the surface of the ground. The stepped leader head starts at a

given point at height h0 and moves downward to the ground, as depicted in Figure 3.

Figure 3. Simulating n jumps of lightning strike stepped leader head.

The starting point of the lightning strike is point T0 of coordinate (x0, y0, h0), where x0,

y0 and h0 are stochastically chosen according to the following equations:

𝑥0 = 𝑟 ∙ 𝑎 (4)

h0

0

z

y

x

priori

Stepped leader

head

n-jumps

Figure 3. Simulating n jumps of lightning strike stepped leader head.

The starting point of the lightning strike is point T0 of coordinate (x0, y0, h0), where x0,
y0 and h0 are stochastically chosen according to the following equations:

x0 = r · a (4)

y0 = r · b (5)

h0 = r · c (6)

where r is a pseudorandom value, r ∈ [0, 1].
Choosing the peak value of the lightning current is also carried out stochastically. The

lightning current peak values can be observed as an interval such that I ∈ [Imin, Imax]. This
interval is divided into m classes. Accordingly, the lightning current’s peak value is selected
from a given class i as follows:

I = iImin + r ·
(
iImax − iImin

)
(7)

where iImin represents the minimal value and imax represents the maximum peak value
chosen from the i-th class. Note that both iImin and imax are calculated as follows:

iImin = Imin + (i− 1) · ∆I (8)

iImax = iImin + ∆I (9)

∆I =
Imax − Imin

Nc
(10)

Appl. Sci. 2023, 13, 4669 8 of 19

As the stepped leader descends toward the surface, it makes several jumps of different
distances in a stochastic path. The strike distance (jump) is calculated in metres as a function
of the chosen lightning current peak as follows:

R = A ·
(

TP · Icos (Imean+Istd)
)

(11)

With reference to Figure 3, the stepped leader head starts at a given point in space,
then makes j jumps downward. The coordinates of the stepped leader head are calculated
as follows:

xj = xj−1 + R · sin σj−1 · cos ϕj−1 (12)

yj = yj−1 + R · sin σj−1 · sin ϕj−1 (13)

hj = hj−1 + R · cos σj−1 (14)

where the coordinates of the next position of the stepped leader head are determined
stochastically as follows:

ϕj−1 = r · 2π (15)

σj−1 = (r + 1) · π

2
(16)

Equations (12)–(16) present continuous stochastic processes that continue until reach-
ing the earth’s surface. In addition, this process is repeated an arbitrary number of times,
as new lightning strikes may start at different positions on any given cloud. This process
summarises the randomness of the lightning strike phenomena through the undetermined
random paths that each strike initiates.

4.2. Detailed Design of Strike Stream Cipher

Our Strike stream cipher is composed of three main phases. The first is responsible
for setting up the security parameters. The input to this phase is the secret key (SKey) and
an initial vector (IVec). Then, the second phase (keystream generation) is initiated. This
phase generates lightning strikes which are later transferred to keystream sequences of
keystream. The inputs to this phase are lightning strike-related attributes, including strike
jumps distances, peak current intervals, and the stepped leader coordinates. Lastly, the
generated keystream is passed to the encryption phase, which XOR the plaintext bits with
the corresponding keystream. The general structure of the Strike cipher is depicted in
Figure 4. The main security attributes used in our model are also listed and described
in Table 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 21

generated keystream is passed to the encryption phase, which XOR the plaintext bits with

the corresponding keystream. The general structure of the Strike cipher is depicted in Fig-

ure 4. The main security attributes used in our model are also listed and described in Table

3.

Figure 4. General structure of Strike stream cipher.

Table 3. Logarithmic normal distribution of lightning current parameters.

Parameter Length Description

SKey 128-bit Secret key

IVec 32-bit Initial vector

a 8-bit x-coordinate on ground

b 8-bit y-coordinate on ground

c 8-bit z-coordinate in sky

r 8-bit Random number

j 8-bit Number of jumps composing the lightning strike

s 8-bit The order number of selected class in PCi

PC1–PC4 16-bit/each Peak current intervals

KSC 8-bit Skey shifting controller

Imean 8-bit Mean value of current I

Istd 8-bit Standard deviation of current I

IVSC 8-bit IVec shifting controller

iclasses 8-bit Total number of classes in each PCi

Kstream 16-bit Keystream binary bits

Ctext 16-bit Ciphertext binary bits

Ptext 16-bit Plaintext binary bits

TP 4-bit Total peak value

4.2.1. Security Parameters Setup

The setup process takes two input values: SKey of 128-bit length and the IVec of 32-

bit length to initialise all other parameters used in our Strike cipher. The process follows

the following steps:

• Extract bits from SKey and IVec to be assigned to all other parameters, such that SKey

bits from 0–55 are assigned to the parameters a, b, c, r, j, and s sequentially.

• Initialise the peak current intervals (PCi) using the SKey bits from 56–119.

Security

Parameters Setup

Lightning Strike

Generator

(Keystream Generator)

Plaintext

Encryption

SKey

IVec

Istd Imean

PC1-PC4 x0,y0,h0

Kstream

Ptext

Ctext

strike jump distance

Peak Current

Intervals

stepped leader

coordinates

Figure 4. General structure of Strike stream cipher.

Appl. Sci. 2023, 13, 4669 9 of 19

Table 3. Logarithmic normal distribution of lightning current parameters.

Parameter Length Description

SKey 128-bit Secret key
IVec 32-bit Initial vector
a 8-bit x-coordinate on ground
b 8-bit y-coordinate on ground
c 8-bit z-coordinate in sky
r 8-bit Random number
j 8-bit Number of jumps composing the lightning strike
s 8-bit The order number of selected class in PCi
PC1–PC4 16-bit/each Peak current intervals
KSC 8-bit Skey shifting controller
Imean 8-bit Mean value of current I
Istd 8-bit Standard deviation of current I
IVSC 8-bit IVec shifting controller
iclasses 8-bit Total number of classes in each PCi
Kstream 16-bit Keystream binary bits
Ctext 16-bit Ciphertext binary bits
Ptext 16-bit Plaintext binary bits
TP 4-bit Total peak value

4.2.1. Security Parameters Setup

The setup process takes two input values: SKey of 128-bit length and the IVec of 32-bit
length to initialise all other parameters used in our Strike cipher. The process follows the
following steps:

• Extract bits from SKey and IVec to be assigned to all other parameters, such that SKey
bits from 0–55 are assigned to the parameters a, b, c, r, j, and s sequentially.

