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Abstract: Electric propulsion is of great significance to the development of high-efficiency and long-
life satellites, and digital twins have gradually become a powerful tool for satellite engineering. Being
affected by uncertainty factors such as the complexity and variability of the space environment and
the satellite system, the digital twin model cannot accurately reflect the real physical properties.
Therefore, it is crucial to update the satellite model to improve prediction accuracy. However,
the complex structure and multi-physics process coupling of vector electric-propulsion satellites
bring great challenges to model updating. According to the characteristics of the vector electric-
propulsion satellite, this paper establishes mathematical models of the whole satellite. Additionally, a
hierarchical model updating method is proposed and applied to the model updating case of a satellite
with multiple subsystems. The simulation results show that the method is suitable for the model
updating of the vector electric-propulsion satellite. Through multiple iterations of closed-loop cycles,
the residual errors between the simulation values and the telemetry values can be decreased, and the
errors between the estimated values and the true values of state variables can also be decreased by an
order of magnitude.

Keywords: vector electric-propulsion satellite; digital twin; uncertainty quantification; hierarchical
model updating

1. Introduction

In contrast with traditional chemical propulsion, electric propulsion has the character-
istics of low thrust force and high specific impulse [1], which are conducive to reducing
fuel consumption [2] and prolonging the life of satellites. Therefore, it meets the require-
ments for geostationary Earth orbit (GEO) satellites, low Earth orbit (LEO) satellites, small
satellites, and deep space probes to work on orbit in the long run [3]. It has also become an
important development direction for new high-performance and long-life spacecraft.

In many countries, the manufacturing industry has shown the development trend
of digitalization and intelligence [4]. As a technology that can realize the interaction and
integration of the physical world and the digital world [5], the digital twin has attracted
widespread attention. In 2010, the National Aeronautics and Space Administration (NASA)
proposed to apply digital twins to flight training, accompanying flight, health monitoring,
and parameter optimization [6]. By establishing a digital twin model of a satellite to
perform optimization design and feedback control of real satellites, it is advantageous to
reduce the cost and risk of decision-making.

Since the simulation model is different from the real physical entity and is affected
by uncertainties, it is unable to fully reflect the characteristics of the real system and
reduces the prediction accuracy. There are two categories of uncertainty sources in a digital
twin, which are aleatory uncertainty and epistemic uncertainty [7]. Aleatory uncertainty
refers to the intrinsic randomness of a system, which is inevitable and irreducible. For
example, a thruster may have uncertainties such as the manufacturing tolerance of parts,
installation error, thermal deformation of structural parts, and nonaxisymmetric installation
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of cathodes [8], and these errors could cause the thruster to deviate from the nominal states.
Epistemic uncertainty refers to uncertainty caused by limited data, lack of knowledge, or
model simplifications and assumptions. It can be decreased when more information or
data is available [9]. For example, many studies simplified the thruster to an ideal force
model while ignoring the details of the mechanical structures when performing thrust
calibration. The more simplifications are made, the more difficult it is to establish an
accurate and reliable model. Therefore, it is essential to identify, describe and evaluate the
uncertainties quantitatively, known as uncertainty quantification (UQ). The study of UQ
includes the expression of uncertainty, the propagation of uncertainty, the identification
of model parameters, and so on [10]. In this research, it refers in particular to the model
updating method for the vector thruster satellite, with using the measurement data to
estimate the errors and correct the simulation model so that the error between the model
and the real satellite is minimized and the prediction level of the model could be improved.

According to the sources of uncertainty, model updating includes formula updating
and parameter updating. Formula updating refers to the addition and modification of
certain items in a mathematical formula. For instance, decoupling the coupled subsystems
for separate calculations will result in some loss of accuracy. Parameter updating involves
the use of measurement data to adjust model parameters without modifying the formula
structure. This paper focuses on the latter.

Model parameter updating is essentially an optimization problem that can be solved
using optimization algorithms, including traditional optimization methods and modern op-
timization methods. The former includes the least-squares method and filtering algorithm,
while the latter includes particle swarm optimization (PSO) and genetic algorithms (GAs).
All of them are widely used for parameter estimation. The modern optimization methods
are time-consuming, whereas the traditional optimization method has a fast convergence
speed, so the least-squares method is adopted in this paper.

Model updating for electric-propulsion satellites implies the multiparametric optimiza-
tion of a large number of electric, magnetic, thermodynamic, and other processes [11]. From
the perspective of the space dimension, the satellite is influenced by forces and moments
from the environment. The satellite system itself can be divided into multiple subsystems,
including the orbit and attitude control system; power system; thermal control system;
propulsion system; and telemetry, telecommand, and control system. Each subsystem is
further composed of many components. Additionally, there are coupling relationships
between the environment and the subsystems, as well as the various components. As the
functions and structures of satellites develop in a more complex and changeable direction,
these coupling effects will become increasingly significant, and the physical properties and
magnitudes of interactions will be more inconsistent, causing satellite model updating to
be more challenging and resource-consuming. Since the amount of satellite parameters
that need to be updated is large and the degree of coupling between different parameters
is different, if all the parameters are updated simultaneously, there is a high probability
that the solution will not converge. Thus, it is imperative to divide them into different
hierarchies according to the degree of the sparseness of the interaction between parameters
and then perform updating separately.

The hierarchical method means to divide the complex engineering system into subsys-
tems; the subsystems are partitioned into components, the components into parts, and so
on [12]. Oberkamp et al. proposed the use of a hierarchical model for model validation [13].
First, the characteristics of the corresponding model are confirmed by using the test data of
the simple system, and then the whole system model is deduced recursively. The hierar-
chical idea reduces the complexity of solving the original problem, so it is also used in the
model updating problem of multi-coupled complex systems [14]. Cheng et al. [15] divided
parameters into key parameters and non-key parameters by sensitivity analysis. The key
parameters were corrected first, then the non-key parameters, and finally, all parameters at
the same time. This method had higher accuracy than directly correcting all parameters.
He et al. [16] decomposed the landing buffer system into the recovery module and the
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airbag system, and their finite element (FE) models were respectively established and up-
dated. By considering the measurement uncertainty brought about by the high-temperature
environment in the complex aeromechanical system, He et al. [17,18] and Chen et al. [19]
identified the thermodynamic parameters and the mechanical structure parameters sequen-
tially. Fei et al. [20] proposed a hierarchical model updating strategy for the FE model of
complex structures, which decomposed the assembled structure into a series of substruc-
tures. These substructures were accurately modeled and updated. Xu et al. [21] proposed a
two-stage hierarchical objective model updating pattern for cable force identification, and
the method improved the accuracy and efficiency of FE model updating.

