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Abstract: As one of the world’s most crucial crops, the potato is an essential source of nutrition
for human activities. However, several diseases pose a severe threat to the yield and quality of
potatoes. Timely and accurate detection and identification of potato diseases are of great importance.
Hyperspectral imaging has emerged as an essential tool that provides rich spectral and spatial
distribution information and has been widely used in potato disease detection and identification.
Nevertheless, the accuracy of prediction is often low when processing hyperspectral data using a one-
dimensional convolutional neural network (1D-CNN). Additionally, conventional three-dimensional
convolutional neural networks (3D-CNN) often require high hardware consumption while processing
hyperspectral data. In this paper, we propose an Atrous-CNN network structure that fuses multiple
dimensions to address these problems. The proposed structure combines the spectral information
extracted by 1D-CNN, the spatial information extracted by 2D-CNN, and the spatial spectrum
information extracted by 3D-CNN. To enhance the perceptual field of the convolution kernel and
reduce the loss of hyperspectral data, null convolution is utilized in 1D-CNN and 2D-CNN to extract
data features. We tested the proposed structure on three real-world potato diseases and achieved
recognition accuracy of up to 0.9987. The algorithm presented in this paper effectively extracts
hyperspectral data feature information using three different dimensional CNNs, leading to higher
recognition accuracy and reduced hardware consumption. Therefore, it is feasible to use the 1D-CNN
network and hyperspectral image technology for potato plant disease identification.

Keywords: hyperspectral data of potatoes; atrous convolution; deep learning; multidimensional
fusion Atrous-CNN

1. Introduction

As one of the most important food crops for humans, potato is a significant source
of carbohydrates, vitamins, and minerals, with an annual production of up to 370 million
tons [1,2], but because of the complex growing environment, potato is susceptible to dis-
eases during growth [3]. For example, blackleg and soft tuber rot are significant bacterial
diseases associated with potatoes worldwide [3–5]. These pathogens are plant-pathogenic
bacteria from the genus Pectobacterium [3]. They produce enzymes that cause the decay of
plant tissues [6], leading to damage to roots, stems, and leaves, resulting in a severe reduc-
tion in yield and storability [7–10]. Such bacteria can remain latent during plant growth
until favorable conditions for their development, reproduction, and infection prevail [11].
Once pest and disease toxicity occur, they not only cause losses to agricultural produc-
tion but also significantly impact human health and the ecological environment [12–16].
Therefore, timely and accurate detection and identification of potato diseases is essential to
maintain crop yield and quality.

To detect crop disease, traditional methods are based on manual visual inspection and
human empirical analysis, which cannot meet the need for rapid and accurate detection
of potato diseases [17]. To accurately identify potato diseases and achieve disease control,
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management, and prevention, the most popular approach is to combine machine learning
and image classification methods with multiple imaging techniques for disease detection
of plants [18–21]. However, traditional image-based classification methods cannot identify
diseases that are difficult to detect beyond RGB images because they only consider image
information and lack depth data features [22].

Hyperspectral imaging has emerged as a crucial technique in recent years, provid-
ing valuable spectral and spatial information for potato disease detection and identifica-
tion [23–25]. The combination of hyperspectral image techniques, preprocessing methods,
and deep learning convolutional neural networks has proved effective in detecting potato
late blight [26]. Other researchers have used multispectral image systems to detect plant
growth in a noninvasive manner [27], while the Cube CNN SVM (CCS) method has been
shown to improve spectral image classification by extracting high-level features directly
from raw data [28]. Previous studies have also shown that 3D-CNN can achieve better
classification accuracy than 2D-CNN without preprocessing [29]. Multiscale wavelets,
combined with in-depth feature information extracted by 3D-CNN, can generate super-
resolution hyperspectral images from low-resolution ones [30]. However, initial 3D-CNN
networks tend to suffer from overfitting and higher training costs, necessitating more hard-
ware resources and training time, resulting in poor generalization of the overall network
model [31]. To address these issues, a combined 2D–3D model approach can extract both
spatial and spectral features, resulting in better fusion features for hyperspectral image
classification (HSIC) [32], while reducing the network structure parameters [33].

