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Abstract: In this work, a novel metamaterial lens (metalens) is designed and optimized to improve
the radiation performance of an antipodal Vivaldi antenna for wideband applications. The metalens
is integrated into the antenna substrate, and placed close to the tapered slot in the end-fire direc-
tion, allowing the preservation of the lightweight and compactness of the antenna. The prototype
has been fabricated and characterized, demonstrating good agreement with the simulations. The
insertion of the metalens allows, with respect to the pristine Vivaldi, a measured maximum gain of
Gmax = 14.2 dB, increased by about ∆Gmax = 4.8 dB; an operating bandwidth of f = 3÷ 14.7 GHz,
increased by ∆ f = 1.2 GHz; and a radiation pattern with a maximum reduction in half-power
beamwidth of ∆HPBWmax = 31.3◦, more symmetrical in the E and H planes.

Keywords: metamaterials; microstrip antennas; ultra-wide band antennas; Vivaldi antennas

1. Introduction

Ultra-wide band antennas in planar technology have attracted research interest during
the last decade thanks to their high gain, wide bandwidth, compact size, high efficiency,
stable radiation pattern, and low sidelobe level. In particular, planar Vivaldi antennas
find application in different fields, such as ground-penetrating radar (GPR) [1], fifth-
generation (5G) and ultra-wide band (UWB) communication systems [2–6], microwave
imaging [7,8], and medical applications [8]. Various technologies have been proposed in
the literature to fabricate low-cost and highly compact Vivaldi antennas, employing laser
etching/writing [2], standard printed circuit board (PCB) technology [3–8], 3D additive
manufacturing processes [9], and substrate-integrated waveguide (SIW) technology [10].

Metamaterials find applications in many fields. Lenses based on metamaterial tech-
nology (metalenses) are designed, optimized, and fabricated in order to improve antenna
radiation performance [11–27]. Non-resonant metamaterials (NRMs), based on conven-
tional parallel-line unit cells, are used to enhance the gain [15–17] and to stabilize the
radiation pattern [17]. In [18], a zero-index metamaterial (ZIM) by using meander line cells
is proposed for obtaining a gain increase of about 4 dB of an antipodal Vivaldi antenna
(AVA). A modified H shape cell is used for a ZIM lens to obtain a gain enhancement of up
to 2.6 dB of an AVA slot antenna in frequency bands close to 60 GHz [19]. Epsilon-near-
zero metamaterials (ENZMs) can be exploited to increase the gain of conventional [20]
and double-slot AVAs [21]. Gradient refractive index (GRI) metasurface lenses, based on
non-resonant unit cells, allow the improvement in the radiation properties if placed in front
of the antenna at an optimized distance [22,23].

In this work, a novel metalens is designed to improve the radiation performance of
an antipodal Vivaldi antenna, operating in the fAVA = 3÷ 13.5 GHz band. The prelimi-
nary design of the metalens has been performed with the S-parameter retrieval method
(SPRM) [28,29], and the optimization of the antenna with the metalens has been performed
with full-wave numerical simulations. The L-shaped geometry of the unit cell is novel. Its
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geometry allows a design with a high degree of freedom with the aim of increasing the
gain and maintaining, or slightly increasing, the bandwidth of an AVA. A prototype has
been fabricated with the PCB process. The characterization of the fabricated prototype
shows good agreement with the simulation. The measured maximum gain is increased
from Gmax = 9.4 dB for the case without the metalens to Gmax = 14.2 dB with the metalens.
Moreover, an increase of about 10% in the operation bandwidth and a maximum reduction
of about 50% at f = 14 GHz in the half-power beamwidth is obtained.

2. Method and Theory

The metalens is designed to improve a pristine AVA, consisting of two symmetrical, ex-
ponentially tapered patch flares printed on the opposite sides of the dielectric substrate. The
equations reported in [5] have been used for the design of the exponentially tapered flares.