Since the thrust generated by electric propulsion is very small, in the order of millinew-
tons, the thrusters need to be turned on for a long time when performing an orbit mission. If
the thrust direction does not exceed the center of mass of the satellite, an eccentric moment
will be generated, and the angular momentum will be increased. In addition, since electric
thrusters are also intended to perform attitude control tasks, most electric thrusters are
equipped with vector adjustment mechanisms to change the thrust direction of the force.
Each vector adjustment mechanism is composed of two rotating shafts so that the thrust
direction can be changed in three dimensions, but this is also a reason why its motion
parameters are coupled, and many parameters are involved. Due to the small thrust, it is
difficult to complete high-precision thrust calibration on the ground. The commonly used
thrust calibration methods include the parameter calibration method, wheel calibration
method, and orbital calibration [22]. However, these methods simplify the thrust to a fixed
vector without considering the influence of the error of the vector adjustment mechanism,
nor do they consider the coupling effect between the other subsystems and the motion of
the vector adjustment mechanism. Therefore, a challenge that needs to be tackled is how
to create a hierarchical rule and model updating method to correct the parameters of a
satellite with vector electric propulsion.

To address the problems mentioned above, this paper aims to develop a hierarchical
model updating method for the vector electric-propulsion satellite. Firstly, in order to
reflect the coupling effect between different parts, the whole satellite is decomposed into
different subsystems and devices to establish mathematical models. The state variables
that play a major role in affecting the telemetry variables are selected for updating. Then,
a grouping rule is put forward in terms of the relationship of variables. State variables
and telemetry variables are grouped and sorted according to the rule, and each group
is updated by the least-squares method in sequence. When all groups are updated, the
residuals of all groups are recalculated. Repeat this process several times until the mean
squared error (MSE) converges to the specified range.

This paper is organized as follows. Section 2 presents the mathematical description
of the model updating problem and establishes the simulation model of a vector electric-
propulsion satellite. A hierarchical method for model updating is developed in Section 3.
In Section 4, a simulation test case is investigated, and the results are discussed. Finally,
Section 5 concludes this paper.

2. Problem Formulation

The satellite simulation model can be expressed as follows:
.
x = f(x, t)
y = g(x, t)
x(t0) = x0

(1)

where x ∈ Rn is the vector of state variables, and y ∈ Rm is the vector of telemetry variables,
which both change over time t; f(·) are the state equations, and g(·) are measurement
equations, the details of which are described in Sections 2.1 and 2.2; and x0 is the initial
value of state variables.
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In the given period t ∈
[
t0, t f

]
, the telemetry values are known as

ytele
j =

[
ytele

j (t0), ytele
j (t1), · · · , ytele

j

(
t f

)]
, j = 1 · · ·m, and the model simulation values

are known as ysim
j =

[
ysim

j (t0), ysim
j (t1), · · · , ysim

j

(
t f

)]
, j = 1 · · ·m. The telemetry value

and simulation value at each moment are normalized by

_
ytele

j (t) =
ytele

j (t)− yj,min

yj,max − yj,min
(2)

_
ysim

j (t) =
ysim

j (t)− yj,min

yj,max − yj,min
(3)

where yj,min and yj,max are the minimum and maximum of yj, respectively.
The goal of model updating is to minimize the MSE between the normalized simulation

values and the normalized telemetry values by adjusting the initial value, x0; that is,

min
x0

msetotal =
1
2

m

∑
j=1

f

∑
i=0

[_
ysim

j (ti)−
_
ytele

j (ti)
]2

(4)

2.1. State Equations and State Variables

The orbit dynamics equations are{ dr
dt = v
dv
dt = 1

m (FE + FA + FC + FP + FT)
(5)

where r =
[
rx, ry, rz

]T is the position vector, v =
[
vx, vy, vz

]T is the velocity vector, m is the
total mass, FE is the Earth’s gravitational force, FA is the drag force, FC is the perturbation
force of the Sun and Moon, FP is solar radiation pressure, and FT is the force of thrusters.

The attitude dynamics equations are{
dQ
dt = 1

2 Ω(ω) ·Q
dω
dt = I−1(Mgg + MA + MP + MT + MW −ω×H)

(6)

where Q = [q0, q1, q2, q3]
T is the attitude quaternions of the body with respect to the inertial

system, and ω =
[
ωx, ωy, ωz

]T is the angular velocity of the satellite’s body frame with
respect to the inertial frame. Ω(ω) is a matrix with respect to ω:

Ω(ω) =


0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0

 (7)

I is the inertia matrix, Mgg is the gravity gradient moment, MA is the drag moment, MP is
the solar pressure moment, MT is the thrusters moment, MW is the wheels moment, and
H is the angular momentum of the total satellite. The details of force and moment can be
found in Reference [23].

Usually, the Euler angles are used to describe the attitude of the body relative to the
orbit frame, which contain the roll angle ϕ, pitch angle θ, and yaw angle ψ. They can be
calculated by Q, r, and v [23].

The rotation of solar wing can be described by
dθwing

dt =
.
θwing

d
.
θwing
dt = Mwing

(8)
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where θwing and
.
θwing are the angle and angular speed of the solar wing related to the

satellite body, respectively, and Mwing is the driving moment.
The output power of each solar array is

PWing = CshadowS0 AsaηwXWingcos(θSW)
(

βP∆Twing + 1
)

(9)

where Cshadow is the shadow area sign, S0 is the solar constant, Asa is the area of the solar
array, ηw is the photoelectric conversion efficiency, XWing is the other coefficient, θSW is
the angle between the normal direction of the solar array and the direction of sunlight, βP
is the power temperature coefficient, and ∆Twing is the difference between the working
temperature of the solar array and the standard temperature; for a detailed calculation, see
Reference [24].

When the output voltage of the solar wing UWing is known, the current can be calcu-
lated by

IWing =
Pwing

Uwing
(10)

The total electric load power is

PDevice =
NPD

∑
i=1

PDi (11)

where NPD is the number of working devices, and PDi is the power of the i-th device.
When the difference between the output power and the load power is greater than the

maximum charging power of the battery, the power consumed by the shunt regulator is

PLoss =

{
PWing − PDevice − PMaxCharge,
0

PWing − PDevice > PMaxCharge
else

(12)

where PMaxCharge is the maximum charging power of the battery.
The battery charges when the battery is not full and the output power is greater than

the load power, and it discharges when the battery quantity is greater than the minimum
quantity and the electric power is smaller than the load power. The process is

PBattery =

{
PWing − PDevice − PLoss,
0

QMinBattery < QBattery < QMaxBattery
else

(13)

where QMinBattery and QMaxBattery are the minimum and maximum battery capacity, respectively.
The quantity change in the battery can be expressed as

dQBattery

dt
=

{
kCharge · PBattery,
kDischarge · PBattery,

PBattery > 0
PBattery < 0

(14)

where QBattery is the remaining quantity, kCharge is the charging coefficient, and kDischarge is
discharging coefficient.