• Initialise the peak current intervals (PCi) using the SKey bits from 56–119.
• Initialise the KSC parameter using the remaining SKey bits from 120–127, which will

later help in shifting the SKey.
• Initialise the Imean parameter using the IVec bits from 0–7.
• Extract the IVec bits from 8–15 and 16–23 to initialise Istd and IVSC, respectively.
• Extract the remaining IVec bits from 24–31 to initialise iclasses parameter.
• Initialise the coordinates of the lightning strike using Equations (4)–(6).

The span of each class in each PCi interval is computed to generate peak current
classes for each PCi. Algorithm 1 describes the main processes carried out in the security
parameter setup phase of the Strike cipher.

4.2.2. Keystream Generation

Our stream cipher’s keystream generator acts as a lightning strike generator. The
lightning strike process is composed of five stages: selecting the peak current, computing
the probability density function, calculating the jump distances, locating the stepped leader
head and generating the keystream. The structure of the lightning strike generator for the
keystream generation process is illustrated in Figure 5.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 21

26: y0 = r ∙ b

27: h0 = r ∙ c

28: end function

29: //calculate span of each class in each PC

30: function Generate_Classes (PC1, PC2, PC3, PC4, iclasses)

31: for PC = 1 to PC = 4 do

32: PC_span_I[PC] = (I_max − I_min)/iclasses

33: end for

34: // generate peak current classes for each PC interval

35: for PC = 1 to PC = 4 do

36: for cls = 1 to cls = iclasses do

37: iclass_I_min = I_min[PC] + (iclasses − 1) ∙ PC_span_I[PC]

38: iclass_I_max = iclass_I_min + PC_span_I[PC]

39: end for

40: end for

41: end function

4.2.2. Keystream Generation

Our stream cipher’s keystream generator acts as a lightning strike generator. The

lightning strike process is composed of five stages: selecting the peak current, computing

the probability density function, calculating the jump distances, locating the stepped

leader head and generating the keystream. The structure of the lightning strike generator

for the keystream generation process is illustrated in Figure 5.

Figure 5. Lightning strike generator for keystream.

The first step starts from the peak current selection by choosing four peaks (I1–I4)

from their corresponding intervals (PC1–PC4), where [I1, I3] are chosen as the maximum

peaks and [I2, I4] are chosen as the minimum peaks. Upon selecting the four peaks, the

final general peak (I) is computed by XORing (⨁) the four peaks as follows:

𝐼 = 𝐼1⨁ 𝐼2 ⨁ 𝐼3⨁ 𝐼4 (17)

Next, the probability density function is processed by applying Equations (1)–(3).

Note that the series ∑
(−1)𝑛𝑢0

2𝑛+1

𝑛!(2𝑛+1)
∞
𝑛=0 presented in Equation (2) is found to be convergent.

Figure 5. Lightning strike generator for keystream.

Appl. Sci. 2023, 13, 4669 10 of 19

Algorithm 1 Skey/IVec Setup

01:

02:

Input: 128-bit value SKey
32-bit value IVec

Output: 8-bit values a, b, c, r, j, s
8-bit values KSC, Imean, Istd, IVSC, iclasses
16-bit values PC1, PC2, PC3, PC4
16-bit values x0, y0, h0

03: // extract Secrete Key (SKey) parameters
04: a = SKey[bit_0–bit_7]
05: b = SKey[bit_8–bit_15]
06: c = SKey[bit_16–bit_23]
07: r = (SKey[bit_24–bit_31] + SKey[bit_32–bit_39]) mod 255
08: j = SKey[bit_40–bit_47]
09: s = SKey[bit_48–bit_55]
10: // initialize the min and max peak currents of each PC interval
11: function Calculate_PCs (SKey)

12:
PC1 = [I_min = Min (SKey[bit_56–bit_63], SKey[bit_64–bit_71]),

I_max = Max (SKey[bit_56–bit_63], SKey[bit_64–bit_71])]

13:
PC2 = [I_min = Min (SKey[bit_72–bit_79], SKey[bit_80–bit_87]),

I_max = Max (SKey[bit_72–bit_79], SKey[bit_80–bit_87])]

14:
PC3 = [I_min = Min (SKey[bit_88–bit_95], SKey[bit_96–bit_103]),

I_max = Max (SKey[bit_88–bit_95], SKey[bit_96–bit_103])]

15:
PC4 = [I_min = Min (SKey[bit_104–bit_111], SKey[bit_112–bit_119]),

I_max = Max (SKey[bit_104–bit_111], SKey[bit_112–bit_119])]
16: end function
17: KSC = SKey[bit_120–bit_127]
18: // extract Initial Vector (IVec) parameters
19: Imean = IVec[bit_0–bit_7]
20: Istd = IVec[bit_8–bit_15]
21: IVSC = IVec[bit_16–bit_23]
22: iclasses = IVec[bit_24–bit_31]
23: // calculate the initial lightning strike coordinates over 3D space
24: function Initialize_Coord (a, b, c, r)
25: x0 = r · a
26: y0 = r · b
27: h0 = r · c
28: end function
29: //calculate span of each class in each PC
30: function Generate_Classes (PC1, PC2, PC3, PC4, iclasses)
31: for PC = 1 to PC = 4 do
32: PC_span_I[PC] = (I_max − I_min)/iclasses
33: end for
34: // generate peak current classes for each PC interval
35: for PC = 1 to PC = 4 do
36: for cls = 1 to cls = iclasses do
37: iclass_I_min = I_min[PC] + (iclasses − 1) · PC_span_I[PC]
38: iclass_I_max = iclass_I_min + PC_span_I[PC]
39: end for
40: end for
41: end function

