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Abstract: Software clones may cause vulnerability proliferation, which highlights the importance of
investigating clone-incurred vulnerabilities. In this paper, we propose a framework for automatically
managing clone-incurred vulnerabilities. Two innovations of the framework are the notion of the
spatial clone-relation graph, which describes clone-based relationships between software programs,
and the temporal clone-relation graph, which describes the evolution of clones in software over time.
As a case study, we apply the framework to analyze eight versions of Ubuntu while drawing a
number of insights, such as: (i) clones are prevalent with about one-sixth of the codebase being
clones; (ii) intra-program clones are often attributed to polymorphisms or functional similarities
between procedures, while inter-program clones are often attributed to shared code repositories
and the reuse of libraries; (iii) the clone surface of Linux remains stable at around 0.6, meaning that
spatial and temporal clones in Linux account for about 60% of the codebase, while the lifetime of 53%
clones spans eight versions; and (iv) the clone-incurred vulnerability surface in Linux is small, while
vulnerable clones and non-vulnerable clones have similar lifetimes.

Keywords: vulnerability; risk management; clone

1. Introduction

We are in an era where software is no longer constructed completely from scratch but
by combining operating system features, development frameworks, and third-party code
or libraries. A study based on 2400 codebases shows that 97% of these codebases contain
open-source code and that 81% of these codebases have at least one known vulnerability [1].
This is largely caused by various flavors of software reuse, which is a popular practice in
modern software development, perhaps because of the pressures to improve production
efficiency and product quality [2].

Another study showed that 70% of the code on GitHub consists of clones [3]. This is
not surprising because developers often use software repositories to share code and reuse
third-party code, such as PyPI [4] for python code, RubyGems [5] for Ruby code, NPM [6]
for JavaScript code, PEAR [7] and PECL [8] for PHP code, and various OS repositories (e.g.,
Debian [9] and Ubuntu [10]).

In the literature, the following four kinds of software clones have been defined [11,12]:

• Type 1: exact clones. In this case, one piece of code is entirely copy-and-pasted from
another piece of code, without modifications.
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• Type 2: renamed clones. In this case, one piece of code is syntactically identical
to another piece of code, with possible differences in the variable types, identifiers,
comments, and/or whitespace.

• Type 3: restructured clones. In this case, one piece of code may be obtained from
another piece of code by somewhat modifying program structures, such as deleting,
inserting, or rearranging some statements.

• Type 4: semantic clones. In this case, two pieces of code may differ in syntax but have
the same functionality (i.e., semantic equivalence).

It is known that at least Types 1–3 clones can cause duplications of vulnerabilities [13].
Although there have been studies on detecting clone-incurred vulnerabilities (e.g., [13–16]),
these studies do not offer any overall characteristics of the clone landscape. In this paper, we
address this problem by investigating how to automate the management of vulnerabilities
incurred by code clones.

Our contributions. First, we propose an automated clone-incurred vulnerability
management framework to track the risks associated with clone-incurred vulnerabilities.
This framework can be used by defenders to understand, characterize, and manage clone
landscapes as well as clone-incurred vulnerability landscapes. Second, we apply the
framework to conduct a case study on Ubuntu, leading to interesting insights, including:
(i) clones are prevalent in most programs, with about one-sixth of the codebase being
clones; (ii) intra-program clones are often attributed to polymorphisms or functional
similarities between programs, while inter-program clones are often attributed to shared
code repositories and reuse of libraries; (iii) most clones remain unchanged or similar
across multiple consecutive software versions, while the lifetime of 53% clones spans eight
versions in Linux; and (v) the clone-incurred vulnerability surface in Linux is small, while
vulnerable clones and non-vulnerable clones have similar lifetime distributions.

The remainder of the paper is organized as follows. Section 2 reviews related prior
work. Section 3 describes our framework. Section 4 implements a prototype system.
Section 5 presents a case study on the Ubuntu repository. Section 6 discusses the limitations
of the present study. Section 7 concludes the paper.

2. Related Work

We divide the related prior studies into the following categories: characterizing clones
vs. leveraging clones for vulnerability detection.

2.1. Characterizing Clones

Clone granularities. Clones have been defined in four granularities: token level [17–19],
line level [16], procedure level [20–22], and file level [23,24]. The present study chooses the
procedure level granularity by leveraging existing clone-detection algorithms.

Clone characterization. First, there are studies related to what we call spatial clone-
relation graphs. Kamiya et al. [17] analyzed clones across three operating systems (FreeBSD,
NetBSD, and Linux) and found that FreeBSD and NetBSD have similar source code, but
they are different from Linux. Mockus [25] analyzed projects and packages in Linux and
BSD and found that more than 50% of the files were used in more than one project. Roy
et al. [26] examined open-source C, Java and C# systems and found that 15% of the files in
the C systems, 46% of the files in the Java systems, and 29% of the files in the C# systems
were associated with exact clones.

Heinemann et al. [27] analyzed 20 open-source Java projects and found that 9 of
them had a code reuse rate of 50% or higher. Lopes et al. [3] analyzed github projects
and found that 70% of the code consists of clones of previously created files. Koschke
and Bazrafshan [28] analyzed C/C++ projects and found that 80% of the projects had at
least one Type-2 clone. Lozano et al. [29] assessed the effect of clones on maintenance and
showed that clone may increase maintenance effort.

Hotta et al. [30] compared the maintainability of 15 open-source systems with vs.
without clones and found that presence of clones had a negative impact on software
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evolution. Lozano et al. [31] showed that code clones cause more changes to code, while a
similar phenomenon was observed in [32]; in contrast, other studies [33,34] showed that
cloned code is more stable. In contrast, we propose a framework for managing the clone-
incurred vulnerabilities. Even for the case study of clones, we are the first to investigate the
matter of clones in Ubuntu at the procedure granularity level.

Second, there are studies related to what we call temporal clone-relation graphs.
Kim et al. [35] and Aversano et al. [36] studied clone genealogy in Java projects and found
that long-lived clones changed consistently. Saha et al. [37] examined clone group evolution
in 17 open-source systems and found that most clone groups changed consistently in the
subsequent releases. Zibran et al. [38] studied the patterns of clone changes and removals in
six software systems. Thongtanunam et al. [39] investigated six open-source Java systems
from the perspective of clone lifetime and found that many clones had a short lifetime.