The battery voltage

UBattery =

{
UCharge, PBattery > 0
UDischarge, PBattery < 0

(15)

where UCharge is the charge voltage, and UDischarge is the discharge voltage.
The battery current is

IBattery =
PBattery

UBattery
(16)
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The mass of xenon in the xenon tank is

dmXe
dt

=
.

mcontrol (17)

where
.

mcontrol is the mass rate controlled by the computer on board.
Each thruster is connected to two xenon tanks by a pipeline with different regulating

valves. Only when the thruster receives the fire command and the pipeline between the
xenon tank and the thruster is open, the thruster is working. The electric thrust force
generated is

FT = Isp · g ·
dmXe

dt
(18)

where Isp is the specific impulse, and g is the gravitational acceleration.
The gas state of the xenon satisfies the ideal gas equation of state. When the volume

VXe is fixed, the pressure is

PXe =
RgasTXe

MXeVXe
·mXe (19)

where MXe is the average molar mass of xenon, Rgas is the gas constant, and TXe is the
temperature.

The temperature field model is calculated by finite element mesh division of the
satellite model with Ansys, and each grid represents a node. The temperature of node i can
be calculated by the heat balance equation:

dTi
dt

=
qi

S + qi
E + qi

ER + qi
Rad + qi

Cond + Pi − qi
OS − qi

IS
mici

(20)

where qi
S is solar radiation received by node i, qi

E is The heat from the Earth’s infrared
radiation, qi

ER is the Earth’s albedo heat, qi
Rad is the thermal radiation from other thermal

nodes to node i, qi
Cond is heat conduction from other thermal nodes to node i, Pi is total

thermal power of all components in the range of node i, qi
OS is dissipate heat for the outer

surface of node i, qi
IS is heat dissipation for the inner surface of node i, mi is mass of node i,

and ci is specific heat capacity. The details are in Reference [25].
The thermal control unit model includes a temperature sensor and a heater. The power

of the heater is

Pht = Iht
2Rht =

Uht
2

Rht
(21)

where Iht, Uht, Rht are the current, voltage, and resistance of the heater, respectively.
For the sensors, the error is assumed to follow a normal distribution, and the error

characteristic is described by the mean value µsensor and variance σsensor, which are constant:{
dµsensor

dt = 0
dσsensor

dt = 0
(22)

We include the variables µGPS,r, σGPS,r when the Global Positioning System (GPS)
measures r; the variables µGPS,v, σGPS,v when the GPS measures v; and the variables
µStarSensor, σStarSensor when the star sensor measures attitude. As for the gyro, besides
µGyro,ω, σGyro,ω, there still exists the drift error εGyro,ω, which changes as

dεGyro,ω

dt
= −

εGyro,ω

T
+ σGyro,ω (23)

The actuators include wheels, thrusters, and a rotating component of the solar wing.
The output process noise is also represented by a normal distribution:

uoutput = uexpect + N(µActuator,u, σActuator,u) (24)
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where uexpect is the expected output command, uoutput is actual output control, and
µActuator,u, σActuator,u are the error mean and variance of the actuator output process, respec-
tively. The sensor model and actuator model are described in Reference [23].

Four vector thrusters are installed on the backboard of the satellite, their installation
positions and serial numbers are upper left TN1, upper right TN2, lower left TS1, and
lower right TS2, respectively. Each thruster is connected to the satellite body by a vector
adjustment mechanism, which is regarded as a structure of two links, each of which can
rotate on its axis. The two-degree-of-freedom kinematic model can be described by eight
parameters including connecting rod angle αi−1, connecting rod length ai−1, joint angle θi,
and connecting rod offset di (i = 1, 2). The meaning of these parameters and the kinematic
process are shown in Reference [26].

According to the model, the thrust direction is only related to θi, and the application
point of thrust is related to all structural parameters. The thruster number is denoted
by No(No = N1, N2, S1, S2); the structural error includes the length error δαi−1,No and
offset error δdi,No. Three attitude angles ϕInstall

TNo
, θ Install

TNo
, ψInstall

TNo
are available for mounting

attitude. Installation points are represented by position vectors
[

X Install
TNo

, Y Install
TNo

, ZInstall
TNo

]T
.

Every time it fires, the deflection error of the thrust direction at the outlet relative to the axis
is represented by δTNo , γTNo , and the output force action point error
δpTNo

=
[
δpx,TNo , δpy,TNo , δpz,TNo

]T . The above variables are constant values during the
working period of each firing. Furthermore, the output force of the thruster FTNo is not a
constant value but a variable that changes with time. In this paper, the parameters of the
thruster TN1 are taken as the updating variables.

In summary, x consists of

x = [rx, ry, rz, vx, vy, vz, ϕ, θ, ψ, ωx, ωy, ωz, θwing1 , θwing2 , θSW1 , θSW2 ,
ηw, Pwing1 , Pwing2 , Uwing1 , Uwing2 , Iwing1 , Iwing2 , QBattery, PBattery, IBattery, mXe, PXe, Ti,
µGPS,r, σGPS,r, µGPS,v, σGPS,v, µGyro,ω, σGyro,ω, εGyro,ω, µStarSensor, σStarSensor,
ϕInstall

TN1
, θ Install

TN1
, ψInstall

TN1
, X Install

TN1
, Y Install

TN1
, ZInstall

TN1
, δTNo , γTNo , δpx,TN1 , δpy,TN1 , δpz,TN1 , FTN1 ]

(25)

2.2. Measurement Equations and Telemetry Variables

The measurement equations for the GPS’ measured position and velocity are

rGPS = r + N(µGPS,r, σGPS,r) (26)

vGPS = v + N(µGPS,v, σGPS,v) (27)

where rGPS =
[
rxGPS, ryGPS, rzGPS

]T is the position measurement, and

vGPS =
[
vxGPS, vyGPS, vzGPS

]T is the velocity measurement.
The error transmission process of the star sensor is shown in Reference [23], and

the measurement is QStarSensor. According to rGPS, vGPS, and QStarSensor, the Euler angles
ϕm, θm, ψm can be calculated.