Electromagnetic (EM) metamaterials are designed as periodic repetitions of elemen-
tary units with sizes significantly less than the wavelength of the propagating EM field.
Therefore, the metalenses are inhomogeneous structures that can be globally considered as
a homogeneous medium. Their EM properties can be described by the effective parame-
ters, calculated considering the average of the local charge, current, and field distribution.
Considering the state of the art, there are several approaches for modeling metamate-
rials [28–30]. The most largely employed is based on the evaluation of the volumetric
effective electric permittivity and volumetric magnetic permeability [1,2,4,8,12–23]. This
method requires the definition of an effective thickness de f f related to volumetric effective
parameters of the effective homogeneous layer modeling the metamaterial [28–30]. The
metalens modeling has been performed by means of the SPRM approach, based on the
assumption of layer homogenization. In this work: (i) the S-parameters have been numer-
ically simulated with the commercial EM simulation software, CST Studio Suite®; and
(ii) the complex impedance Ze f f , the complex refractive index Ne f f , the effective electric
permittivity εe f f , and the effective magnetic permeability µe f f have been calculated from
the simulated S-parameter, using the inversion algorithm based on the Kramers–Kronig
relationship [28,29]. The retrieved effective parameters have been used for the preliminary
design. However, the coupling effects between the metalens and the antenna cannot be ne-
glected. Therefore, the metalens integrated into the antenna substrate has been considered
in the full-wave simulations performed for the optimization [29].

3. Design and Results
3.1. Vivaldi Antenna Design

The AVA is schematically illustrated in Figure 1. It is an exponentially tapered three-
flare patch antenna operating in the frequency range fAVA = 3÷ 13.5 GHz. The shapes of
the flare edges allow an enhancement in compactness [3].

In the design, the antenna optimization has been performed by numerical simulations
by varying the following parameters: (i) the position of the second point of the first flare
edge d1; (ii) the distance between the first and the second flares d2; (iii) the second flare
width d3; (iv) the distance between the second and the third flares d4; (v) the second flare
width d5; and (vi) the position of the second point of the third flare edge d6. The resulting
geometrical parameters for the optimized antenna, allowing the gain maximization to
parity of bandwidth, are listed in Table 1.

The Rogers RO4350B laminate, with a dielectric permittivity of εr = 3.66 and a loss
tangent of tanδ = 0.0037, having a commercial thickness of t = 0.762 mm and standard
copper cladding with a thickness of tc = 0.035 mm, has been chosen.

The simulated frequency −10 dB bandwidth is about BW = 10.5 GHz, over the
frequency range fAVA = 3÷ 13.5 GHz, and the gain is close to G = 10 dB for frequencies
higher than f > 7.5 GHz.
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Figure 1. Schematic of AVA with geometrical parameters and the region (dashed contour) hosting
the metalens.

Table 1. Geometrical parameters of the AVA.

Parameter Description Value (mm)

LAVA Antenna length 73.7
WAVA Antenna width 48

Lm Feed microstrip length 8.57
wm Feed microstrip width 1.5
x1 x-position of point P1 15
y1 y-position of point P1 51.7
x2 x-position of point P2 19
y2 y-position of point P2 33.7
d1 Position of the second point of the first flare edge 9.7
d2 Distance between the first and the second flares 5
d3 Second flare width 5
d4 Distance between the second and the third flares 10
d5 Second flare width 8.7
d6 Position of the second point of the third flare edge 6.3
t Substrate thickness 0.762
tc Metal strip thickness 0.035

3.2. Metalens Design

In order to improve the radiation characteristics of the AVA, in terms of gain and
directivity, without significantly affecting the bandwidth, a novel metalens is designed.

For the preliminary design, in the first step, an equivalent homogeneous layer (EHL)
has been considered in place of the metalens, with the aim of finding the optimized values
of the effective parameters εe f f and µe f f to increase the gain and maintain the bandwidth.
As a second step, the design of the metalens unit cell is performed in order to obtain values
of the effective parameters εe f f and µe f f as close as possible to the optimized ones. This
condition is verified via SPRM [28,29]. Finally, in the third step, the full simulation of the
antenna and metamaterial is performed for the actual design refinement before the antenna
fabrication. The EHL is shown in Figure 2 as a green layer.