The first step starts from the peak current selection by choosing four peaks (I1–I4) from
their corresponding intervals (PC1–PC4), where [I1, I3] are chosen as the maximum peaks
and [I2, I4] are chosen as the minimum peaks. Upon selecting the four peaks, the final
general peak (I) is computed by XORing (⊕) the four peaks as follows:

I = I1 ⊕ I2 ⊕ I3 ⊕ I4 (17)

Appl. Sci. 2023, 13, 4669 11 of 19

Next, the probability density function is processed by applying Equations (1)–(3). Note

that the series ∑∞
n=0

(−1)nu2n+1
0

n!(2n+1) presented in Equation (2) is found to be convergent. Hence,
the infinite upper limit can be replaced by a fixed value based on the following ratio test:

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ u2n+3
0

(n + 1)!(2n + 3)
· n!(2n + 1)

u2n+1
0

∣∣∣∣∣ (18)

= lim
n→∞

∣∣∣∣∣ 2u2
0n + u2

0
2n2 + 5n + 3

∣∣∣∣∣ = 0 < 1 (19)

The probability density function will result in 4 bits (1 bit for each peak value). These
bits are later concatenated to generate the total peak value (TP). As we calculated the
TP, we proceeded to calculate the distance of each jump of the lightning strike using
Equation (11). Consequently, the new coordinates of the stepped leader head are calculated
using Equations (12)–(16). Lastly, the 16-bit length keystream is generated by XORing the x,
y, and h coordinates using Equation (20):

Kstream =
(

xj ⊕ yj ⊕ hj
)
<< TP (20)

Upon generating the keystream bits, a complete shuffling process is applied over
all security parameters to ensure a sufficient level of randomness before generating new
lightning strikes for new keystreams. Algorithm 2 presents the detailed processes of
keystream generation inspired by the lightning strike phenomena.

4.2.3. Data Encryption

Plaintext encryption is a straightforward process that involves XORing the plaintext
(Ptext) bits with the keystream (Kstream) bits to generate the ciphertext (Ctext). The length of
each sequence is 16 bits. Once the keystream bits are completely used during encryption,
the keystream generator is re-called to generate new keystream sequences. The plaintext
encryption is illustrated in Figure 6, and the main processes are depicted in Algorithm 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 21

Figure 6. Plaintext Encryption.

Algorithm 3 Encryption

01:

02:

Input: 16-bit values PText, Kstream

Output: 16-bit values CText

03: //use Kstream to be exclusively or’ed with plaintext PText

04: while PText != null do

05: for bit = 0 to bit = 15 do

06: CText[bit] = PText[bit] ⊕ Kstream[bit]

07: end for

08: //generate more SSK by the four threads

09: Keystream_Generation()

10: end while

5. Security Analysis of Strike

5.1. Statistical Tests and Balance

Testing the stream cipher with statistical tests is critical to ensure that the cipher is

secure against statistical attacks [34,35]. Our Strike stream cipher is tested against the

standard statistical test suite NIST [36]. The NIST statistical test is composed of 15 tests

that calculate 188 results values [35]. The test is carried out on 1500 sequences of keystream

(1.5 GB of data), which represent the sample size used in this test. The size of each se-

quence is 1-MB resulting from 64 keystreams. The results presented in Table 4 show that

the Strike cipher successfully passed all the NIST tests.

Table 4. NIST statistical tests results.

Test p-Value Passing Rate Decision

Frequency 0.098956 0.994 passed

Serial 0.589774 0.991 passed

Block frequency 0.333145 0.985 passed

Random excursion 0.228764 0.991 passed

Approximate entropy 0.839894 0.982 passed

Universal 0.598752 0.991 passed

FFT 0.021888 0.981 passed

Longest run 0.129204 0.982 passed

Linear complexity 0.456098 0.988 passed

Rank 0.098780 0.986 passed

Random excursion variant 0.333248 0.992 passed

Figure 6. Plaintext Encryption.

Appl. Sci. 2023, 13, 4669 12 of 19

Algorithm 2 Keystream Generation (Lightning Strike Generator)

01: Input: 8-bit values Imean, Istd
16-bit value PC1, PC2, PC3, PC4, x0, y0, h0

02: Output: 16-bit value Kstream

03: // select a peak current from each PC interval
04: I1 = iclass_I_max(PC1, s mod iclasses)
05: I2 = iclass_I_min(PC2, s mod iclasses)
06: I3 = iclass_I_max(PC3, s mod iclasses)
07: I4 = iclass_I_min(PC4, s mod iclasses)
08: // calculate the final peak current I
09: I = I1 ⊕ I1 ⊕ I1 ⊕ I1
10: // calculate the probability density function of all selected currents
11: u1 = ((log(I1) − log(Imean))/(sqrt(2) · Istd)
12: u2 = ((log(I2) − log(Imean))/(sqrt(2) · Istd)
13: u3 = ((log(I3) − log(Imean))/(sqrt(2) · Istd)
14: u4 = ((log(I4) − log(Imean))/(sqrt(2) · Istd)
15: init = 1 − (2/sqrt(Pi))
16: sum = 0
17: for i = 1 to i = 4 do
18: for n = 0 to n = 10 do
19: sum = sum + ((−1)ˆn · (ui)ˆ(2n + 1)/(n! · (2n + 1))
20: end for
21: erfc[i] = init · sum
22: end for
23: for i = 1 to n = 4 do
24: P[i] = 1 · erfc[i]
25: end for
26: // concatenate P[i] to generate 4-bit TP value
27: TP = P [1] || P [2] || P [3] || P [4]
28: // calculate the distance of each jump
29: R = 10 · (TP · Iˆ(cos(Imean + Istd))
30: // re-calculate the new coordinates of stepped leader head
31: for i = 1 to i = j do
32: phij−1 = r · (2 · Pi)
33: sigmaj−1 = (r + 1) · (Pi/2)
34: xj = xj−1 + R · sin(sigmaj−1) · cos(Phij−1)
35: yj = yj−1 + R · sin(sigmaj−1) · sin(Phij−1)
36: hj = hj−1 + R · cos(sigmaj−1)
37: end for
38: // calculate the keystream (Kstream) of 16-bit length
39: Kstream = (xj ⊕ yj ⊕ hj) << TP
40: // shuffle security parameters
41: r << KSC
42: j >> KSC
43: s << KSC
44: Skey >> KSC
45: Imean << IVSC
46: Istd >> IVSC
47: Iclasses << IVSC
48: IVSC >> KSC
49: KSC << IVSC
50: // re-calculate PC1-PC4
51: Calculate_PCs (SKey)
52: // re-initialize coordinates
53: a = SKey[bit_0–bit_7]
54: b = SKey[bit_8–bit_15]
55: c = SKey[bit_16–bit_23]
56: Initialize_Coord (a, b, c, r)
57: // re-generate peak current classes
58: Generate_Classes (PC1, PC2, PC3, PC4, iclasses)