2.2. Leveraging Clones to Detect Bugs and Vulnerabilities

There are studies on clone-incurred bugs. For example, Sajnani et al. [40] explored
the relationship between clones and bug patterns and found that the defect density in
cloned code was 3.7-times less than the rest of the code. Rahman et al. [41] analyzed the
relationship between cloning and defect proneness and found that the great majority of
bugs were not significantly associated with clones. Li et al. [42] found that 4% of the bugs
were duplicated across more than one product or file.

Islam et al. [43] studied the evolution of clones and clone-incurred bugs. These
studies are primarily from a software engineering perspective. By contrast, we focus on
the evolution of clones and clone-incurred vulnerabilities, which are primarily from a
cybersecurity perspective. Since these studies are not based on Ubuntu, which is our
focus, their results and ours are not comparable; otherwise, it would be interesting to see
whether the patterns exhibited by clone-incurred bugs are similar to the patterns exhibited
by clone-incurred vulnerabilities or not.

There are studies on leveraging clones to detect vulnerabilities. For example, Li et al. [13]
leveraged patches to automatically select clone-detection algorithm(s) suitable for detecting
vulnerabilities incurred by clones. Kim et al. [14] generated fingerprints of vulnerable
procedures and used a hash approach to detect vulnerable clones. Islam and Zibran [44]
studied vulnerabilities in clones in Java programs, and Islam et al. [45] studied the vulnera-
bilities incurred by clones in C programs by leveraging clone relations similar to what we
call spatial clone graphs.

Studies [44,45] also investigated vulnerability severity in different clone types and
non-clone code, while noting that their experiments were based on 97 Java programs and
34 C programs. By contrast, we analyze eight Ubuntu versions, meaning that the programs
they analyzed and the programs we analyze are different. Moreover, we consider both
spatial and temporal clones, which lead to the clone and vulnerability landscape (i.e.,
overview of the situation regarding vulnerabilities incurred by clones).

3. The Clone-Incurred Vulnerability Management (CVMan) Framework
3.1. Motivation: Practitioners’ Questions (PQs)

The NIST Cybersecurity Framework [46] defines a number of functionalities for man-
aging enterprise cybersecurity. One of these functionalities is identify, which aims to identify
the cybersecurity risks associated with an enterprise network or IT infrastructure. This
highlights the importance of knowing the spectrum of risks. In this paper, we focus on the
particular risk associated with the software vulnerabilities that are incurred by code clones
or clone-incurred vulnerabilities. This prompted us to propose the following Practitioners’
Questions (PQs):

• PQ1: What does the intuitive notion of the clone landscape of an enterprise network look
like? Although the term clone landscape is intuitive, we need to define it precisely.



Appl. Sci. 2023, 13, 4948 4 of 20

• PQ2: How does the clone landscape evolve with time? Answering this question allows
the requester to keep track of the dynamic clone landscape and manage the dynamic
situational awareness of the clone landscape.

• PQ3: What are the clone-incurred vulnerability landscapes (e.g., which clones are associ-
ated with what vulnerabilities)? Addressing this question allows the requester to keep
track of clone-incurred vulnerabilities.

• PQ4: How should a requester leverage the clone and/or vulnerability landscape
to manage the risks of clone-incurred vulnerabilities? For example, what should
the requester do when a new vulnerability becomes known (e.g., disclosed by a
software vendor)?

3.2. Framework Overview

Figure 1 highlights the proposed CVMan framework for managing clone-incurred
vulnerabilities. CVMan has three components: clone management (for addressing PQ1 and
PQ2), vulnerability management (for addressing PQ3 and PQ4), and the service interface (for
facilitating interaction between a requester and the former two components). In principle,
the framework is equally applicable to both source code and binary code. The present
study focuses on source code.

Detecting

Extracting

Programs Clone pairs

Vulnerability 
sources

Vulnerabilties

Constructing

SCG

Clone Management

Vulnerable 
programs

Vulnerability Management

Constructing

Constructing

DCG

Service interface

PQ Answer 

Re-formulated question Answer 

Defender

Figure 1. Overview of the CVMan framework.

Terminology. We use the term program to represent software that is designed for a
specific application or service and is provided by a specific vendor (including open source).
For example, we treat Firefox as one program and Linux as another program, while noting
that Ubuntu-like software is treated as a set of programs (e.g., Ubuntu consists of multiple
programs, including Firefox, Linux, and Thunderbird). Since we focus on programs with
source code, a program is a set of source code files written in some programming language(s).
This means that a file consists of a set of procedures, where each procedure is an ordered set
of statements or lines of code performing certain tasks. Although procedures are often in
the form of program functions, we prefer the term procedure because we will use the term
function to indicate the mathematical functions for computing the similarity between two
pieces of code.

3.3. The Clone Management Component

In order to describe and characterize the intuitive concept of a clone landscape, as
mentioned in PQ1 and PQ2, we need to extract and manage the code clone relations
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associated with a given set of software programs. We propose achieving this in two steps:
detecting clone relations and constructing clone landscape. These steps are elaborated below.

3.3.1. Detecting Clone Relations

For this purpose, we first need to determine the notion of clone granularity because
clones can be defined at multiple levels, such as: file vs. procedure vs. multiple lines of
codes (LoCs) vs. single LoC. In order to unify presentations, we use the term code fragment to
describe a piece of code at a granularity of interest, such as the four granularities mentioned
above. Since the framework is equally applicable to any possible granularity, we choose
to focus on the procedure as the unit of code clones because this granularity provides
both syntactic and symbolic information. In order to make the CVMan framework widely
applicable, we make it able to accommodate any clone-detection algorithm. For prototyping
purposes, we consider one specific clone-detection algorithm, but other algorithms of the
same nature can be incorporated in a plug-and-play fashion. Moreover, the clone-relation-
detection sub-component, which is different from the clone-detection algorithm, extracts
code fragments from programs at a granularity of interest and then analyzes the clone
relations between these code fragments.

Formally, let P1, . . . , Pn denote n programs for which we study their clone landscape,
where n ≥ 1. For example, n = 1 means the clone landscape between the code fragments
in a single given program; n = 2 means both the clones within each of the two programs
and the clones between the two programs. Each Pi is treated as an ordered set of statements
(i.e., line of code). For program Pi, where 1 ≤ i ≤ n, let Ci,1, . . . , Ci,`i

denote the `i code
fragments, where each fragment is treated as an ordered set of statements; we assume that
these fragments are extracted from Pi by an appropriate pre-processing algorithm. Note that
these code fragments do not necessarily correspond to a partition of program Pi, meaning it
is possible that Pi 6= Ci,1 ∪ . . . ∪ Ci,`i

. Moreover, it is also possible that Ci,j1 ∩ Ci,j2 6= ∅ for
some j1 6= j2 because two code fragments may have one or multiple statements in common.
Let C denote the universe of code fragments.