The measurement equations for the gyro measuring angular velocity are{
ωGyro = ωreal + µGyro,ω + εGyro,ω
ωreal = rinstall ·ω

(28)

where rinstall is the install vector of gyro, σGyro,ω is the variance of random error, and the

measured angular velocity component is ωGyro =
[
ωxGyro, ωyGyro, ωzGyro

]T .
The state variables of the power subsystem are measured by the corresponding sensors,

and the measurements follow a normal distribution:

θi,SunSensor = θSWi + N
(
µsensor,θSW , σsensor,θSW

)
, i = 1, 2 (29)
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PWingi,m = PWingi + N
(

µsensor,Pwing , σsensor,Pwing

)
, i = 1, 2 (30)

UWingi,m = UWingi + N
(

µsensor,Uwing , σsensor,Uwing

)
, i = 1, 2 (31)

IWingi,m = IWingi + N
(

µsensor,Iwing , σsensor,Iwing

)
, i = 1, 2 (32)

QBattery,m = QBattery + N
(

µsensor,QBattery , σsensor,QBattery

)
(33)

PBattery,m = PBattery + N
(

µsensor,PBattery , σsensor,PBattery

)
(34)

IBattery,m = IBattery + N
(

µsensor,IBattery , σsensor,IBattery

)
(35)

UBattery,m = UBattery + N
(

µsensor,UBattery , σsensor,UBattery

)
(36)

where N(, ) is normal distribution, and µsensor, σsensor represent the mean and variance of
the noise measured by the sensors, respectively.

The measurement equation of the propulsion subsystem is

PXe,m = PXe + N(µsensor,P, σsensor,P) (37)

where PXe,m is the pressure measurement of the xenon tank.
The thermal control subsystem uses the temperature sensor to measure the tempera-

ture of the node, and the measurement equation is

Ti,m = Ti + N(µsensor,T , σsensor,T) (38)

The data on board is transmitted to the ground through the telemetry remote control
subsystem, and the transmission process is affected by the relative position of the receiving
and sending terminal, performance, data compression, transmission loss, and other factors,
the basic transport equation in logarithmic form is expressed as

PReceiver = PSender + GSender + GReceiver − LSpace − Lx (39)

where PReceiver is the power of the receiver antenna, PSender is the sender power, GSender is
the gain of the sender antenna, GReceiver is the gain of the receiver antenna,LSpace is the path
loss, and Lx is the other loss; for a detailed calculation, see Reference [27].

In summary, y consists of

y = [rxGPS, ryGPS, rzGPS, vxGPS, vyGPS, vzGPS, ϕm, θm, ψm, ωxGyro, ωyGyro, ωzGyro,
θSW1,SunSensor, θSW2,SunSensor, PWing1,m , PWing2,m , UWing1,m , UWing2,m , IWing1,m , IWing2,m ,
QBattery, PBattery, UBattery, IBattery, PXe,m, Ti,m]

(40)

3. Method
3.1. The Hierarchical Model Updating Method

The state variables and telemetry variables are selected, grouped, and sorted before
being updated. The rule for determining whether variables need to be modified are as
follows: (1) variables that have a significant impact on the system because when their
change will significantly affect the other variables; (2) variables that change obviously over
time; and (3) variables that are different from those on the ground or difficult to measure
accurately on the ground. As for the updating sort, the variables that play a more dominant
role in the system are updated earlier, and the less influential variables are updated later.
The specific group strategy for the vector electric-propulsion satellite is as follows:
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• Orbit-related variables

The orbit telemetry variables refer to the position vector and velocity vector in the
geocentric inertial system measured by GPS. Unless the orbit performs maneuver, orbit
variables are less affected by other subsystems. On the other hand, orbit variables play a
greater or even more decisive role in other variables. So the updating of orbit variables is
given priority. The state variables to be updated are the initial values of orbit position r0
and velocity v0. In addition, there are errors during the measurement process of GPS, so
the constant errors and random errors of GPS position and velocity measurement should
also be considered, that is, µGPS,r, σGPS,r, µGPS,v, σGPS,v. The telemetry variables are rGPS
and vGPS.

• Attitude-related variables

Attitude variables also have a great impact on other parts, so they are a second
priority. The attitude telemetry variables are the attitude angle calculated by the attitude
determination algorithm and the angular velocity measured by the gyroscope. So besides
the initial Euler angles ϕ0, θ0, ψ0 and the initial angular velocity being updated, the error
parameters of the gyro µGyro,ω , σGyro,ω , εGyro,ω and the star sensor µStarSensor, σStarSensor also
require correction, due to their influence. The telemetry variables selected are ϕm, θm, ψm
and ωGyro.

• Power subsystem variables

The power subsystem includes dynamic state variables of the solar wings, and elec-
trical state variables of the solar arrays, battery, and bus loop. The state variables are
the initial angles θwing1,0 and θwing2,0, the photoelectric conversion efficiency of the solar
array ηw, and the charging coefficient kCharge and discharging coefficient kDischarge of the
battery. Telemetry variables include the solar wings variables PWing1 , PWing2 , θSW1,SunSensor,
θSW2,SunSensor; the battery variables IBattery, QBattery, UBattery, PBattery; and the bus loop
variables QLoop,QLoop,ULoop,ILoop, PLoop.

• Propulsion subsystem variables

Because the variables of vector electric thruster are difficult to measure accurately on
the ground, it needs to be updated on orbit. The thrust variables of the electric thruster have
the greatest influence on the attitude variables and the pressure of the xenon gas, so they
are put in the same group for updates; they are installation attitude variables ϕInstall

TN1
, θ Install

TN1
,

ψInstall
TN1

, installation variables X Install
TN1

, Y Install
TN1

, ZInstall
TN1

, and force FTN1 . Triaxial attitude angle,
angular velocity, and xenon cylinder pressure are selected as the telemetry parameters.
The attitude variables ϕm, θm, ψm, ωxGyro, ωyGyro, ωzGyro and xenon gas pressure PXe,m are
selected as the telemetry variables.

The result of grouping and the relationship between them are shown in Figure 1.
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3.2. Least-Squares Method

The range of telemetry variables is determined for the normalization of telemetry
data and simulation data. The initial value of the parameter x0 to be adjusted is usually
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given in a range [x0,min, x0,max]; a Monte Carlo method is adopted to calculate the telemetry
range [ymin, ymax] in this paper. For each x0, a random point is picked within its interval.
All values make up a specific simulation condition. The simulation value y is obtained
after running, and their minimum and maximum could be calculated. Multiple simulation
conditions are generated randomly in this way. By repeating this process, after each
simulation conditions run, the range of all previous simulation conditions is counted; we
call it the global minimum ymin and global maximum ymax.