Figure 3 shows the full-wave simulation of the gain G as a function of the frequency of
the AVA (solid curve) and the AVA with EHL having a thickness of dEHL = 0.832 mm for
the best values of effective permittivity εe f f and effective permeability µe f f (dashed curve).
The thickness of dEHL = 0.832 mm corresponds to the sum of the substrate and the double
metal strips thicknesses, dEHL = t + 2× tc. A metalens having an effective permittivity of
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εe f f MG = 5.75 and an effective permeability of µe f f MG = 1.5 could allow a maximum gain
(MG) improvement of about ∆G = 4 dB.
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Figure 3. Full-wave simulation of the gain G as a function of frequency for AVA (solid curve) and AVA
with EHL having a thickness of dEHL = 0.832 mm for the optimized effective permittivity εe f f MG
and effective permeability µe f f MG (dashed curve).

A metalens based on the novel L-shaped unit cell has been optimized. Figure 4a
shows the investigated unit cell. The geometry consists of an arrangement of L-shaped
metal elements printed on both sides of the antenna substrate. In the proposed unit cell
structure, it is possible to recognize an external square ring with four splits and two internal
stubs. Different inductive and capacitive effects are induced depending on the electric field
orientation of the traveling wave with respect to the metalens plane.

Considering the electric field (E-field) polarized along the x-axis, inductive effects
along the metal strips and capacitive effects at the gaps occur, as shown in Figure 4a.
The equivalent inductors, namely L, represent the self-inductance produced by the metal
L-shaped elements. The equivalent capacitances originate from the electric charges accu-
mulated via the splits, namely C1, and by the coupled charges between the adjacent metal
L-shaped elements, namely C2, C3, and C4 [31]. The equivalent circuit of the L-shaped unit
cell is depicted in Figure 4b; its effective complex impedance Ze f f can be fine-tuned by
varying the geometries of the conductive metal inclusions, the gap width between them,
and the dielectric permittivity of the substrate [32,33].
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For the SPRM approach, the S-parameters simulations of the stand-alone unit cell,
i.e., before its integration with AVA geometry, are performed by considering the same
substrate of the antenna. The top and the 3D views of the L-shaped unit cell with the
relative geometric parameters are shown in Figure 5a,b, respectively.
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In the second design step, in order to retrieve the effective parameters of the metalens,

the unit cell illustrated in Figure 6 has been considered. In the simulation, the
→
E
→
k -plane

of the unit cell corresponds to the Vivaldi xy-plane; see Figures 1 and 6. The plane EM
wave excitation is obtained (see Figure 6) via the Waveguide Port 1, with open boundary
conditions applied in the propagation direction. The perfect electric conductor (PEC) and
the perfect magnetic conductor (PMC) boundary conditions are suitably applied.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 16 
 

 
Figure 6. Schematic of the simulation model for the second design step of the L-shaped unit cell. 

The L-shaped unit cell geometry has been optimized in order to obtain a broadband 
gain enhancement to parity of the bandwidth [15,16]. The geometry of the proposed unit 
cell offers a high degree of freedom for metalens optimization. The inductive effects can 
be tuned in different ways, depending on the EM polarization, by varying the length of 
the L-element independently along the x-direction, 𝐿௫, and y-direction, 𝐿௬. Similarly, the 
capacitive effects can be tuned by varying the gap widths of the splits 𝑔௫  and 𝑔௬ . 
Moreover, changing the metal strip width w affects both the capacitive and inductive 
effects. Therefore, the L-shaped unit cell resonant behavior has been evaluated by 
changing all the above-mentioned geometrical parameters and the lattice lengths 𝑑௫ and 𝑑௬. 

For shortness, Table 2 directly reports the optimized values obtained in the third 
design step of the unit cell of the metalens integrated into the antenna. To identify these 
parameters, the exact number and distribution of cells, described in Section 3.3, have been 
considered. 

Table 2. Geometrical parameters of the L-shaped unit cell. 

Parameter Description Value (mm) 𝐿௫ L-element length along x-axis 1.40 𝐿௬ L-element length along y-axis 2.00 𝑤 Metal strip width 0.50 𝑔௫ Distance between two adjacent metal elements along
x-axis 0.40 𝑔௬ Distance between two adjacent metal elements along
y-axis 

0.25 𝑑𝑥 Lattice length along x-axis 6.00 𝑑𝑦 Lattice length along y-axis 6.60 𝑡 Substrate thickness 0.762 𝑡௖ Metal strip thickness  0.035 

To give an insight into the metalens behavior, the simulated amplitudes 7(a) and 
phases 7(b) of the S11 and S12 parameters of the L-shaped unit cell versus the frequency are 
shown in Figure for the optimized parameters of Table 2. 