Given n programs P1, . . . , Pn, there are many algorithms for detecting clone relations.
The CVMan framework can incorporate any algorithm for this purpose as long as an
algorithm is based on the following two concepts, which have been widely used in the
literature and may guide the design of future algorithms.

One concept is to determine whether a pair of code fragments has a clone relation,
namely that one is a clone of the other and vice versa. For this purpose, we need a
mathematical function f : C × C → [0, 1] to measure the similarity between a pair of code
fragments. There are many realizations of function f . One example is to measure similarity
by treating each code fragment as a set of tokens (e.g., identifier, operator, and procedure
name) and then to leverage the similarity between their respective tokens [17]. Then, one
can measure the ratio between the size of the common tokens and the size of the larger
code fragment [19], namely:

f (Ci1,j1 , Ci2,j2) =

∣∣Ci1,j1 ∩ Ci2,j2

∣∣
max(

∣∣Ci1,j1

∣∣, ∣∣Ci2,j2

∣∣) (1)

where |·| returns the size of a set.
The other concept is threshold parameter τ ∈ [0, 1] for determining when a pair of

code fragments are, indeed, a clone. Intuitively, τ reflects the types of clones of interest. For
example, when the requester only cares about Type-1 clones, the requester can set τ = 1;
whereas, τ < 1 means the requester aims to accommodate code manipulations to clones. It
is intuitive that the clone relation is not necessarily transitive.

Definition 1 (clone relation). A clone relation between a pair of code fragments (Ci1,j1 , Ci1,j1)
holds if f (Ci1,j1 , Ci2,j2) ≥ τ, where Ci1,j1 is extracted from program Pi1 and Ci2,j2 is extracted
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from program Pi2 using an appropriate pre-processing algorithm, 1 ≤ i1, i2 ≤ n, 1 ≤ j1 ≤ `i1 ,
1 ≤ j2 ≤ `i2 , and (i1, j1) 6= (i2, j2) but possibly i1 = i2 or j1 = j2.

3.3.2. Constructing a Clone Landscape

We propose defining a clone landscape via two kinds of clone-relation graphs, which
are specified by leveraging Definition 1.

• Spatial Clone-Relation Graph (SCG): Given programs P1, . . . , Pn, we can derive a SCG to
describe the clone relations between a pair of programs (Pi, Pj), where 1 ≤ i ≤ n and
i ≤ j ≤ n. Intuitively, a SCG describes the clone landscape from given snapshots of
programs, which may run in an enterprise network. In the case n = 1, the resulting
SCG would capture the clone relations between the code fragments that are extracted
from a given program; whereas n > 1 means that the resulting SCG captures not only
the clones within each program but also the clones between two programs.

• Temporal Clone-Relation Graph (TCG): Given a sequence of programs P1, . . . , Pn, which
correspond to n versions of a program (e.g., n versions of Firefox), we can derive a TCG
to describe the clone relations in a single version of the program and the clone relations
between two versions of the program. Intuitively, a TCG additionally captures, when
compared with SCG, the evolution of clones with time.

Note that the notion of TCG can be naturally extended to include programs other than
the sequence of different versions of the same programs (e.g., 1 version of Linux and 10
versions of Firefox). Another extension is to consider the evolution of clone relations in
the software stacks running in an enterprise network. In this case, the notion of “version”
mentioned above would need to be replaced with the notion of “snapshot” (e.g., the entire
set of programs that run in the enterprise at each point in time or during each time interval
of interest, such as daily or weekly). Since the extension is straightforward, we choose to
present the simpler notion of TCG mentioned above so that we can highlight the ideas
while simplifying the presentation. Now, we proceed with formal definitions.

Definition 2 (SCG). Given a set of pairs of code fragments with a clone relation, namely
{(Ci1,j1 , Ci2,j2)}1≤i1,i2≤n,1≤j1≤`1,1≤j2≤`2 extracted from programs P1, . . . , Pn, a SCG is an undi-
rected graph denoted by GS = (VS, ES), where VS =

⋃
1≤i1,i2≤n,1≤j1≤`1,1≤j2≤`2

{Ci1,j1 , Ci2,j2}
is the set of nodes representing code fragments and ES = {(Ci1,j1 , Ci2,j2)} is the set of edges
representing the clone relations.

As an example of SCG, consider two programs P1, P2 (e.g., Firefox 45.0.0 and Thunder-
bird 38.6.0). Suppose four code fragments are extracted from P1, namely C1,1, C1,2, C1,3, C1,4.
Suppose three code fragments are extracted from P2, namely C2,1, C2,2, C2,3. Then, one
possible scenario is that (C1,1, C1,2) and (C1,3, C1,4) are two pairs of clones associated with
program P1, (C2,1, C2,2) is a pair of clones associated with program P2, and (C1,1, C2,3) is a
pair of clones, respectively, associated with programs P1 and P2.

Definition 3 (TCG). Given a set of n versions of a program, also denoted by P1, . . . , Pn for the sake
of minimizing notations, the TCG is a graph denoted by GT = (VT , ET), where VT is the sets of
nodes representing code fragments and ET is the set of edges representing the code pairs. Specifically,
GT is derived as follows:

• For each Pi where 1 ≤ i ≤ n, there is a SCG corresponding to it, denoted by G(i)
S =(

V(i)
S , E(i)

S

)
, which captures the clone relation between the code fragments of Pi.

• For each pair of programs (Pi1 , Pi2) where 1 ≤ i1, i2 ≤ n and i1 < i2, there is a SCG

corresponding to it, denoted by G(i1,i2)
S =

(
V(i1,i2)

S , E(i1,i2)
S

)
, which captures the clone relation

between the code fragments of Pi1 and the code fragments of Pi2 . Note that V(i1,i2)
S consists of

two sets of nodes, namely one set that corresponds to the code fragments in Pi1 and another set

that corresponds to the code fragments in Pi2 . We denote the former set by
[
V(i1,i2)

S

]
i1

and the
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later set by
[
V(i1,i2)

S

]
i2

. It is possible that Vi1
S
⋂[

V(i1,i2)
S

]
i1
6= ∅ and/or Vi2

S
⋂[

V(i1,i2)
S

]
i2
6= ∅,

meaning that some code fragment is not only cloned in a single version (say Pi1) but also
cloned in another version (say Pi2 ).