The first condition

yj,min = min
{

yj(t0), yj(t1), · · · , yj

(
t f

)}
1

(41)

yj,max = max
{

yj(t0), yj(t1), · · · , yj

(
t f

)}
1

(42)

For the r-th condition

yj,min = min
{

min
{

yj(t0), yj(t1), · · · , yj

(
t f

)}
r−1

, yj,min

}
(43)

yj,max = max
{

max
{

yj(t0), yj(t1), · · · , yj

(
t f

)}
r−1

, yj,max

}
(44)

When there are enough working conditions, ymin and ymax tend to be two constant
values, which is the value range of y.

The least-squares method is used to update each group of variables. For the state vari-
ables and telemetry values in the k-th group as x(k) and y(k), the least-squares optimization
objective is

min
x(k)0

mse(k) =
1
2

m

∑
j=1

f

∑
i=0

[_
y(k),sim

j (ti)−
_
y(k),tele

j (ti)
]2

(45)

where x(k)0 is the state value at the time t0, which is adjusted directly. Newton’s iteration
method is usually used to solve the least-squares problems for nonlinear models. The initial
value x(k,0)

0 of x(k)0 is given, and the simulation value is y(k,0),sim, which becomes
_
y(k,0),sim

after normalization.
Then, calculate the partial matrix of y related to x at point x(k,0)

0 , where y should be
normalized as well

H =


∂

_
y1

∂x1

∂
_
y1

∂x2
· · · ∂

_
y1

∂xn
∂

_
y2

∂x1

∂
_
y2

∂x2
· · · ∂

_
y2

∂xn
...

...
. . .

...
∂

_
ym

∂x1

∂
_
ym

∂x2
· · · ∂

_
ym

∂xn



∣∣∣∣∣∣∣∣∣∣∣
x(k,0)

0

(46)

For complex nonlinear models, it is common to use the difference quotient formula to
displace the partial derivative, that is,

∂
_
yj

∂xi
≈ lim

∆xi→0

_
gj
(
xj + ∆xi

)
− _

gj(xi)

∆xi
(47)

where
_
g means the normalized simulation value, which is the same as Equation (3).

The iteration form of x is

x(k,1)
0 = x(k,0)

0 +
(

HTH
)−1

HT
(_

y(k),tele − _
y(k,0),sim

)
(48)
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The root-mean-square error (RMSE) of telemetry variables and the relative error of
state variables are calculated to evaluate the efficiency of the model updating method:

rmse =

√√√√ 1
m f

m

∑
j=1

f

∑
i=0

[_
ysim

j (ti)−
_
ytele

j (ti)
]2

(49)

xerror =
|xest − xreal |
xmax − xmin

× 100% (50)

where xest is estimated value, xreal is real value, and xmax and xmin define the range of x.
Repeat this process until rmse(k) is less than a threshold,

rmse(k) < ε (51)

After the calculation of all groups is completed, the working condition of the earlier
group has changed, so it is necessary to recalculate the rmse(k) of each group. Furthermore,
the sum of the telemetry errors of each group is calculated, and the errors rmsetotal of all the
telemetry variables in the global period are calculated. Check whether rmsetotal is within
the range of the threshold εtotal . If the accuracy is satisfied, output the result and end;
otherwise, revise from Group 1 again until meets the accuracy requirement.

4. Results and Discussion
4.1. Determine the Range of Remote Measurement

Based on the initial telemetry variables value and the nominal value of the state
variables, set a 10% increment as the value range of state variables; the range is shown in
Table 1.

Table 1. The range of initial state variables.

Variable Min Max Variable Min Max

rx0, m 6,957,455 7,098,010 X Install
TN1

, m −0.45 −0.55
ry0, m 60,714.48 61,941.03 Y Install

TN1
, m −0.9 −1.1

rz0, m 529.85 540.55 ZInstall
TN1

, m −0.8019 −0.9801
vx0, m/s −65.06 −66.37 FTN1 , N 0.03969 0.04851
vy0, m/s 7455.13 7605.74 δTN1 , rad 0.015705 0.019195
vz0, m/s 65.06 66.37 γTN1 , rad 0.0072 0.0088
µGPS,r, m −5 5 a0,TN1 , m 0.09 0.11
σGPS,r, m 0 5 a1,TN1 , m 0.09 0.11

µGPS,v, m/s −0.5 0.5 d1,TN1 , m −0.01 0.01
σGPS,v, m/s 0 0.5 d2,TN1 , m −0.01 0.01

ϕ0, ◦ −5 5 px,TN1 , m 0.09 0.11
θ0, ◦ −5 5 py,TN1 , m 0.09 0.11
ψ0, ◦ −5 5 pz,TN1 , m −0.01 0.01

ωx0, ◦/s −1 1 ϕInstall
TN1

, rad −0.75868 −0.92727
ωy0, ◦/s −1 1 θ Install

TN1
, rad −0.1 0.1

ωz0, ◦/s −1 1 ψInstall
TN1

, rad −0.1 0.1
µGyro,ω , ◦/h −0.003 0.003 θwing1,0, ◦ 80 100
εGyro,ω , ◦/h 0 0.05 θwing2,0, ◦ 80 100
σGyro,ω , ◦/h 0 0.04 ηw 0.1 0.2
µStarSensor, ◦ −0.002 0.002 kCharge 0.5 1.5
σStarSensor, ◦ 0 0.002 mXe0, kg 25 35

Take the telemetry value of position x as an example. The change in the global
minimum and maximum with the condition is shown in Figure 2. It can be seen that the
global minimum and global maximum gradually tend to the normal value when more
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random conditions run. All telemetry variables are counted according to this process, and
their feasible range is shown in Table 2.
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Table 2. The feasible range of telemetry variables.

Variable Min Max Variable Min Max

rxGPS, m 6,570,369.34 7,098,007.66 QLoop, mAh 8,623,152.00 8,766,671.98
ryGPS, m 60,712.16 2,301,754.64 ULoop, V 28.01 83.52
rzGPS, m 525.25 20,090.67 ILoop, A 1.79 22.92

vxGPS, m/s −2495.26 −64.65 PLoop, W 110.94 641.99
vyGPS, m/s 7041.83 7606.04 θ1,SunSensor , ◦ 66.28 89.97
vzGPS, m/s 60.89 67.07 PWing1 , W 2342.28 4873.79

ϕm, ◦ −21.69 21.44 θ2,SunSensor , ◦ 67.31 89.99
θm, ◦ −7.05 7.21 PWing2 , W 2320.98 4873.40
ψm, ◦ −22.38 21.65 IBattery, A 20.00 20.00

ωxGyro , ◦/s −1.00 1.00 QBattery, mAh 100,005.56 101,666.67
ωyGyro , ◦/s −1.00 1.00 UBattery, V 42.00 42.00
ωzGyro , ◦/s −1.00 1.00 PBattery, W 840.00 840.00

4.2. The Result of Hierarchical Model Updating

The above state variables were corrected according to the updating method described
in Section 3. A total of two loops of updating were carried out to compare the deviation
between the state variables and the true value of each group after each updating loop, as
well as the deviation of each telemetry variable RMSE.