The average values of the real part of the effective electric permittivity 𝑅𝑒ሺ𝜀௘௙௙,௔௩ሻ =4.98 and of the effective magnetic permeability 𝑅𝑒ሺ𝜇௘௙௙,௔௩ሻ = 0.75, retrieved with SPRM 
from the aforesaid S11 and S12 curves, are close enough to the theoretical optimized values 𝜀௘௙௙ ெீ = 5.75 and 𝜇௘௙௙ ெீ = 1.5 identified in the first design step and provide an almost 
constant value of the effective refractive index over the whole frequency range. It is 
reported in Figure 7c. A congruent number of unit cells allows better results, taking into 
account the couplings between adjacent unit cells [34]. Therefore, a single cell, 3 × 3, and 

Figure 6. Schematic of the simulation model for the second design step of the L-shaped unit cell.



Appl. Sci. 2023, 13, 4802 6 of 15

The L-shaped unit cell geometry has been optimized in order to obtain a broadband
gain enhancement to parity of the bandwidth [15,16]. The geometry of the proposed unit
cell offers a high degree of freedom for metalens optimization. The inductive effects can
be tuned in different ways, depending on the EM polarization, by varying the length
of the L-element independently along the x-direction, Lx, and y-direction, Ly. Similarly,
the capacitive effects can be tuned by varying the gap widths of the splits gx and gy.
Moreover, changing the metal strip width w affects both the capacitive and inductive effects.
Therefore, the L-shaped unit cell resonant behavior has been evaluated by changing all the
above-mentioned geometrical parameters and the lattice lengths dx and dy.

For shortness, Table 2 directly reports the optimized values obtained in the third
design step of the unit cell of the metalens integrated into the antenna. To identify these
parameters, the exact number and distribution of cells, described in Section 3.3, have
been considered.

Table 2. Geometrical parameters of the L-shaped unit cell.

Parameter Description Value (mm)

Lx L-element length along x-axis 1.40
Ly L-element length along y-axis 2.00
w Metal strip width 0.50
gx Distance between two adjacent metal elements along x-axis 0.40
gy Distance between two adjacent metal elements along y-axis 0.25
dx Lattice length along x-axis 6.00
dy Lattice length along y-axis 6.60
t Substrate thickness 0.762
tc Metal strip thickness 0.035

To give an insight into the metalens behavior, the simulated amplitudes Figure 7a
and phases Figure 7b of the S11 and S21 parameters of the L-shaped unit cell versus the
frequency are shown in Figure 7 for the optimized parameters of Table 2.

The average values of the real part of the effective electric permittivity Re(εe f f ,av) = 4.98
and of the effective magnetic permeability Re(µe f f ,av) = 0.75, retrieved with SPRM from
the aforesaid S11 and S21 curves, are close enough to the theoretical optimized values
εe f f MG = 5.75 and µe f f MG = 1.5 identified in the first design step and provide an almost
constant value of the effective refractive index over the whole frequency range. It is reported
in Figure 7c. A congruent number of unit cells allows better results, taking into account
the couplings between adjacent unit cells [34]. Therefore, a single cell, 3 × 3, and 6 × 6
clusters of unit cells have been also investigated, obtaining practically the same results.
As a consequence, the frequency range f = 3÷ 15 GHz can be considered a potential
operation region for the antenna. This means that the L-shaped metalens can improve the
antenna radiation performance in the whole band [15,16].

Indeed, the designed lens has a higher average refractive index than that of the antenna
substrate, so a waveguiding effect is possible. The EM field is better confined via the lens,
enhancing the radiation beam in the end-fire direction. In addition, the high refractive
index region obtained with the metalens can be used to change the EM wavefronts from
spherical to approximately planar ones, resulting in a more confined radiation pattern and
higher directivity. This is explained by considering that the phase velocity of the wavefront
in the central region is smaller than that of the wavefront edges due to the higher refractive
index metalens.