• Let V(i1)
T = V(i1)

S
⋃(⋃

i1<i2≤n[V
(i1,i2)
S ]i1

)
, for 1 ≤ i1 ≤ n, which is the set of code fragments

that belong to Pi1 and have been cloned in Pi1 or another version Pi2 . This leads to a layer-i1
graph G(i1)

T =
(

V(i1)
T , E(i1)

S

)
, where the edges only describe the clone-relation between the code

fragments in Pi1 . The resulting clone-relation graph is an n-layer network GT = (VT , ET),

where VT = V(1)
T ∪ . . . ∪V(n)

T , and ET =
(⋃

1≤i≤n E(i)
S

)⋃(⋃
1≤i1<i2≤n E(i1,i2)

S

)
, meaning

that the edges additionally capture the clone relations between code fragments in different
versions of the program.

Note that, from a Graph Theory point of view, a SCG is a standard graph or net-
work, whereas a TCG is a multilayer network with each layer corresponding to one
version of a program. We use Figure 2 to illustrate this distinction via a simple sce-
nario of two versions of a program. Suppose we extract five code fragments from P1,
namely C1,1, C1,2, C1,3, C1,4, C1,5. Suppose we extract four code fragments from P2, namely
C2,1, C2,2, C2,3, C2,4.

Then, the SCG corresponding to P1 only contains two clone relations, namely (C1,1, C1,4)
and (C1,3, C1,5) which are indicated by dashed edges; the SCG corresponding to P2 only
contains one clone relation, namely (C2,1, C2,4) which is indicated by a solid edge. The SCG
corresponding to (P1, P2) would capture all the clone relations as shown in Figure 2 but
cannot distinguish the dashed edges from the solid edges, whereas the TCG representation
distinguishes the two kinds of clone relations. As we will see, this distinction allows us to
capture the evolution of clones associated with a sequence of versions of a program.

C1,1 C1,4

C1,2

C1,3 C1,5

C2,1 C2,4

C2,2

C2,3

P1 P2

Figure 2. Illustration of TCG of two versions of a program, denoted by P1 and P2. The boxes represent
code fragments, the dashed edges represent the clone relations between code fragments in a single
version of the program (i.e., P1 or P2), and the solid edges represent the clone relations between code
fragments in different versions of the program (i.e., between P1 and P2).

Given the clone relations, it is straightforward to generate SCG and TCG, by simply
following their definitions. Having obtained SCG and TCG, we can use them to formalize
the intuitive notion of the clone landscape as follows.

Definition 4 (clone landscape). Given a set of programs P1, . . . , Pn, the clone landscape is
defined as:

• The SCG that is derived from these programs when no temporal information about the pro-
grams is provided (i.e., the programs are for different applications/purposes or provided by
different vendors).

• The TCG that is derived from these programs when temporal information about the programs
is provided (e.g., some or all of the programs are different versions of the programs).
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In order to unify representation, we use the clone landscape to indicate either SCG or TCG, which
should be clear from the context.

In order to characterize clone landscapes and their evolution, we propose defining the
following metrics to characterize the dynamic situation of clones via the landscape. Let
|Pi| denote the number of LoCs of program Pi. Recall that V(i)

T is the set of code fragments
belonging to program Pi, including the code fragments that are cloned in Pi and the code
fragments that are cloned in Pj where j 6= i. For a code fragment v, let |v| denote its number
of LoCs.

• Clone surface: This metric measures the fraction of code in a program that is cloned,
either from another program or by another program. Specifically, for a program Pi,

this metric describes the percentage of cloned LoCs in Pi, namely
∑

v∈V(i)
T
|v|

|Pi |
.

• Clone prevalence: This metric measures how prevalent clones are in a set of programs.
Specifically, for a given code fragment C, this metric is defined as the number of clones
of C in programs P1, . . . , Pn.

• Clone lifetime: This metric measures the lifecycle from a cloned code fragment.
Suppose a given code fragment C appears in the given set of programs P1, . . . , P2 at
time t1 at the earliest and at time t2 at the latest. Then, the lifetime of C with respect to
P1, . . . , Pn is defined as t2 − t1.

Note that the clone lifetime metric is only applicable to TCG-based clone landscapes.

3.4. The Vulnerability Management Component

In order to describe and characterize the intuitive concept of clone-incurred vulnera-
bility landscape mentioned in PQ3 and PQ4, we propose leveraging the notion of clone
landscape. Intuitively, when a vulnerability pertinent to a code fragment (i.e., a vulnerable
code fragment) becomes known, the requester can leverage the clone landscape to iden-
tify all of the vulnerable clones. As a result, when the patch to a vulnerability becomes
available, the requester can possibly patch all of the vulnerable programs; when patches to
some or all of the vulnerable programs are not available, the requester can take alternate
countermeasures in monitoring and protecting those vulnerable programs (e.g., carefully
examining the input to those programs to prevent exploitation of their vulnerabilities). This
component has two sub-components: extracting vulnerabilities and constructing clone-incurred
vulnerability landscape.

3.4.1. Extracting Vulnerabilities

Vulnerability information can be extracted from various sources, such as: vulnerability
databases, vendor security advisories, bug trackers, and the commit history of software
projects. The National Vulnerability Database (NVD) [47] is a public vulnerability database
and maintains standardized information about reported software vulnerabilities. Vendor
security advisories are issued by vendors and disclose vulnerability details and the affected
software versions.

Bug trackers are software application that keeps track of reported software bugs and
their patches, typically keeping detailed information about vulnerabilities (also known as
security bugs) and patches. Traversing the commit history of a program can also allow
one to identify and extract vulnerability information. We implemented multiple crawlers
to extract vulnerability information from multiple sources, such as crawlers for MFSA,
crawlers for NVD, crawlers for USN, etc. We extracted the programs, program versions
affected by vulnerabilities, and vulnerabilities’ patches.

3.4.2. Constructing Clone-Incurred Vulnerability Landscape

The preceding sub-component extracts each vulnerability as a piece of vulnerable
code, which is treated as a vulnerable code fragment. Given a set of vulnerabilities (i.e.,
vulnerable code fragments) obtained by the preceding sub-component, this sub-component
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constructs clone-incurred vulnerability landscape by identifying and annotating the nodes
(representing code fragments) in clone landscape with the pertinent vulnerabilities. Ideally,
the vulnerability information should be as detailed as possible, including what the affected
programs and their versions are, what the patches are, and how they can be exploited. In
practice, vulnerability information is often incomplete. For example, the requester may
only be given the affected program versions.