The variation in orbit state variables is shown in Figure 3. The iteration from zero to
three is the first loop of updating, and four to seven is the second loop. The state variables
converge rapidly within three iterations, but the relative error is still large. After other
groups were updated and the second loop was executed, the state variables could be
further updated.

The updating results of orbit state variables are shown in Tables 3 and 4. Table 3 is
the comparison between the state variables estimated and the true value, as well as the
total residual error of telemetry variables, and Table 4 is the calculation of each telemetry
variable RMSE separately.

As can be seen from Table 3, although the RMSE of telemetry variables in the first
loop converges to a very small value, and most of the state variables are also updated
to very small errors, the relative errors of some state variables are still large, which also
indicates that the coupling effect of other variables that are not updated cannot be ignored.
Through the second loop of updating, the relative errors of these state variables are further
significantly reduced. The boost is one to two orders of magnitude.
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Table 3. The estimation of orbit state variables.

Variable Real
The First Loop The Second Loop

Estimated Error Relative Error Estimated Error Relative Error

rx0, m 7,027,732.4 7,027,728.25 4.14 0.00% 7,027,732.94 0.55 0.00%
ry0, m 61,327.76 61,324.52 3.23 0.26% 61,328.61 0.86 0.07%
rz0, m 535.20 531.00 4.20 39.26% 535.61 0.41 3.80%

vx0, m/s −65.72 −65.71 0.01 0.43% −65.72 0.00 0.06%
vy0, m/s 7530.43 7530.43 0.00 0.00% 7530.43 0.00 0.00%
vz0, m/s 65.72 65.72 0.00 0.01% 65.72 0.00 0.01%
µGPS,r, m 5.00 9.22 4.22 42.15% 4.62 0.38 3.85%
σGPS,r, m 5.00 5.00 0.00 0.01% 5.00 0.00 0.02%

µGPS,v, m/s 0.50 0.50 0.00 0.00% 0.50 0.00 0.00%
σGPS,v, m/s 0.50 0.50 0.00 0.00% 0.50 0.00 0.00%

RMSE 0.00% 0.00%

The same is true for each telemetry variable. After multiple loops of updating, the
residual error is further reduced, and the accuracy can be improved by about one order
of magnitude.

The updating results of attitude variables are shown in Tables 5 and 6. It can be seen
that the state variables and telemetry variables are further improved by multiple loops of
updating, and the improvement effect is one to two orders of magnitude.
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Table 4. The RMSE of orbit telemetry variables.

Variable
RMSE

Uncorrected The First Loop The Second Loop

rxGPS 1.11% 2.80×10−5% 3.6×10−6%
ryGPS 0.20% 2.42×10−5% 8.8×10−6%
rzGPS 15.12% 9.47×10−5% 9.03×10−5%
vxGPS 1.12% 4.46×10−5% 9.17×10−6%
vyGPS 0.53% 3.67×10−5% 8.03×10−6%
vzGPS 38.38% 7.7×10−4% 7.67×10−4%

Table 5. The estimation of attitude state variables.

Variable Real
The First Loop The Second Loop

Estimated Error Relative Error Estimated Error Relative Error

ϕ0, ◦ 1 0.94 0.06 0.64% 0.99 0.01 0.11%
θ0, ◦ 2 2.09 0.09 0.89% 2.02 0.02 0.16%
ψ0, ◦ 3 2.90 0.10 1.00% 2.98 0.02 0.19%

ωx0, ◦/s 0.2 0.20 0.00 0.01% 0.20 0.00 0.00%
ωy0, ◦/s 0.1 0.10 0.00 0.01% 0.10 0.00 0.00%
ωz0, ◦/s −0.1 −0.10 0.00 0.01% −0.10 0.00 0.00%

µGyro,ω , ◦/h 0.003 0.00 0.00 1.35% 0.00 0.00 0.14%
εGyro,ω , ◦/h 0.05 0.28 0.23 452.54% 0.08 0.03 56.27%
σGyro,ω , ◦/h 0.04 0.07 0.03 73.58% 0.05 0.01 27.73%
µStarSensor, ◦ 0.002 0.09 0.08 2083.63% 0.02 0.02 380.04%
σStarSensor, ◦ 0.002 0.00 0.00 9.79% 0.00 0.00 0.50%

RMSE 0.09366% 0.020678%

Table 6. The RMSE of attitude telemetry variables.

Variable
RMSE

Uncorrected The First Loop The Second Loop

ϕm 15.372% 0.109% 0.0278%
θm 9.215% 0.132% 0.0543%
ψm 13.216% 0.0874% 0.0573%

ωxGyro 12.027% 0.0529% 0.00999%
ωyGyro 5.157% 0.0548% 0.0102%
ωzGyro 15.192% 0.0594% 0.0272%

Tables 7 and 8 show the updating result of power variables. Some errors of state
variables become a little bit larger, and some become smaller, but the total RMSE of
telemetry variables is further decreased.

Table 7. The estimation of power state variables.

Variable Real
The First Loop The Second Loop

Estimated Error Relative Error Estimated Error Relative Error

θwing1,0, ◦ 90 89.14 0.86 4.29% 89.07 0.93 4.64%
θwing2,0, ◦ 90 89.14 0.86 4.29% 89.07 0.93 4.64%

ηw 0.15 0.15 0.00 0.00% 0.15 0.00 0.00%
kCharge 1 1.00 0.00 0.05% 1.00 0.00 0.02%

RMSE 0.121311% 0.051712%
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Table 8. The RMSE of power telemetry variables.