Appl. Sci. 2023, 13, 4669 13 of 19

Algorithm 3 Encryption

01:
02:

Input: 16-bit values PText, Kstream
Output: 16-bit values CText

03: //use Kstream to be exclusively or’ed with plaintext PText
04: while PText != null do
05: for bit = 0 to bit = 15 do
06: CText[bit] = PText[bit] ⊕ Kstream[bit]
07: end for
08: //generate more SSK by the four threads
09: Keystream_Generation()
10: end while

5. Security Analysis of Strike
5.1. Statistical Tests and Balance

Testing the stream cipher with statistical tests is critical to ensure that the cipher is
secure against statistical attacks [34,35]. Our Strike stream cipher is tested against the
standard statistical test suite NIST [36]. The NIST statistical test is composed of 15 tests
that calculate 188 results values [35]. The test is carried out on 1500 sequences of keystream
(1.5 GB of data), which represent the sample size used in this test. The size of each sequence
is 1-MB resulting from 64 keystreams. The results presented in Table 4 show that the Strike
cipher successfully passed all the NIST tests.

Table 4. NIST statistical tests results.

Test p-Value Passing Rate Decision

Frequency 0.098956 0.994 passed
Serial 0.589774 0.991 passed
Block frequency 0.333145 0.985 passed
Random excursion 0.228764 0.991 passed
Approximate entropy 0.839894 0.982 passed
Universal 0.598752 0.991 passed
FFT 0.021888 0.981 passed
Longest run 0.129204 0.982 passed
Linear complexity 0.456098 0.988 passed
Rank 0.098780 0.986 passed
Random excursion variant 0.333248 0.992 passed
Overlapping templates 0.506503 0.988 passed
Non-overlapping templates 0.229941 0.981 passed
Cumulative sums 0.377852 0.983 passed
Runs 0.187012 0.991 passed

In addition to NIST tests, we carried out a balance test to examine whether the gener-
ated keystream has an equal number of zeros and ones. The test examined 300 different
keystreams. The number of zeros and ones is counted in each keystream. The test shows
that no biased is detected in the generated keystream. The number of zeros and ones was
almost equal in all keystreams, with a minor difference that does not exceed 2 bits. Figure 7
visualises the balance test. These results indicate that Strike is able to generate balanced
keystreams that are resistant to several statistical attacks.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21

Overlapping templates 0.506503 0.988 passed

Non-overlapping templates 0.229941 0.981 passed

Cumulative sums 0.377852 0.983 passed

Runs 0.187012 0.991 passed

In addition to NIST tests, we carried out a balance test to examine whether the gen-

erated keystream has an equal number of zeros and ones. The test examined 300 different

keystreams. The number of zeros and ones is counted in each keystream. The test shows

that no biased is detected in the generated keystream. The number of zeros and ones was

almost equal in all keystreams, with a minor difference that does not exceed 2 bits. Figure

7 visualises the balance test. These results indicate that Strike is able to generate balanced

keystreams that are resistant to several statistical attacks.

Figure 7. Balance analysis.

5.2. Avalanche Effect

Our Strike cipher is inspired by the stochastic behaviour of lightning strike phenom-

ena. This behaviour is completely random and unpredictable, as each strike starts at a

random point and moves in different directions and distances (jumps). In addition, every

single keystream is generated using a completely new set of scrambled parameters, which

produces a new sequence of bits that differ from previously generated sequences.

In this test, we consider the cryptographic property known as the avalanche effect. It

mainly measures the impact of altering (flipping) one bit of the secret key (SKey) on the

generated keystream (Kstream). The test was applied to a data set of 500 keystreams. The

results are presented in Table 5. The dots visualised in Figure 8 represent the percentage

of changes resulting in each keystream after flipping one bit in the secret key (SKey). The

testing results show that Strike achieved an average avalanche percentage of about 74%.

Table 5. Avalanche effect on Kstream.

of Kstream 500

Minimum % of changes on Kstream 70%

Maximum % of changes on Kstream 77%

Avg. % of changes on Kstream 73.56%

0

0.5

1

1.5

2

2.5

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300

D
if

fe
re

n
ce

s
in

 b
it

s

Keystream (Kstream)

Figure 7. Balance analysis.

Appl. Sci. 2023, 13, 4669 14 of 19

5.2. Avalanche Effect

Our Strike cipher is inspired by the stochastic behaviour of lightning strike phenom-
ena. This behaviour is completely random and unpredictable, as each strike starts at a
random point and moves in different directions and distances (jumps). In addition, every
single keystream is generated using a completely new set of scrambled parameters, which
produces a new sequence of bits that differ from previously generated sequences.

In this test, we consider the cryptographic property known as the avalanche effect. It
mainly measures the impact of altering (flipping) one bit of the secret key (SKey) on the
generated keystream (Kstream). The test was applied to a data set of 500 keystreams. The
results are presented in Table 5. The dots visualised in Figure 8 represent the percentage
of changes resulting in each keystream after flipping one bit in the secret key (SKey). The
testing results show that Strike achieved an average avalanche percentage of about 74%.