Given a set of vulnerabilities, which are vulnerable code fragments extracted by the
preceding sub-component, we need to determine whether a code fragment corresponding
to a node in the clone landscape is vulnerable or not. For this purpose, there can be many
algorithms. For example, one can require that two code fragments are similar enough (i.e.,
they can be seen as clones of each other); another method is to require that the code fragment
contains all of the statements of the vulnerable code fragment; a conservative method is
to treat a code fragment as vulnerable if it contains any statement of the vulnerable code
fragment. This leads to:

Definition 5 (clone-incurred vulnerability landscape). Given a clone landscape derived from
programs P1, . . . , Pn and a set of vulnerabilities that can be treated as vulnerable code fragments,
the clone-incurred vulnerability landscape is defined as the annotated clone landscape, such that
each node in the clone landscape, if deemed as vulnerable according to the given vulnerabilities, is
annotated with the information of the pertinent vulnerability.

In order to characterize clone-incurred vulnerability landscapes and their evolution,
we propose defining the following metrics to characterize the dynamic situation of clone-
incurred vulnerabilities via the landscape. Let V(i)

L be the set of nodes in the clone landscape,

which correspond to the code fragments belonging to program Pi. Let V(i)
L′ ⊆ V(i)

L be the
subset of nodes in the clone landscape, which correspond to the vulnerable code fragments
belonging to program Pi. Recall that |Pi| is the number of LoCs of program Pi and that for a
code fragment v, |v| denotes its number of LoCs.

• Clone-incurred vulnerability surface: This metric measures the fraction of code in
a program that is cloned and vulnerable. Specifically, for a program Pi, this metric
describes the percentage of cloned LoCs in Pi where the clone is also vulnerable,

namely
∑

v∈V(i)
L′
|v|

|Pi |
.

• Clone-incurred vulnerability prevalence: This metric measures how prevalent clones
are in a set of programs. Specifically, for a given vulnerable code fragment C, this
metric is defined as the number of clones of C in the programs P1, . . . , Pn.

• Clone-incurred vulnerability lifetime: This metric measures the lifecycle from a
cloned vulnerable code fragment. Suppose that a given vulnerable code fragment C
appeared in the given set of programs P1, . . . , P2 at time t1 at the earliest and at time t2
at the latest. Then, the lifetime of vulnerable clone code fragment C with respect to
P1, . . . , Pn is defined as t2 − t1.

Note that the clone-incurred vulnerability lifetime metric is only applicable to TCG-based
clone landscapes.

3.5. The Service Interface

The service interface allows one to interact with CVMan by asking questions, such
as the aforementioned PQ1–PQ4. For each question, a request is accompanied with a
number of parameters. The service interface may re-formulate the question according to
its interface with the clone or vulnerability management component and then determines
which component or sub-component should be given the re-formulated question, collects
the answer from the clone or vulnerability management component, and translates the
answer to a format that may be easier for the requester to understand. Moreover, the service
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interface may be extended to incorporate appropriate visualization tools for presenting the
answer to the requester. Specifically, the interface can offer the following services.

In order to answer PQ1, the interface takes the input provided by the requester, which
includes a set of programs. Then, the interface feeds the input to the clone management
component, which detects clones, as discussed above, and formulates the corresponding
clone landscape, represented by a SCG. The clone management component reports back
the metrics that are measured from the SCG, namely the clone surface of each program and
the clone prevalence of each cloned code fragment in the set of programs.

In order to answer PQ2, the interface takes the input provided by the requester, which
includes a set of n versions of some program(s). Then, the interface feeds the input to the
clone management component, which detects clones and constructs the corresponding
clone landscape TCG. The clone management component would report back the metrics
that are measured from the TCG, namely the clone surface of each program, the clone
prevalence of each cloned code fragment in the set of programs, and the clone lifetime.
These metrics can be leveraged to conduct further analyses.

In order to answer PQ3, the interface takes the input provided by the requester, which
includes a set of n versions of some program(s). The interface feeds the input to the clone
management component, which detects clones and constructs the corresponding clone
landscape TCG. Then, CVMan extracts vulnerabilities from vulnerability sources, annotates
the code fragments that have at least one line in common with a vulnerable code fragment,
and, finally, outputs these vulnerable code fragments, as well as the programs that belong
to the requester.

In order to answer PQ4, the requester is given a specific vulnerability (for example) by
a trusted third party. The requester would want CVMan to identify all of the vulnerable
programs that contain clones of the given vulnerable code. The interface takes the new
vulnerability and feeds it to the vulnerability management component. Then, CVMan
annotates the code fragments in the existing clone landscape that have at least one line
in common with a vulnerable code and, finally, outputs these vulnerable code fragments
(programs) and TCG with annotated vulnerability.

4. Implementing CVMan Prototype System

Based on the CVMan framework described above, we implemented a prototype sys-
tem. The prototype system cannot achieve end-to-end automation yet because there are
some tasks that are currently done manually. This means that further development is
needed in order to achieve end-to-end automation in clone-incurred vulnerability manage-
ment. Nevertheless, the current implementation of the prototype system is sufficient to
demonstrate the idea of CVMan and its usefulness.

4.1. The Clone Management Component

In the prototype system, this component is completely automated. As described in the
framework, this component has two sub-components. First, the clone-relation-detection
sub-component detects clone relations at the procedure granularity. To extract procedures
from the programs, we employed Universal Ctags [48], an accurate and fast open-source
regular expression-based parser. SourcererCC is leveraged to perform clone detection.
Second, the clone landscape construction sub-component takes the clone relations as input
to construct the clone landscape representation in SCG and TCG. In order to answer PQ1
and PQ2, procedures are designed to compute, for example, the clone surface metric, the
clone prevalence metric, and the clone lifetime metric.

4.2. The Vulnerability Management Component

As described in the framework, this component has two sub-components. First, the
vulnerability extraction sub-component is not completely automated, because patches
exist on different websites. This sub-component includes multiple crawlers, which ex-
tract vulnerability information from multiple sources, such as the National Vulnerability
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Database (NVD) [47], Mozilla Foundation Advisories (MFSA) [49], Ubuntu Security Notices
(USN) [50], and Ubuntu CVE Tracker [51].

For each vulnerability, the crawler extracts the following attributes: the vulnerable
programs, the vulnerable versions of the programs, and the patches. However, there
are vulnerability sources that do not provide a structural representation of vulnerability
information. This means that, in order to achieve complete coverage of vulnerability
sources, this component in the current prototype needs to be extended to accommodate
such unstructured vulnerability information, which is often provided by the vendors’
security advisories. This could be achieved by leveraging natural-language-processing
techniques.