Variable
RMSE

Uncorrected The First Loop The Second Loop

QLoop 11.39% 6.46×10−9% 0.00%
ULoop 24.39% 0.05% 0.02%
ILoop 8.72% 0.26% 0.07%
PLoop 0.28% 0.27% 0.08%

θ1,SunSensor 9.84% 0.09% 0.10%
PWing1 34.27% 0.01% 0.01%

θ2,SunSensor 9.84% 0.09% 0.10%
PWing2 34.27% 0.01% 0.01%
IBattery 41.53% 1.02 × 10−8% 0.00%

QBattery 11.39% 6.46 × 10−9% 0.00%
UBattery 0% 0% 0.00%
PBattery 41.53% 1.02 × 10−8% 0.00%

Variable modification of the propulsion subsystem is shown in Tables 9 and 10. The
results of electric propulsion state variables also show that some errors decrease and some
increase, but the total RMSE of telemetry variables decreases.

Table 9. The estimation of propulsion state variables.

Variable Real
The First Loop The Second Loop

Estimated Error Relative Error Estimated Error Relative Error

ϕInstall
TN1

, rad −0.84298 −0.85 0.01 5.50% −0.80 0.05 27.58%
θ Install

TN1
, rad 0 0.07 0.07 35.83% −0.02 0.02 9.01%

ψInstall
TN1

, rad 0 0.41 0.41 204.90% 0.15 0.15 73.40%
X Install

TN1
, m −0.5 −0.74 0.24 238.83% −0.65 0.15 153.32%

Y Install
TN1

, m −1 −0.88 0.12 62.39% −0.70 0.30 149.22%
ZInstall

TN1
, m −0.891 −0.66 0.23 131.56% −0.81 0.08 45.31%

FTN1 , N 0.0441 0.04 0.00 0.00% 0.04 0.00 0.00%

RMSE 0.053958% 0.009247%

Table 10. The RMSE of propulsion telemetry variables.

Variable
RMSE

Uncorrected The First Loop The Second Loop

ϕm 0.0988% 0.0522% 0.0237%
θm 0.0705% 0.0665% 0.0564%
ψm 0.0944% 0.0807% 0.0548%

ωxGyro 0.0661% 0.0493% 0.0129%
ωyGyro 0.0547% 0.0531% 0.00952%
ωzGyro 0.0651% 0.0753% 0.0238%
PXe,m 2.686% 0% 0%

The updating result of the thruster force and moment is shown in Table 11.
To illustrate the effect of the hierarchical method, an experiment of model updating

without the hierarchical method, that is, all variables were updated at the same time, was
taken as a comparison. As is shown in Figure 4, most of the estimation errors grew rapidly
and showed no downward trend.
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Table 11. The estimation of thrust force and moment.

Variable Real
The First Loop The Second Loop

Estimated Error Estimated Error

Force X in stage 1 FxTN1 , N −0.0003164 −0.0030089 0.0026925 −0.0009050 0.0005887
Force Y in stage 1 FyTN1 , N 0.0051050 0.0034721 0.0016329 0.0062679 0.0011629
Force Z in stage 1 FzTN1 , N −0.0438024 −0.0438600 0.0000576 −0.0435619 0.0002405

Moment X in stage 1 MxTN1 , Nm 0.0546021 0.0475862 0.0070159 0.0472978 0.0073043
Moment Y in stage 1 MyTN1 , Nm −0.0211241 −0.0283029 0.0071788 −0.0269889 0.0058648
Moment Z in stage 1 MzTN1 , Nm −0.0028563 −0.0055050 0.0026488 −0.0043405 0.0014843

Force X in stage 2 FxTN1 , N 0.0022124 0.0006701 0.0015423 0.0030239 0.0008114
Force Y in stage 2 FyTN1 , N 0.0013324 0.0008649 0.0004675 0.0026075 0.0012751
Force Z in stage 2 FzTN1 , N −0.0440243 −0.0440864 0.0000621 −0.0438481 0.0001763

Moment X in stage 2 MxTN1 , Nm 0.0510070 0.0456808 0.0053263 0.0434219 0.0075851
Moment Y in stage 2 MyTN1 , Nm −0.0237159 −0.0311270 0.0074110 -0.0288623 0.0051464
Moment Z in stage 2 MzTN1 , Nm 0.0018456 0.0000837 0.0017619 0.0003308 0.0015148
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From the simulation result of hierarchical model updating, the RMSE of telemetry
variables is significantly reduced by multi-loops iterative updating, which validates the
model updating method. For the state variables, the updating results of the second loop
are closer to the true values than that of the first loop.
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5. Conclusions

To reflect the coupling effect between the subsystems and improve the prediction
accuracy of the vector electric-propulsion satellite model, the mathematical model is estab-
lished according to the whole satellite, subsystems, and devices. The state variables and
telemetry variables that have a major influence are selected, grouped, and sorted by the
hierarchical rules proposed. Each group is then updated by leveraging the least-squares
method in sequence. The iteration loop is executed until the telemetry errors converge to
the expected threshold.

The simulation results show that the residual errors of telemetry variables become
smaller, and the estimation values of state variables become closer to the true value by
hierarchical model updating with the close-loop iterations, which verifies the effectiveness
of the hierarchical rule in solving the model updating problem of the vector electric-
propulsion satellite.

The research in this paper provides a method to decompose a complex system into
simple parts and solve them separately, which can not only be used for model updating
of vector electric-propulsion satellites but also can be extended to other complex satellite
digital twin models.

Author Contributions: Conceptualization, Y.D. and X.W.; methodology, X.W.; software, X.W.;
validation, X.W.; formal analysis, X.W.; investigation, X.W.; resources, X.W.; data curation, X.W.;
writing—original draft preparation, X.W.; writing—review and editing, X.W.; visualization, X.W.;
supervision, Y.D.; project administration, X.W.; funding acquisition, Y.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was partially supported by the Key Laboratory of Spacecraft Design
Optimization and Dynamic Simulation Technologies, Ministry of Education.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mazouffre, S. Electric Propulsion for Satellites and Spacecraft: Established Technologies and Novel Approaches. Plasma Sources

Sci. Technol. 2016, 25, 033002. [CrossRef]
2. Potrivitu, G.-C.; Sun, Y.; bin Rohaizat, M.W.A.; Cherkun, O.; Xu, L.; Huang, S.; Xu, S. A Review of Low-Power Electric Propulsion

Research at the Space Propulsion Centre Singapore. Aerospace 2020, 7, 67. [CrossRef]
3. Lev, D.; Myers, R.M.; Lemmer, K.M.; Kolbeck, J.; Koizumi, H.; Polzin, K. The Technological and Commercial Expansion of Electric

Propulsion. Acta Astronaut. 2019, 159, 213–227. [CrossRef]
4. Wang, B.; Tao, F.; Fang, X.; Liu, C.; Liu, Y.; Freiheit, T. Smart Manufacturing and Intelligent Manufacturing: A Comparative