Table 5. Avalanche effect on Kstream.

of Kstream 500
Minimum % of changes on Kstream 70%
Maximum % of changes on Kstream 77%
Avg. % of changes on Kstream 73.56%

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21

Figure 8. Avalanche effect on Kstream.

5.3. Cryptanalysis Attacks

5.3.1. Brute-Force Attacks

Brute-force techniques aim to guess all possible choices in a given search space. The

search space of our Strike cipher is enormous. Strike cipher uses a 128-bit SKey and 32-bit

IVec to generate one Kstream in each iteration. This requires the attacker to make 2128 + 232

guesses to reveal both the SKey and IVec, which is practically impossible with currently

available resources. Hence, the Strike cipher is found to be secure against brute-force at-

tacks.

5.3.2. Known-Plaintext Attack

In this kind of attack, the attacker attempts to gain access to the complete list of ci-

phertexts and their mapped plaintext to retrieve SKey. In the Strike cipher, each sequence

of Ctext is obtained from an XOR operation between Ptext and Kstream. A complete scrambling

process is applied to every single parameter used in the keystream generator. Hence, the

randomness of the behaviour of the generated strike will generate a completely different

ciphertext, even for two identical plaintexts. Recall that each lightning strike is associated

with different peak current intervals, stepped leader coordinates and jumps, all of which

are extracted stochastically from SKey. Accordingly, the Strike cipher is found to be re-

sistant to known-plaintext attacks.

5.3.3. Ciphertext-Only Attack

In this kind of attack, an attacker attempts to gain access to the ciphertext in order to

retrieve the plaintext after guessing the secret key. Once the attacker succeeds, all the ci-

phertext can be decrypted using the key. However, our stream cipher generates a new

lightning strike in each iteration. Hence, two identical ciphertext segments are mapped to

two completely different lightning strikes. As a result, our Strike cipher is found to be

secure against this kind of attack.

5.3.4. Differential Attack

Differential attacks try to reveal or reduce the time needed to reveal the secret key by

performing intensive and comprehensive analysis over pairs of plaintext and ciphertext.

In our Strike cipher, the keystream generator produces a completely new SKey at each

iteration, where each lightning strike has its own unique set of attributes. Thus, attributes

are scrambled and randomised at the end of each iteration, ensuring the uniqueness of

each generated SKey. Accordingly, two identical plaintexts will be converted into two dif-

ferent ciphertexts. Hence, our Strike cipher is resistant to differential attacks.

65

70

75

80

0 100 200 300 400 500

%
 o

f
ch

an
g

es

generated keystream

Figure 8. Avalanche effect on Kstream.

5.3. Cryptanalysis Attacks
5.3.1. Brute-Force Attacks

Brute-force techniques aim to guess all possible choices in a given search space.
The search space of our Strike cipher is enormous. Strike cipher uses a 128-bit SKey
and 32-bit IVec to generate one Kstream in each iteration. This requires the attacker to
make 2128 + 232 guesses to reveal both the SKey and IVec, which is practically impossible
with currently available resources. Hence, the Strike cipher is found to be secure against
brute-force attacks.

5.3.2. Known-Plaintext Attack

In this kind of attack, the attacker attempts to gain access to the complete list of
ciphertexts and their mapped plaintext to retrieve SKey. In the Strike cipher, each sequence
of Ctext is obtained from an XOR operation between Ptext and Kstream. A complete scrambling
process is applied to every single parameter used in the keystream generator. Hence, the
randomness of the behaviour of the generated strike will generate a completely different
ciphertext, even for two identical plaintexts. Recall that each lightning strike is associated
with different peak current intervals, stepped leader coordinates and jumps, all of which
are extracted stochastically from SKey. Accordingly, the Strike cipher is found to be resistant
to known-plaintext attacks.

Appl. Sci. 2023, 13, 4669 15 of 19

5.3.3. Ciphertext-Only Attack

In this kind of attack, an attacker attempts to gain access to the ciphertext in order
to retrieve the plaintext after guessing the secret key. Once the attacker succeeds, all the
ciphertext can be decrypted using the key. However, our stream cipher generates a new
lightning strike in each iteration. Hence, two identical ciphertext segments are mapped
to two completely different lightning strikes. As a result, our Strike cipher is found to be
secure against this kind of attack.

5.3.4. Differential Attack

Differential attacks try to reveal or reduce the time needed to reveal the secret key by
performing intensive and comprehensive analysis over pairs of plaintext and ciphertext.
In our Strike cipher, the keystream generator produces a completely new SKey at each
iteration, where each lightning strike has its own unique set of attributes. Thus, attributes
are scrambled and randomised at the end of each iteration, ensuring the uniqueness of each
generated SKey. Accordingly, two identical plaintexts will be converted into two different
ciphertexts. Hence, our Strike cipher is resistant to differential attacks.

6. Complexity and Performance Analysis

In this section, we analyse the complexity of the Strike cipher. The cipher is composed
of three main stages: security parameters setup, lightning strike generation and data
encryption. The complexity analysis revealed efficient results, as tabulated in Table 6.

Table 6. Complexity Analysis.

Security Parameter
Setup

Lightning Strike
Generator Data Encryption

Complexity O(logn) O(n) O(nlogn)

The performance of the Strike cipher is also examined and analysed. The cipher is
implemented in a Python environment installed on four computing devices with different
computing capabilities to measure the algorithm’s efficiency. The specifications of these
machines are listed in Table 7.

Table 7. Specification of testing environments.