Second, the clone landscape annotation sub-component is completely automated. This
sub-component is implemented as a standard patch parser and an annotating procedure.
The patch parser parses patches in UNIX standard format for extracting vulnerable lines of
code (i.e., the fragment that includes several lines of code that changed). With the vulnerable
lines of code, the annotating procedure annotates fragments in the clone landscape graph
with the pertinent vulnerabilities, which is achieved by searching for fragments that have
at least one line in common with a vulnerable line of code.

4.3. The Service Interface

In the prototype system, the service interface is a control procedure that parses the
input parameters from the requester, calls the corresponding sub-component, and then
feeds the results back to the requester. Figure 3 highlights this system in a flow chart.

Programs
(Vulnerability)

Service interface

PQ?
Clone 

management

PQ? SCG

TCG

Clone 
management

Vulnerability 
management

PQ? Vulnerable 
fragments

Vulnerable 
fragments of 

specific 
vulnerability

PQ1,PQ2

PQ3,PQ4

PQ1

PQ3

PQ4

PQ2

Figure 3. The flow chart of the CVMan prototype system.

5. Case Study: Applying CVMan to Analyze Clones in Ubuntu

In order to demonstrate the usefulness of CVMan, we conducted a case study by
applying it to n = 8 versions of Ubuntu. We chose Ubuntu because it is representative of
modern software in terms of its volume (about one hundred million LoCs), complexity (con-
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taining various types of software components and complex reuse between the components),
significance (widely used), and open-source nature (source code availability).

5.1. Experiment with the Ubuntu System

Our experiments were conducted on a server equipped with two Intel Xeon E5-2630V3
CPUs (16 cores in total) running at 2.40 GHz, 16 GB memory, and with 4 TB hard drives.
The server ran the CVMan prototype system.

The Programs That Are Analyzed in the Experiments: Ubuntu Repository

Ubuntu is a Linux distribution based on Debian and composed mostly of free and
open-source software. Ubuntu is stored in four repositories: main, restricted, universe,
and multiverse. The main repository contains free and open-source software (with the
source code) supported by the Ubuntu team. The restricted repository contains propri-
etary drivers for various devices. The universe repository contains free and open-source
software maintained by the community with source code). It is worth mentioning that the
Ubuntu team does not guarantee to provide prompt security updates for Ubuntu in the
universe repository but will provide them when security updates are made available by
the community.

The multiverse repository contains software that is not free. We studied the default
software in the main and universe repositories of Ubuntu release for the desktop AMD64
architecture because it is perhaps the most widely used. Specifically, we selected the n = 8
Ubuntu releases between 2018 and 2021. We downloaded the Ubuntu source images and
manifest files from the Ubuntu release website at http://old-releases.ubuntu.com/releases
(accessed on 1 May 2022). The source images contain the source code, and the manifest file
is the default package name and version included in an Ubuntu release.

According to the package information in the manifest file, we used a crawler to
obtain the program names corresponding to the packages and to extract the source code of
programs from the source images. We used command dpkg-source -x packagename to
extract the source code of programs. Then, we cleaned the source code of the programs: (i)
discarding the programs that did not include any files with the suffixes .c, .C, .cpp, .Cpp,
.h, .hpp, or .c++; (ii) discarding the files that did not have the suffixes .c, .C, .cpp, .Cpp,
.h, .hpp, and .c++; and (iii) removing whitespaces and comments. Table 1 presents the
basic information about the n = 8 versions of Ubuntu, including the number of C/C++
programs and the number of lines of C/C++ code in each version. In total, the dataset
consists of 5760 programs, including more than 800 million LoCs.

Table 1. Basic information about the n = 8 Ubuntu versions.

Version # C/C++ Programs # Lines of C/C++ Code

18.04 704 100,985,002
18.10 708 98,274,202
19.04 714 103,083,366
19.10 714 101,017,066
20.04 721 109,634,409
20.10 727 109,208,168
21.04 735 113,759,907

We detected clone relations in eight Ubuntu versions. If we take Ubuntu 18.04 as an
example, there are 704 C/C++ programs, and the SCG has 337,837 nodes (i.e., fragments)
and 4,761,650 edges. Since the experiment deals with Ubuntu, the experiment automatically
collected vulnerabilities from: (i) the Ubuntu Security Notices (USN) [50], which tracks
vulnerabilities in all Ubuntu releases; (ii) the Ubuntu CVE Tracker [51], which lists the
notices when a security issue is fixed in an official Ubuntu program. and (iii) the National
Vulnerability Database (NVD), which contains vulnerability reports.

http://old-releases.ubuntu.com/releases
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5.2. Answering PQ1

Taking Ubuntu 18.04 as an example, in order to answer PQ1, the interface feeds the
programs in Ubuntu 18.04 to the clone management component, which detects clones and
constructsthe clone landscape, represented by a SCG. The clone management component
would report back the metrics that are measured from the SCG, including the clone surface
of each program and the clone prevalence of each cloned fragment in Ubuntu 18.04. The
SCG of Ubuntu 18.04 has 337,837 nodes (i.e., fragments) and 4,761,650 edges.

5.2.1. Clone Surface

In Ubuntu 18.04, the number of clone LoCs is 18,592,560. The clone surface of Ubuntu
18.04 is 0.18. Among the 704 programs, 627 programs contain clones, with a 0.07 median
clone surface (i.e., one half of the programs have a clone surface that is higher than 0.07).

Table 2 lists the top ten programs with the largest clone surface in Ubuntu 18.04.
Among these, the program with the largest clone surface value is Fftw3, a C subroutine
library utilized for computing the discrete Fourier transform. The clone surface value for
Fftw3 is 0.83, which can be attributed to the presence of several similar procedures designed
to handle arbitrary input sizes as well as real and complex data. Similarly, SuiteSparse, a
library utilized for sparse matrix computations, has a clone surface value of 0.66. Clones in
Fftw3 and SuiteSparse are primarily found within the program, which we term as intra-
program clones. These clones arise due to the presence of functionally similar procedures
within a program, such as polymorphism mechanisms in the C++ language or similar
algorithms. Consequently, these functionally similar programs contain the same syntax
structures and variables.