The approximated equivalent circuit reported in Figure 4b models the proposed unit
cell behavior. By exploiting the Advanced Design System (ADS) [34] and making use of
the tuning module, the following set of values, L = 0.22 nH, C1 = 1.6 pF, C2 = 0.3 pF,
C3 = 1.2 pF, C4 = 0.55 pF, and R = 2.625 Ω, have been identified, leading to a modulus of
the scattering parameter |S11| in good agreement with that of Figure 7a.
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3.3. AVA with Metalens Design

In the third design step, the metalens has been integrated into the substrate of the an-
tenna, and placed close to the tapered slot in the end-fire direction, as shown in Figure 1, for
the optimization by numerical full-wave simulations in the frequency band f = 3÷ 15 GHz,
in order to refine the results, by improving the realized gain of the antenna without reducing
its bandwidth.

The optimized values reported in Table 2 have been found via full-wave simulations
with a trial-and-error approach. Then, further optimization of the antenna with metalens
has been performed by varying, in the full-wave simulation, the number and distribution
of the unit cells and the distance along the y-direction between the metalens and antenna.
Several configurations have been simulated and compared.

In Figure 8a, the metalens of the optimized AVA L-shaped#1 consists of an array of 41
L-shaped unit cells integrated on the antenna substrate, increasing the antenna length along
the y-axis by Ly = 47 mm. This antenna exhibited particularly promising performance over
the whole band, in particular at high frequencies.

The AVA L-shaped#2, shown in Figure 8b, consists of an array of 67 L-shaped unit
cells integrated into the antenna substrate; the larger metalens also requires a slight in-
crease in the antenna substrate width along the x-axis. The AVA L-shaped#2 allows better
performance at low frequencies.
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Figure 8. Schematic of AVA with L-shaped metalenses: (a) AVA L-shaped#1—array of 41 L-shaped
unit cells, and (b) AVA L-shaped#2—triangular array of 67 L-shaped unit cells.

In Figure 9a, the modulus of the simulated scattering parameter |S11| as a function
of frequency is illustrated for the AVA without a metalens (black curve) and the AVA L-
shaped#1 (magenta curve) and AVA L-shaped#2 (green curve) metalenses. The bandwidth
favaL#1 = 3÷ 15 GHz of AVA L-shaped#1 is increased with respect to fAVA = 3÷ 13.5 GHz
of the AVA without a metalens. The L-shaped#2 allows an improvement in impedance
matching for frequencies of f < 6.5 GHz but reduces the −10 dB bandwidth to the range
of favaL#2 = 3÷ 11.8 GHz.
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In Figure 9b, the realized gain G (solid curves) of the three antennas and the gain
increase ∆G (dashed curves) with respect to the gain without a metalens, simulated as a
function of the frequency, are reported, with the same choice for the curve colors. For the
AVA L-shaped#1, the gain increase can be observed over the whole frequency range, with
an average value of about ∆Gav = 2 dB and a maximum of ∆Gmax = 4.8 dB at a frequency
of f = 15 GHz. The maximum gain is Gmax = 14.1 dB at a frequency of f = 15 GHz. For
the AVA L-shaped#2, a gain increase of about ∆G = 2 dB is obtained for frequencies of
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f < 6 GHz and f > 8 GHz. The simulated maximum gain is Gmax = 12.2 dB at a frequency
of f = 15 GHz.

The L-shaped#1 metalens improves both the antenna bandwidth and the gain in the
whole band, especially at higher frequencies. The AVA L-shaped#1 at higher frequencies
irradiates a beam more confined than that of AVA L-shaped#2. The L-shaped#2 metalens
allows a better gain improvement at the lower frequencies but reduces the bandwidth at
higher frequencies.

The simulated E-field distributions in the xy-plane of the AVA without a metalens and
AVA L-shaped#1 at a frequency of f = 14 GHz are shown in Figure 10. As expected, the
near-field of the antenna with a metalens exhibits wavefronts that are flatter than those
of the AVA without a metalens, and the radiation in the end-fire direction is increased.
Moreover, the L-shaped#1 metalens reduces the antenna back propagation. The simulated
3D view of the normalized radiation patterns at a frequency of f = 14 GHz for the AVA and
AVA L-shaped#1 are compared in Figure 11. The lens improves the antenna’s directivity
and reduces the half-power bandwidth (HPBW).