Computer vision application in agriculture has become an alternative solution to man-
ual detection [34]. Polder et al. designed a hyperspectral line scan device for virus damage
detection in different potatoes [35]. They demonstrated that a deep learning approach
improved the accuracy of real-world potato disease detection. Hyperspectral imaging
is a valuable tool for disease detection in various crops from different angles (tissue to
canopy) [36]. Atherton et al. [37,38] used hyperspectral remote sensing to detect disease
in potato plants; they only used spectral information but not imaging sensors. Ray et al.
used a point-spectrum approach without considering spatial information [39]. Hu et al.
successfully detected late blight on potato leaves using hyperspectral imaging to improve
disease recognition [40]. Griffel et al. [41] used SVM to classify spectral features of potato
plants infected with PVY obtained with a handheld device with recognition accuracy close
to 90%. Kang et al. proposed a lightweight convolutional neural network model [42] that
could identify potato leaves with three different diseases, reducing the number of parame-
ters and improving accuracy. Shi et al. proposed a novel end-to-end deep learning model
(CropdocNet) [43] for accurate and automated late blight diagnosis based on UAV-based
hyperspectral images with an average accuracy of 98.09% on the test dataset. Gao et al. [44],
based on high-resolution field-of-view images and deep learning algorithms to extract
late blight spots from unstructured field environments, demonstrated that unbalanced
weighting of lesion and background categories could improve segmentation performance.
Qi et al. [45] proposed a deep collaborative attention network (PLB-2D-3D-A) by combining
2D convolutional neural network (2D-CNN) and 3D-CNN with a deep collaborative atten-
tion network (PLB-2D-3D-A) for hyperspectral deep learning classification architecture for
images, showing promising results for early detection of potato late blight by deep learn-
ing and near-end hyperspectral imaging. Chen et al. [46] proposed a weakly supervised
learning approach to identify potato plant diseases by extracting high-dimensional features
through a hybrid attention mechanism.

Although potato disease detection technology has advanced significantly, there remain
some challenges that impede the accurate and rapid identification of diseases. One such ob-
stacle is the variety of potato diseases, which often present with similar symptoms, making
them difficult to differentiate. Additionally, the complexity of diseases, which can result
from a range of factors such as genetic and environmental conditions, further exacerbates
this issue. Moreover, while 3D convolutional neural networks are commonly used for pro-
cessing hyperspectral data, they are known to have high hardware requirements, and the
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accuracy of 1D convolutional neural networks for hyperspectral data is often suboptimal.
Furthermore, numerous factors such as light, noise, distortion, and color changes present
further challenges to disease detection, underscoring the need for increased algorithmic
robustness and repeatability.

To address these issues, this paper proposes a novel network architecture that leverages
1D, 2D, and 3D convolutional neural networks [47] in a multidimensional fusion approach.
The network uses dilated convolution [48–50] for feature extraction, which avoids data loss
and increases the perceptual field compared to the conventional convolution-pooling layer
in CNNs. The proposed convolutional operation in different dimensions takes full advan-
tage of hyperspectral data’s spectral and spatial information, reducing network parameters
and improving the model’s generalization and classification accuracy. The purpose of this
paper is the following:

(1) To address the current problems of potato diseases that can cause serious harm
to human health and crop yield and economic losses, we use deep learning technology to
provide a new solution for detecting potato diseases to ensure their product and healthy
growth. (2) By analyzing the existing technologies for potato disease detection, we innova-
tively propose a multidimensional fusion Atrous-CNN architecture to solve the problems
of insufficient accuracy, low disease recognition rate, high hardware resource consumption,
and data loss of current detection technologies. Testing the proposed model on multiple
datasets confirmed that it has good detection capability and reduces hardware consumption,
which to a large degree meets the current needs of potato disease detection.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

The hyperspectral data were collected at the potato demonstration base of Chahar
Right Wing Banner in Hohhot, and the camera used was a new handheld hyperspectral
camera Specim IQ. The resolution of the hyperspectral camera was 512 × 512 pixels,
and the total number of bands collected was 204, with a spectral range of 400–1000 nm and
a spectral resolution of 7 nm. In this study, potato leaves were picked and photographed
in the laboratory with the Specim IQ hyperspectral camera to address the problem that
hyperspectral cameras are susceptible to environmental interference during photography.
During the shooting, the white plate and the leaf were photographed simultaneously to
eliminate the environmental mismatch, the integration time of the hyperspectral camera
was adjusted to 5 ms, and the shooting height was 20 cm from the leaf height. A total
of 126 hyperspectral potato disease data points, including 49 leaf blight, 28 anthracnoses,
7 early blight, and 42 mixed hyperspectral images of three different diseases, were obtained.
For data with mixed pixels, the pixels within a region are labeled as the same category
based on the artificial region calibration of the RGB image at the time of acquisition, so
the data with mixed pixels will have multiple disease category labels. Still, these disease
category labels will not be pursued for disease species when they belong to the same disease
category at the first classification. When performing the disease category identification,
the second classification task needs to be completed based on the specific disease category
labels calibrated and combined with the determination of the corresponding spectral
information found on the disease pixels. The potato disease leaves taken with the Specim
IQ hyperspectral camera are shown in Figure 1.
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Figure 1. Hyperspectral image of potato diseased leaves.