Another type of clone occurs between programs, which we term as inter-program
clones. Clones in Libffi, Libart-lgpl, Bzip2, Libogg, Ldb, Libvpx, and Hunspell programs
are mainly inter-program clones. The shared code repository is the cause of several inter-
program clones. For example, the presence of several inter-program clones in Mozilla
Application Suite, which encompasses Firefox, Thunderbird, and SpiderMonkey (Mozjs),
can be attributed to the use of the same Mozilla source code repository. Additionally, the
reuse of libraries is another contributing factor. For instance, Libffi 3.2.1 is available as
a separate program in Ubuntu 18.04 and is included in Python 2.7, GCC-7, and GCC-8,
whereas another version of Libffi 3.1 is included in Python 3.6, Thunderbird, Firefox,
and Mozjs52.

Table 2. Top 10 programs in Ubuntu 18.04 ranked by the clone surface.

Program LoC Clone LoC Clone Surface

Fftw3 264,365 219,272 0.83
M2300w 2260 1685 0.75

Libffi 25,498 17,070 0.67
Libart-lgpl 10,754 7245 0.67

Bzip2 5837 3824 0.66
SuiteSparse 539,437 358,110 0.66

Libogg 2637 1588 0.60
Ldb 67,599 39,641 0.59

Libvpx 296,977 166,979 0.56
Hunspell 18,520 10,362 0.56

Figure 4a presents the cumulative distribution function (CDF) of the clone surfaces
for programs in Ubuntu 18.04. It shows that 35% of programs have a clone surface larger
than 0.10, and some programs even have a clone surface greater than 0.50. Such high levels
of code cloning can adversely affect the maintainability of the codebase. Figure 4 also
illustrates the CDF of inter-program clone surface, revealing that 36% of programs have
no inter-program clones, while 20% of the programs have an inter-program clone surface
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larger than 0.10. When addressing bugs in these programs, developers should check for
the presence of clones in other programs.
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Figure 4. Clone surface. (a) CDF of the clone surface for programs in Ubuntu 18.04. (b) The clone
surfaces for eight Ubuntu versions.

Furthermore, the clone surface for each version of Ubuntu was acquired by utilizing
eight Ubuntu versions as input. As depicted in Figure 4a, the clone surfaces for each
Ubuntu version are shown, and the changes in the clone surface and inter-program clone
surface remain consistent. Notably, the clone surface in Ubuntu version .04 is larger than
the clone surface in Ubuntu version .10, mainly due to the existence of two or more versions
of GCC in Ubuntu version .04. This suggests that clones in Ubuntu are relatively stable,
with the exception of Ubuntu 21.10, where the absence of Firefox source code in Ubuntu
21.10 results in a lower clone surface and inter-program clone surface.

5.2.2. Clone Prevalence

The clone prevalence describes the number of clones in one fragment. We ob-
tain the code prevalence from the SCG of Ubuntu 18.04. In Ubuntu 18.04, the clone
with the maximum clone prevalence is the at_impl procedure, located in the file
boost/fusion/container/vector/detail/cpp03/preprocessed/vector40.hpp in the boost program, with
a clone prevalence of 1558. This clone’s high clone prevalence is attributed to the presence
of numerous procedures with similar functionality in the same file and directory. The code
for these procedures is automatically generated and is essentially similar in structure and
function. On the other hand, the minimum clone prevalence is 2, indicating that the proce-
dure has only one clone, such as the snd_pcm_plugin_build_copy procedure in alsa-driver
and Linux.

Insight 1. Clones are prevalent, with about one-sixth of the code being cloned. Intra-program
clones are often attributed to polymorphisms or functionally-similar procedures, while inter-program
clones are often attributed to shared code repositories and the reuse of libraries.

5.3. Answering PQ2

Due to the large number of programs in each Ubuntu version, the construction of a
TCG becomes time-consuming. To illustrate the process of constructing a TCG, we employ
the Linux program as an example. In order to answer PQ2, the interface passes eight Linux
versions to the clone management component, which detects clones and constructs the
corresponding clone landscape TCG. The clone management component reports the metrics
measured from TCG, including the clone surface of each program, the clone prevalence
of each cloned code fragment, and the clone lifetime. In TCG, there are 870,914 nodes
(i.e., fragments) and 5,073,824 edges. For the sake of clarity in presenting the program
version sequence, we opted to utilize the corresponding Ubuntu version to denote the eight
versions of Linux, rather than specifying their individual version numbers.
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5.3.1. Clone Surface

Figure 5 shows the clone surface for Linux in each Ubuntu version. The largest clone
surface is 0.63 in Ubuntu 18.10. Figure 5 reveals that the clone surface in TCG remains stable
at around 0.6. This means that most of the code in subsequent versions is still similar to the
previous version. For example, the procedure memset in the file arch/microblaze/lib/memset.c
is similar in each Linux version.
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Figure 5. The clone surface and clone lifetime in the Linux clone landscape. (a) The clone surface for
Linux. (b) The CDF for the clone lifetime in Linux.

5.3.2. Clone Prevalence

Recall that the clone prevalence describes the number of clones in eight Linux versions.
We obtained the clone prevalence from the TCG of Linux in Ubuntu 18.04-21.10. However,
the results need to be filtered because some opcodes and data are present in C/C++ code,
and these code fragments bring a large number of clone relationships. After filtering, the
maximum clone prevalence was observed to be 117 for the ia_css_process_sdis2_horiproj
procedure in the ia_css_isp_params.c file—the reason being that this file is an automatically
generated driver file in which many procedures are similar. The majority of procedures (97%)
had a clone prevalence of less than 8, while 67% of procedures exhibited a clone prevalence
of 8 due to the fact that most of the procedures are similar between the eight versions.

5.3.3. Clone Lifetime

Recall that the clone lifetime describes the duration of the existence of clones in Linux.
To facilitate comparison of clone lifetime lengths, it is customary to employ the number
of versions of a clone that exist rather than the actual duration of its existence. Figure 5b
presents the cumulative distribution function (CDF) of the clone lifetime in Linux in Ubuntu
18.04-21.10. A total of 53% of the clone lifetime lengths are for eight versions, indicating
that the corresponding procedures are similar across the eight consecutive versions.

Insight 2. In multiple versions of the program, most of the clones are unchanged or similar. In
Linux, 53% of the clone lifetime lengths are for eight versions.

5.4. Answering PQ3

In order to answer PQ3, the interface takes eight Linux versions as input. The interface
feeds the input to the clone management component, which detects clones and constructs
the corresponding clone landscape TCG. Then, CVMan annotates the procedures that
have at least one line of code in common with a vulnerable code fragment and, finally,
outputs these vulnerable procedures. Across eight Linux versions (Ubuntu 18.04-21.10), we
matched 299 CVEs, and these vulnerabilities were distributed across 310 files. For example,
473 nodes (i.e., procedures) of Linux in Ubuntu 18.04 contained vulnerable code.