Processor RAM Memory Storage Capacity Operating System

Machine 1 (M1) Intel Core i7® 6 GB 500 GB HDD, 128 GB SSD Windows 10®

Machine 2 (M2) Intel Core i5® 4 GB 500 GB HDD, 128 GB SSD Windows 10®

Machine 3 (M3) Intel Core i3® 2 GB 500 GB HDD Windows 10®

Machine 4 (M4) Intel Celeron® 2 GB 500 GB HDD Windows 10®

The performance of the Strike stream cipher is tested and compared against well-known
stream ciphers, including AES-128, Snow 2.0–128, Salsa-20, HC-128 [34,37], Trivium [8],
Mickey-128 [9], Grain [10] and the cipher proposed by [28]. The testing results show
that the Strike cipher achieved a throughput of 22,796.4 Mbit/s on the M1 machine. The
results are tabulated in Table 8, which shows that our stream cipher outperforms other
ciphers. The last column of Table 8 shows the ratio of efficiency of our cipher compared to
others. The efficiency ranges from 2.5% (against [28]) to 99.9% (against Grain). Figure 9
visualises the throughputs of all tested ciphers.

Appl. Sci. 2023, 13, 4669 16 of 19

Table 8. Stream ciphers performance results on M1.

Cipher Throughput (Mbit/s) Ratio of Efficiency

Strike 22,796.4 -
(Liu et al., 2020) [28] 22,222.2 2.5%
Snow 2.0–128 22,026.4 3.4%
Trivium 10,026.7 56.0%
Salsa-20 7987.2 65.0%
AES-128 6581.8 71.1%
HC-128 5980 73.8%
Mickey-128 192.4 99.2%
Grain 13.8 99.9%Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 21

Figure 9. Stream ciphers throughput analysis on M1.

In addition, the Strike cipher is tested on different machines (M1–M4). The results

presented in Table 9 show that the algorithm’s structure was not affected by the compu-

ting power capabilities available on different machines. For instance, the major difference

in performance is found between M1 and M4, where the performance is degraded by

7.25%; this is mainly due to the slower CPU processing speed and lower RAM capacity.

Table 9. Encryption throughout (Mbit/s) of Strike over different machines.

 M1 M2 M3 M4

Throughput (Mbit/s) 22,796.4 22,287.1 21,998.9 21,143.5

Efficiency Ratio - −2.23% −3.5% −7.25%

7. Conclusions and Future Works

In this research, we presented the Strike stream cipher. Strike is inspired by the sto-

chastic behaviour of lightning strike phenomena. Each lightning strike has its own unique

attributes, including the source and destination points, jump distances, peak intervals,

power and pathways. These attributes represent the core security parameters of our light-

ning strike generator, which later generates keystreams for data encryption and decryp-

tion. In each iteration of keystream generation, the strike’s attributes are updated and

scrambled to ensure that the keystreams are correlation-free and resistant to statistical and

cryptanalysis attacks.

The scientific novelty of Strike cipher lies in the utilisation of the stochastic behaviour

of lightning strike phenomena to reduce operations complexity and enhance the perfor-

mance of data encryption. Such enhancements enabled Strike to work efficiently on a wide

range of computing devices with limited resources. Strike outperforms other ciphers, in-

cluding AES, Snow 2.0–128 and other well-known ciphers. The performance of Strike was

tested on different environments with different computing capabilities. The results show

that Strike managed to achieve a throughput of about 22,796 Mbit/s on a high-perfor-

mance machine and about 21,143 Mbit/s on a low-performance machine. These results

indicate that Strike is an efficient alternative for providing secure communication on var-

ious machines with different capabilities. In addition, further enhancement of Strike’s per-

formance is also possible through parallelism. The structure of Strike is designed to sup-

port multithreading, where multiple threads can be initiated to generate multiple key-

streams simultaneously.

22,796.4
22,222.2 22,026.4

10,026.7

7,987.2

6,581.8
5,980.0

192.4 13.8

0.0

5,000.0

10,000.0

15,000.0

20,000.0

25,000.0

E
n

cr
y

p
ti

o
n

 T
h
ro

u
p

u
t

(M
b
it

/S
)

Strike (Liu et al., 2020) Snow 2.0-128 Trivium Salsa-20

AES-128 HC-128 Mickey-128 Grain

Figure 9. Stream ciphers throughput analysis on M1.

In addition, the Strike cipher is tested on different machines (M1–M4). The results
presented in Table 9 show that the algorithm’s structure was not affected by the computing
power capabilities available on different machines. For instance, the major difference in
performance is found between M1 and M4, where the performance is degraded by 7.25%;
this is mainly due to the slower CPU processing speed and lower RAM capacity.

Table 9. Encryption throughout (Mbit/s) of Strike over different machines.

M1 M2 M3 M4

Throughput (Mbit/s) 22,796.4 22,287.1 21,998.9 21,143.5
Efficiency Ratio - −2.23% −3.5% −7.25%

7. Conclusions and Future Works

In this research, we presented the Strike stream cipher. Strike is inspired by the
stochastic behaviour of lightning strike phenomena. Each lightning strike has its own
unique attributes, including the source and destination points, jump distances, peak in-
tervals, power and pathways. These attributes represent the core security parameters of
our lightning strike generator, which later generates keystreams for data encryption and
decryption. In each iteration of keystream generation, the strike’s attributes are updated
and scrambled to ensure that the keystreams are correlation-free and resistant to statistical
and cryptanalysis attacks.

The scientific novelty of Strike cipher lies in the utilisation of the stochastic behaviour of
lightning strike phenomena to reduce operations complexity and enhance the performance

Appl. Sci. 2023, 13, 4669 17 of 19

of data encryption. Such enhancements enabled Strike to work efficiently on a wide range
of computing devices with limited resources. Strike outperforms other ciphers, including
AES, Snow 2.0–128 and other well-known ciphers. The performance of Strike was tested on
different environments with different computing capabilities. The results show that Strike
managed to achieve a throughput of about 22,796 Mbit/s on a high-performance machine
and about 21,143 Mbit/s on a low-performance machine. These results indicate that Strike
is an efficient alternative for providing secure communication on various machines with
different capabilities. In addition, further enhancement of Strike’s performance is also
possible through parallelism. The structure of Strike is designed to support multithreading,
where multiple threads can be initiated to generate multiple keystreams simultaneously.

Author Contributions: All authors contributed equally to this research work. All authors discussed
the results and contributed to the final manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created.