To conclude, the L-shaped#1 metalens is chosen as an interesting solution for prototype
fabrication.
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To verify the effects of the metalens on the antenna performances, the full-wave
simulation of the gain G as a function of the frequency for AVA L-shaped#1 (solid curve)
and AVA with EHL, having a thickness of dEHL = 0.832 mm and values of permittivity
εr = 4.98 and permeability µr = 0.75 (dashed curve) are compared in Figure 12. The
dimensions in the x-direction and y-direction of the EHL are the same for the metalens
L-shaped#1, and the thickness dEHL corresponds to the sum of the substrate and double
metal strips thicknesses. A very good agreement is evident.
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4. Experimental Section

Antenna prototypes, AVA, and AVA L-shaped#1 have been fabricated with Rogers
RO4350B dielectric substrate, with εr = 3.66 and tanδ = 0.0037, by using the standard PCB
process. The prototype of AVA is shown in Figure 13a. The prototype AVA L-shaped#1
is shown in Figure 13b. The scattering parameter S11, input impedance Zant, and voltage
standing-wave ratio (VSWR) versus the frequency of the two antennas have been measured
with the Agilent Technologies N5224A PNA Network Analyzer. The calibration of the PNA
has been performed with an N4693A 2-Port Electronic Calibration Module, setting the IF
bandwidth to IFBW = 1 KHz and the stimulus power to Ps = −10 dBm. The uncertainty in
the measured S11 parameter is ±0.04 dB for the magnitude and ±0.264◦ for the phase. The
radiation performance characterization has been performed with the antenna measurement
system in an anechoic chamber, StarLab SATIMO. The system has been calibrated in gain
with reference horn antennas. The uncertainty band of the instrument is egain = ±0.7 dB.
For the measurements, we have set a step of ∆ f = 10 MHz for linear frequency distribution
and a grid size of ∆θ = ∆φ = 4.5◦ for spatial resolution.

The simulated (solid curves) and the measured (dotted curves) moduli of the scattering
parameter S11 as a function of the frequency, for the AVA (black curves) and AVA L-
shaped#1 (green curves) are illustrated in Figure 14a. The metalens allows an increase
in the antenna bandwidth at high frequencies. A band of fAVA = 3÷ 13.5 GHz for the
AVA and an increased band of favaL#1 = 3÷ 14.7 GHz for the AVA L-shaped#1 have been
measured. The simulated and measured curves are in good agreement.

The measured VSWR of AVA and AVA L-shaped#1 prototypes is VSWR < 2 in almost
the whole operating frequency band. The introduction of the metalens reduces the VSWR
for frequencies f > 9.5 GHz.

The measured antenna impedance of both prototypes varies around the characteristic
impedance of the feed line Zc = 50 Ω. The introduction of metalens slightly reduces the



Appl. Sci. 2023, 13, 4802 11 of 15

impedance mismatch at high frequencies, in agreement with the measured parameter S11
reported in Figure 14a.
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The simulated and measured gain of AVA and AVA L-shaped#1 as a function of the
frequency is illustrated in Figure 14b. A maximum gain Gmax = 10.7 dB at a frequency of
f = 8.4 GHz for the AVA and Gmax = 14.21 dB at a frequency of f = 14.6 GHz for the AVA
L-shaped#1 have been measured. The AVA L-shaped#1 has an improved gain with respect
to the AVA over the whole bandwidth, especially for the frequencies f > 8 GHz, where
the measured average gain increase is about ∆Gavg = 3 dB and the maximum measured
gain increase is ∆Gmax = 4.8 dB at a frequency of f = 13.8 GHz. Additionally, for the gain,
a good agreement between the simulation and measurement is obtained.