Appl. Sci. 2023, 13, 4948 16 of 20

5.4.1. Clone-Incurred Vulnerability Surface

Figure 6a shows the clone-incurred vulnerability surface for Linux in each Ubuntu
version. The clone-incurred vulnerability surface was about 0.0013, which decreased after
Ubuntu 20.10, which is likely due to the fact that there are still vulnerabilities that remain
undetected. The results indicate that there are fewer clone-induced vulnerabilities in Linux.
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Figure 6. The clone-incurred vulnerability surface and clone-incurred vulnerability lifetime in
Linux. (a) The clone-incurred vulnerability surface for Linux. (b) The CDF for the clone-incurred
vulnerability lifetime in Linux.

5.4.2. Clone-Incurred Vulnerability Prevalence

The clone-incurred vulnerability prevalence describes the number of clones of a
vulnerable procedure in eight Linux versions. The code prevalence can be obtained from
the vulnerability landscape of Linux. There are a total of 526 vulnerable clones, where
58% of the vulnerable clones have a prevalence of 8 and 98% of the vulnerable clones have
a prevalence of less than 8. This means that most of the vulnerable clones exist in eight
consecutive Linux versions.

5.4.3. Clone-Incurred Vulnerability Lifetime

Figure 6 plots the lifetime of 526 vulnerable clones. A total of 60% of the vulnerable
clones had a lifetime of 8. These clones contained at least one line of vulnerable code
extracted from the vulnerability patch. Very few vulnerabilities affect only one Linux
version; therefore, when a vulnerability is discovered, it is necessary to verify that the clone
is affected by this vulnerability in the consecutive versions. Compared with Figure 5b,
we find that the CDF of the clone-incurred vulnerability lifetime is approximate to the
overall clone’s lifetime. The number of vulnerable clones is much less than the number of
non-vulnerable clones, which indicates that vulnerable clones and non-vulnerable clones
have similar lifetimes.

Insight 3. Most vulnerable clones exist in multiple consecutive versions. Vulnerable clones and
non-vulnerable clones have similar lifetime distributions.

5.5. Answering PQ4

When a new vulnerability is disclosed, the interface forwards it to the vulnerability
management component. Then, the vulnerability management component extracts the
vulnerable lines of code of the patch and annotates the clone landscape of the existing
programs. Finally, CVMan outputs the vulnerable clones and the TCG with the annotation.
Defenders can check the annotated code fragments and their clones and can verify whether
they are affected by the vulnerability. Then, defenders can take appropriate defensive
measures, such as fixing the vulnerability or performing input validation.

For example, the vulnerability CVE-2020-8648 was reported in the NVD. This is a use-
after-free vulnerability in Linux, which is located in procedure n_tty_receive_buf_common in
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the file drivers/tty/n_tty.c. CVMan annotated the code snippet in the existing clone landscape
and found that Linux in Ubuntu 18.04-20.04 was affected by this vulnerability.

Table 3 presents examples of clone-incurred vulnerabilities. For example, CVE-2019-
10638 affects procedure __ipv6_select_ident, and CVMan identified three vulnerable proce-
dures in three Linux versions based on Linux TCG. As another example, corresponding
to vulnerability CVE-2019-15214, CVMan identified 10 clones in multiple Linux versions
based on Linux TCG and found clones in Alsa-driver, which is based on Ubuntu SCG.

Table 3. Examples of clone-incurred vulnerabilities.

CVE Program Vulnerable Procedure
Clone-Incurred
Vulnerability

Prevalence

Clone-Incurred
Vulnerability Lifetime

CVE-2019-15214 Linux, Alsa-driver snd_card_disconnect 10 5
CVE-2019-10638 Linux __ipv6_select_ident 3 3
CVE-2019-11487 Linux buffer_pipe_buf_get 3 3
CVE-2020-8648 Linux paste_selection 5 5
CVE-2020-9383 Linux set_fdc 5 5
CVE-2020-7053 Linux context_idr_cleanup 3 3

CVE-2018-15471 Linux xenvif_set_hash_mapping 2 2
CVE-2018-14625 Linux __vhost_vsock_get 2 2

6. Discussion

Limitations of the CVMan Framework. The framework has two limitations. First,
we focused on managing clone-incurred vulnerabilities in programs with source code. This
is applicable to the setting where the defender of an enterprise network uses open-source
software or proprietary software developed by the enterprise. This is also applicable to
vendors of proprietary software, such as Microsoft, who can leverage CVMan to manage
clone-incurred vulnerabilities in the lifecycle of their software.

Nevertheless, it would be interesting to extend the investigation to the following
setting: The defender only has the binary code (and not the source code) of proprietary
software (e.g., Windows) but may still be interested in managing the clone-incurred vulnera-
bilities in the binary code without having access to the source code. This is relevant because:
(i) there are binary-code-based clone detectors [52–54], and (ii) some vulnerabilities are only
disclosed with binary code information (i.e., no information about the vulnerable source
code is given), for which a concrete example is CVE-2020-4345.

A defender can use binary code-based clone detectors to extract clone pairs and
construct an SCG and TCG to describe the clone landscape. Then, the defender can use
an appropriate source-code-to-binary-code mapping method (when source patches are
known) or can compare the binary file before applying a patch and the binary file obtained
after applying a patch to locate and annotate vulnerable code fragments.

Second, the vulnerability management component could be improved. This is because,
when constructing a clone landscape, vulnerabilities are not considered. As a consequence,
a code fragment that has one line of code that is similar to one line of code in a piece of
vulnerable code is treated as vulnerable. However, whether the code fragment is indeed
vulnerable needs to be further investigated. An alternate solution is to treat the code
fragment that contains the lines of code removed by the patch as the vulnerable code
fragment. However, this solution is conservative and could miss some vulnerable code
fragments because vulnerable code fragments in different versions do not necessarily
contain exactly the same lines of code removed by the patch.

Limitations of the Case Study. We only applied TCG to Linux in Ubuntu. Despite
that Ubuntu is complex software (i.e., millions of lines of code for each version) and that
we considered eight versions of it, the case study may not be sufficiently representative. As
a consequence, the insights drawn from the case study may not hold for other programs.
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7. Conclusions

We presented an automated clone-incurred vulnerability management framework.
This framework can be used to understand, characterize, and manage both the clone
landscape and the clone-incurred vulnerability landscape, so as to guide defenders to take
corresponding actions when new vulnerabilities are discovered. We conducted a case study
on Ubuntu and drew a number of insights.
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