Acknowledgments: The authors would like to thank Arab Open University, Saudi Arabia, for
supporting this study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation Description
IoT Internet of Things
ECRYPT European Network of Excellence for Cryptology
NIST National Institute of Standards and Technology
XOR Exclusive-OR
TLS Transport Layer Security
4G Fourth Generation Communication
RFID Radio-Frequency IDentification
LFSR Linear Feedback Shift Register
PRNG Pseudo Random Number Generator
CML Coupled Map Lattice
LE Lyapunov exponents
IES Image encryption structure
PSNR Peak signal-to-noise ratio
GA Genetic Algorithm
NFSR Nonlinear feedback shift registers
LESCA LightwEight Stream Cipher Algorithm
WLAN Wireless Local Area Network
HTTPS Hypertext Transfer Protocol
Mathematical Symbol Description
∆I a change in the value of I in calculus.
σ Standard deviation
ϕ Phi (approx. 1.61803.)
⊕ Exclusive-OR operation
∑ Summation
lim limit
log logarithm
sqrt Square root
sin trigonometric functions of an angle
cos trigonometric functions of an angle
p-value Probability-value

Appl. Sci. 2023, 13, 4669 18 of 19

References
1. Atawneh, B.; Abutaha, M.; Al-hammoury, L. Power Consumption of a Chaos-Based Stream Cipher Algorithm. In Proceedings of

the 3rd International Conference on Computer Applications & Information Security, Riyadh, Saudi Arabia, 19–21 March 2020.
[CrossRef]

2. Vavrenyuk, A.B.; Makarov, V.V.; Shurygin, V.A. Synchronous Stream Encryption Using an Additional Channel to Set the Key.
Procedia Comput. Sci. 2021, 190, 797–802. [CrossRef]

3. ECRYPT Stream Cipher Project, March 2012. Available online: https://www.ecrypt.eu.org/stream/ (accessed on 20 September 2022).
4. Armknecht, F.; Mikhalev, V. On Lightweight Stream Ciphers with Shorter Internal States. In Fast Software Encryption; International

Workshop on Fast Software Encryption; Springer: Berlin/Heidelberg, Germany, 2015. [CrossRef]
5. Ghafari, V.A.; Hu, H. Fruit-80: A Secure Ultra-Lightweight Stream Cipher for Constrained Environments. Entropy 2018, 20, 180.

[CrossRef]
6. Hamannm, M.; Krause, M.; Meier, W. LIZARD—A Lightweight Stream Cipher for Power-Constrained Devices. IACR Trans.

Symmetric Cryptol. 2017, 2017, 45–79. [CrossRef]
7. Mikhalev, V.; Armknecht, F.; Müller, C. On Ciphers That Continuously Access the Non-Volatile Key. IACR Trans. Symmetric

Cryptol. 2016, 2016, 52–79. [CrossRef]
8. Cannière, C. Trivium: A Stream Cipher Construction Inspired by Block Cipher Design Principles. Lect. Notes Comput. Sci. 2006,

4176, 71–186. [CrossRef]
9. Babbage, S.; Dodd, M. The Stream Cipher MICKEY 2.0. December 2022. Available online: http://www.ecrypt.eu.org/stream/p3

ciphers/mickey/mickey_p3.pdf (accessed on 10 November 2022).
10. Ågren, M.; Hell, M.; Johansson, T.; Meier, W. Grain-128a: A New Version of Grain-128 with Optional. Int. J. Wirel. Mob. Comput.

2011, 5, 48–59. [CrossRef]
11. Mihaljevic, M.; Gangopadhyay, S.; Paul, G.; Imai, H. Generic Cryptographic Weakness of K-Normal Boolean Functions in Certain

Stream Ciphers and Cryptanalysis of Grain-128. Period. Math. Hung 2012, 65, 205–227. [CrossRef]
12. Stankovski, P. Greedy Distinguishers and Nonrandomness Detectors. Lect. Notes Comput. Sci. 2010, 6498, 210–226. [CrossRef]
13. Almanasra, S. Parallel Platform for Supporting Stream Ciphers Over Multi-core Processors. Int. J. Adv. Comput. Sci. Appl. 2019,

10, 181–190. [CrossRef]
14. Daldoul, I.; Tlili, S. Secured Transmission Design Schemes Based On Chaotic Synchronization and Optimal High Gain Observers.

Simul. Model. Pract. Theory 2022, 120, 102625. [CrossRef]
15. Ding, L.; Liu, C.; Zhang, Y.; Ding, Q. A New Lightweight Stream Cipher Based on Chaos. Symmetry 2019, 11, 853. [CrossRef]
16. Turan, M.; McKay, K.; Chang, D.; Calik, C.; Bassham, L.; Kang, J.; Kelsey, J.E. Status Report on the Second Round of the NIST

Lightweight Cryptography Standardization Process; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021.
[CrossRef]

17. Noura, H.; Salman, O.; Couturier, R.; Chehab, A. LESCA: LightwEight Stream Cipher Algorithm for Emerging Systems. Ad Hoc
Netw. 2023, 138, 102999. [CrossRef]

18. Sarajčev, I.; Sarajčev, P.; Vujević, S. Mathematical Model of Lightning Stroke Development. In Proceedings of the 16th International
Conference on Software, Telecommunications and Computer Networks, Split, Croatia, 25–27 September 2008. [CrossRef]

19. Aumasson, J. Serious Cryptography: A Practical Introduction to Modern Encryption; No Starch Press: San Francisco, CA, USA, 2018;
ISSN 978-1593278267.