The E-plane and H-plane radiation patterns of the antenna prototypes have been
measured and compared in the whole operating frequency band. The measured E-plane
(solid curve) and H-plane (dashed curve) half-power bandwidths of the AVA (black curve)
and AVA L-shaped#1 (green curve) as a function of the frequency are illustrated in Figure 15.
The HPBW of the antenna with metalens is reduced over the whole band in both planes,
with a maximum HPBW reduction of ∆HPBWmax = 31.3◦ at a frequency of f = 14 GHz
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for the E plane and of ∆HPBWmax = 28.3◦ at a frequency of f = 5 GHz for the H plane.
The difference between the beamwidths in the E and H planes is reduced after the insertion
of the metalens, hence the radiation pattern is more symmetrical. Figure 16 shows the
E-plane and H-plane radiation patterns of AVA (dashed curve) and AVA L-shaped#1 (full
curve), measured at frequencies f = 14 GHz and f = 5 GHz where the maximum HPBW
reduction occurs.
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A comparison between AVA L-shaped#1 and recent similar Vivaldi antennas with
metalens is shown in Table 3. The comparison with the literature is not trivial if size,
bandwidth, and gain are simultaneously considered. However, by comparing the measured
performances of the proposed AVA L-shaped#1 with the state of the art, the size is smaller
to parity of gain. As an example, the size of the AVA with a metalens [12] is 120× 260 mm,
and a director element is employed in addition to the metalens. In this paper, the size of
AVA L-shaped#1 is 48× 121 mm, without a director.

Table 3. Experimental results comparison of the metalens investigated in this work and similar
published work.

Ref
Size

(mm×mm)
(λ×λ) (1)

Operating
Bandwidth (GHz)

Min–Max Gain
G (dB)

Min–Max Gain
Increase
∆G (dB)

Min–Max ∆HPBW
(deg)

[1] 286× 300
1.3λ× 1.4λ

0.7÷ 2.1 nr (2) 1.0÷ 1.9

E plane:
4.8◦ ÷ 9.9◦

H plane:
14.7◦ ÷ 30.3◦

[2] 200× 390
2.8λ× 5.5λ

1÷ 7.5 nr 0.1÷ 4.8 nr

[4] 138.2× 69.6× 31.7
7λ× 3.5λ× 1.6λ

7.55÷ 22.85 6.98÷ 11.54 nr nr

[12] 120× 260
5.8λ× 12λ

1÷ 28 4.9÷ 14.6 nr nr

[13] 60× 28.6
5.3λ× 2.5λ

24.15÷ 28.5 0.7÷ 14 nr nr

[16] 42× 78
1.7λ× 3.1λ

6÷ 18 7.2÷ 12 1.3÷ 3.6

E-plane:
−3◦ ÷ 17◦

H plane:
23◦ ÷ 33◦

[17] 52× 93
2.1λ× 3.7λ

6÷ 18 nr 1÷ 2.5 nr

[18] 140× 96
3.1λ× 2.1λ

1.4÷ 12 9.5÷ 12.4 2.5÷ 4

E-plane:
11.3◦ ÷ 23.2◦

H plane:
−24◦ ÷ 33.2◦

[21] 80× 148.5
1.75λ× 3.2λ

1.13÷ 12 0.7÷ 14 nr nr

This work 48× 120
1.4λ× 3.5λ

3÷ 14.7 4.5÷ 14.2 0.2÷ 4.8

E-plane:
1.7◦ ÷ 31.3◦

H plane:
5.7◦ ÷ 28.3◦

(1) λ represents the wavelength at the center frequency of the operating bandwidth. (2) nr: not reported.

5. Conclusions

Metalenses have been designed and optimized in the frequency band of f = 3÷ 15 GHz
in order to enhance the radiation performance of an antipodal Vivaldi antenna. The met-
alens L-shaped#1 improves both the pristine AVA bandwidth and the gain, especially at
high frequencies. A maximum gain increase of ∆Gmax = 4.8 dB and a maximum HPBW
reduction of ∆HPBWmax = 31.3◦ have been measured at the frequency of f = 13.8 GHz
with respect to the pristine AVA. A frequency band of favaL#1 = 3÷ 14.7 GHz, slightly
larger than that of the pristine AVA, has been measured. The metalens L-shaped#2 can give
better results at lower frequencies. The experimental results are in good agreement with
the simulations.
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