Review. Engineering 2021, 7, 738–757. [CrossRef]
5. Li, L.; Lei, B.; Mao, C. Digital Twin in Smart Manufacturing. J. Ind. Inf. Integr. 2022, 26, 100289. [CrossRef]
6. Shafto, M.; Conroy, M.; Doyle, R.; Glaessgen, E.; Kemp, C.; LeMoigne, J.; Wang, L. DRAFT Modelling, Simulation, Information Technology

& Processing Roadmap—Technology Area 11; National Aeronautics and Space Administration: Washington, DC, USA, 2010.
7. Kiureghian, A.D.; Ditlevsen, O. Aleatory or Epistemic? Does It Matter? Struct. Saf. 2009, 31, 105–112. [CrossRef]
8. Liu, X.; Li, H.; Tang, J.; Ding, Y.; Wei, L.; Yu, D.; Hu, Y. Method for Calculating Thrust Vector Eccentricity Angle of Electric

Thruster. AIAA J. 2022, 60, 5060–5069. [CrossRef]
9. Thelen, A.; Zhang, X.; Fink, O.; Lu, Y.; Ghosh, S.; Youn, B.D.; Todd, M.D.; Mahadevan, S.; Hu, C.; Hu, Z. A Comprehensive

Review of Digital Twin—Part 2: Roles of Uncertainty Quantification and Optimization, a Battery Digital Twin, and Perspectives.
Struct. Multidiscip. Optim. 2023, 66, 1–43. [CrossRef]

10. Wang, J.; Chen, H.; Ma, J.; Zhang, T. Research on Application Method of Uncertainty Quantification Technology in Equipment
Test Identification. MATEC Web Conf. 2021, 336, 02026. [CrossRef]

11. Levchenko, I.; Baranov, O.; Pedrini, D.; Riccardi, C.; Roman, H.E.; Xu, S.; Lev, D.; Bazaka, K. Diversity of Physical Processes:
Challenges and Opportunities for Space Electric Propulsion. Appl. Sci. 2022, 12, 11143. [CrossRef]

https://doi.org/10.1088/0963-0252/25/3/033002
https://doi.org/10.3390/aerospace7060067
https://doi.org/10.1016/j.actaastro.2019.03.058
https://doi.org/10.1016/j.eng.2020.07.017
https://doi.org/10.1016/j.jii.2021.100289
https://doi.org/10.1016/j.strusafe.2008.06.020
https://doi.org/10.2514/1.J061328
https://doi.org/10.1007/s00158-022-03410-x
https://doi.org/10.1051/matecconf/202133602026
https://doi.org/10.3390/app122111143


Appl. Sci. 2023, 13, 4980 18 of 18

12. Kokkolaras, M.; Mourelatos, Z.P.; Papalambros, P.Y. Design Optimization of Hierarchically Decomposed Multilevel Systems
Under Uncertainty. J. Mech. Des. 2006, 128, 503–508. [CrossRef]

13. Oberkampf, W.L. What are validation experiments? Exp. Tech. 2001, 25, 35–40. [CrossRef]
14. Zhu, Y. Study on Model Updating and Validation Technology of Complex Mechanical Structure Based on Hierarchical Method.

Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2010.
15. Cheng, W.; Liu, N.; Zhong, Q.; Fan, Q. Study on Parameters Correction Method of Steady-State Thermal Model for Spacecraft.

J. Astronaut. 2010, 31, 270–275.
16. He, H.; Chen, Z.; He, C.; Ni, L.; Chen, G. A Hierarchical Updating Method for Finite Element Model of Airbag Buffer System

under Landing Impact. Chin. J. Aeronaut. 2015, 28, 1629–1639. [CrossRef]
17. He, C.; Chen, G.; He, H.; Sun, R. Model Updating of a Dynamic System in a High-Temperature Environment Based on a

Hierarchical Method. Finite Elem. Anal. Des. 2013, 77, 59–68. [CrossRef]
18. He, C.; Li, Z.; He, H.; Wang, J. Stochastic Dynamic Model Updating of Aerospace Thermal Structure with a Hierarchical

Framework. Mech. Syst. Signal Process. 2021, 160, 107892. [CrossRef]
19. Chen, Z.; Zhao, Q. A Dynamic Model Updating Method with Thermal Effects Based on Improved Support Vector Regression.

Appl. Sci. 2021, 11, 8025. [CrossRef]
20. Fei, C.; Liu, H.; Patricia Liem, R.; Choy, Y.; Han, L. Hierarchical Model Updating Strategy of Complex Assembled Structures with

Uncorrelated Dynamic Modes. Chin. J. Aeronaut. 2022, 35, 281–296. [CrossRef]
21. Xu, J.; Xu, L.; Ma, Q.; Han, Q. Force Evaluation of Internal Cable of Prestressed Grids Based on Field Monitoring and Hierarchical

Objective Model Updating. J. Civ. Struct. Health Monit. 2023, 13, 709–727. [CrossRef]
22. Li, L.; Liu, W.; Zhao, S. Study on Space Test of Electric Propulsion System. Spacecr. Eng. 2014, 23, 126–132.
23. Dong, Y.; Chen, S.; Su, J.; Hu, D. Dynamic Simulation Technology of Satellite Attitude Control; Science Press: Beijing, China, 2010.
24. Ren, M. Key Technologies of Autonomous Operation of Remote Sensing Satellite. Ph.D. Thesis, Beihang University, Beijing,

China, 2020.
25. Li, Z. Satellite Thermal Control Technology; China Astronautic Publishing House: Beijing, China, 1991.
26. Craig, J.J. Introduction to Robotics: Mechanics and Control, 3rd ed.; Pearson Prentice Hal: Upper Saddle River, NJ, USA, 2005.
27. Xu, F. Satellite Engineering; China Astronautic Publishing House: Beijing, China, 2003.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1115/1.2168470
https://doi.org/10.1111/j.1747-1567.2001.tb00023.x
https://doi.org/10.1016/j.cja.2015.10.010
https://doi.org/10.1016/j.finel.2013.08.004
https://doi.org/10.1016/j.ymssp.2021.107892
https://doi.org/10.3390/app11178025
https://doi.org/10.1016/j.cja.2021.03.023
https://doi.org/10.1007/s13349-023-00673-w

	Introduction 
	Problem Formulation 
	State Equations and State Variables 
	Measurement Equations and Telemetry Variables 

	Method 
	The Hierarchical Model Updating Method 
	Least-Squares Method 

	Results and Discussion 
	Determine the Range of Remote Measurement 
	The Result of Hierarchical Model Updating 

	Conclusions 
	References