20. Rakov, V.; Uman, M. Lightning: Physics and Effects; Cambridge University Press: Cambridge, UK, 2007; ISSN 9780521035415.
21. Golde, R.H. Lightning, Volume 1: Physiscs of Lightning; Academic Press: London, UK, 1977; ISSN 978-0122878015.
22. Su, R.; Wang, J.; Cai, L.; Zhou, M.; Fan, Y.; Cao, J.; Wang, F.; Wang, J. Characteristics of Dart Leader and Attempted Leader in A

Triggered Lightning. Electr. Power Syst. Res. 2023, 214, 108812. [CrossRef]
23. IEC. Protection against Lightning—Part 1: General Principles; IEC: Geneva, Switzerland, 2006.
24. Ghasemi, F.; Babaie, S. A lightweight Secure Authentication Approach Based on Stream Ciphering for RFID-based Internet of

Things. Comput. Electr. Eng. 2022, 102, 108288. [CrossRef]
25. Ding, Y.; Tan, F.; Qin, Z.; Cao, M.; Choo, R.; Qin, Z. DeepKeyGen: A Deep Learning-Based Stream Cipher Generator for Medical

Image Encryption and Decryption. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 4915–4929. [CrossRef] [PubMed]
26. Fan, C.; Ding, Q. A Novel Image Encryption Scheme Based On Self-Synchronous Chaotic Stream Cipher and Wavelet Transform.

Entropy 2018, 20, 445. [CrossRef]
27. Hasan, F.S.; Saffo, M.A. FPGA Hardware Co-Simulation of Image Encryption Using Stream Cipher Based on Chaotic Maps. Sens.

Imaging 2020, 12, 35. [CrossRef]
28. Liu, Z.; Wang, Y.; Zhao, Y.; Zhang, L. A Stream Cipher Algorithm Based On 2D Coupled Map Lattice and Partitioned Cellular

Automata. Nonlinear Dyn. 2020, 101, 1383–1396. [CrossRef]
29. Noura, H.N.; Salman, O.; Couturier, R.; Chehab, A. LoRCA: Lightweight Round Block and Stream Cipher Algorithms for IoV

Systems. Veh. Commun. 2022, 34, 100416. [CrossRef]
30. Khedr, W.I. A New Efficient and Configurable Image Encryption Structure for Secure Transmission. Multimed. Tools Appl. 2020,

79, 16797–16821. [CrossRef]
31. Sudeepa, K.B.; Aithal, G.; Rajinikanth, V.; Satapathy, S.C. Genetic Algorithm Based Key Sequence Generation for Cipher System.

Pattern Recognit. Lett. 2020, 133, 341–348. [CrossRef]

http://doi.org/10.1109/ICCAIS48893.2020.9096730
http://doi.org/10.1016/j.procs.2021.06.092
https://www.ecrypt.eu.org/stream/
http://doi.org/10.1007/978-3-662-48116-5_22
http://doi.org/10.3390/e20030180
http://doi.org/10.46586/tosc.v2017.i1.45-79
http://doi.org/10.46586/tosc.v2016.i2.52-79
http://doi.org/10.1007/11836810_13
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://doi.org/10.1504/IJWMC.2011.044106
http://doi.org/10.1007/s10998-012-4631-8
http://doi.org/10.1007/978-3-642-17401-8_16
http://doi.org/10.14569/IJACSA.2019.0101125
http://doi.org/10.1016/j.simpat.2022.102625
http://doi.org/10.3390/sym11070853
http://doi.org/10.6028/NIST.IR.8369
http://doi.org/10.1016/j.adhoc.2022.102999
http://doi.org/10.1109/SOFTCOM.2008.4669448
http://doi.org/10.1016/j.epsr.2022.108812
http://doi.org/10.1016/j.compeleceng.2022.108288
http://doi.org/10.1109/TNNLS.2021.3062754
http://www.ncbi.nlm.nih.gov/pubmed/33729956
http://doi.org/10.3390/e20060445
http://doi.org/10.1007/s11220-020-00301-7
http://doi.org/10.1007/s11071-020-05804-2
http://doi.org/10.1016/j.vehcom.2021.100416
http://doi.org/10.1007/s11042-019-7235-y
http://doi.org/10.1016/j.patrec.2020.03.015

Appl. Sci. 2023, 13, 4669 19 of 19

32. Zheng, J.; Hu, H. A Highly Secure Stream Cipher Based on Analog-Digital Hybrid Chaotic System. Inf. Sci. 2022, 587, 226–246.
[CrossRef]

33. Belmeguenai, A.; Ahmida, Z.; Ouchtati, S.; Djemii, R. A Novel Approach Based On Stream Cipher for Selective Speech Encryption.
Int. J. Speech Technol. 2017, 20, 685–698. [CrossRef]

34. Suwais, K. Stream Cipher Based on Game Theory and DNA Coding. Intell. Autom. Soft Comput. 2022, 33, 1815–1834. [CrossRef]
35. Maksymovych, V.; Shabatura, M.; Harasymchuk, O.; Shevchuk, R.; Sawicki, P.; Zajac, T. Combined Pseudo-Random Sequence

Generator for Cybersecurity. Sensors 2022, 22, 9700. [CrossRef]
36. Rukhin, A.; Soto, J.; Nechvatal, J. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic

Applications; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010.
37. Kuznetsov, O.; Potii, O.; Perepelitsyn, A.; Ivanenko, D.; Poluyanenko, N. Lightweight Stream Ciphers for Green IT Engineer-

ing. In Green IT Engineering: Social, Business and Industrial Applications; Studies in Systems, Decision and Control; Springer:
Berlin/Heidelberg, Germany, 2019; Volume 171. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.ins.2021.12.030
http://doi.org/10.1007/s10772-017-9439-8
http://doi.org/10.32604/iasc.2022.025076
http://doi.org/10.3390/s22249700
http://doi.org/10.1007/978-3-030-00253-4_6

	Introduction
	Preliminaries
	Stream Ciphers
	Lightning Strike Phenomena

	Related Works
	The Proposed Stream Cipher (Strike)
	Mathematical Model of Strike Cipher
	Detailed Design of Strike Stream Cipher
	Security Parameters Setup
	Keystream Generation
	Data Encryption

	Security Analysis of Strike
	Statistical Tests and Balance
	Avalanche Effect
	Cryptanalysis Attacks
	Brute-Force Attacks
	Known-Plaintext Attack
	Ciphertext-Only Attack
	Differential Attack

	Complexity and Performance Analysis
	Conclusions and Future Works
	References