2.2. Methods
2.2.1. Method of Label Category Selection

When using multidimensional Atrous-CNN for feature extraction, the input data size
is (7 × 7 × 204), among which the hyperspectral data spatial information size is (7 × 7),
and this size is beneficial to reducing the loss of edge feature data with the number of
spectral information bands of 204. The label attributes are the categories of central pixel
locations, as shown in Figure 2a.

Figure 2. Label category selection for hyperspectral data.

In hyperspectral imaging technology, defining precise attributes at the edges of the data
is often difficult, which poses a challenge to disease detection and identification. In order to
solve this problem, this paper proposes a mirror extension method. This method mirrors the
pixel values at the edges symmetrically and places the edge pixels at the center to extend
the information of the data at the edges. The specific operation is shown in Figure 2b.

The specific implementation of the mirror extension method is accomplished by
symmetrically complementing the neighboring pixel values of the pixels at the edges.
Specifically, for the pixels at the edges, the complementary values are selected from their
neighboring pixels closer in the distance and spectrally similar to the original pixels.
Therefore, the complementary pixel values can better preserve the original pixels’ features
and increase the amount of available information in the data.
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2.2.2. Atrous-CNN

In a conventional CNN, convolution and pooling operations extract data features.
However, due to downsampling in the pooling layer, some feature information of the data
needs to be recovered. This problem is especially serious in hyperspectral data, which
contains rich information, and pooling causes some information loss.

This paper proposes a new approach to solve this problem: using a null convolution
layer instead of the conventional convolution pooling operation. The null convolution
structure is very simple and based on the zero-padding principle in regular convolu-
tion. Compared with the regular convolutional layer, the hollow convolutional layer can
maintain no loss of data information in the response layer and substantially increase the
perceptual field of the convolutional computation.

The formula for calculating atrous convolution is as follows:

o[i] =
J

∑
j=1

f [i + r · j]w[i] (1)

In this equation, f [i] stands for the input vector, o[i] for the value of the output vector
o at position i. The dilation rate of the atrous convolution is r, the convolution size is w,
and the total number of convolutions between the vectors f [i] and w is j. Formula (1)
shows that the hole convolution is filled with r− 1 times of 0 adjacent to the conventional
convolution. When r is 1, the hole convolution is equivalent to the conventional convolution,
indicating that there is no convolution expansion. The atrous convolution receptive field
calculation formula is as follows:

F[i] = F[i− 1] +
(
k′ − 1

)
× Si−1

k′ = k + (k− 1)× (d− 1)

Si =
i

∏
i=1

Stride i

(2)

where F[i] is the receptive field of the convolution kernel in the current convolution layer
and k is the size of the convolution kernel, k′ represents the actual size of the convolution
kernel after expansion, and the number of holes is d. The product of all previous layer steps
is represented by Si, and the step size of each layer is represented by Stride.

2.2.3. Multidimensional Fusion Atrous-CNN

Figure 3 shows the multidimensional fusion Atrous-CNN structure, in which the
hyperspectral size data (7 × 7 × 204) is input into the network model in the first step. In the
second step, the “space-spectrum” features of the hyperspectral data are extracted using the
3D-CNN part, which includes three 3D convolutional layers and one 3D top pooling layer,
where the size of the convolutional kernel in the 3D convolutional layer is (8 × 3 × 3 × 3).
The size of the pooling window in the pooling layer is (2 × 2 × 4). The pooling step is (1,1,2).
In the third step, the output of 3D-CNN is adjusted from (7 × 7 × 102 × 8) to (7 × 7 × 816),
which is used as the input of 2D-CNN. Thus, 2D-CNN is used to extract spatial information
from hyperspectral data using 2D-hole convolution, where the convolution kernel size in
the 2D-hole convolution layer is (8 × 3 × 3) and the expansion rate of 2D-hole convolution
is (2, 2). The fourth step is to adjust the output of the 2D-CNN part (3 × 3 × 8) to (72 × 1) as
the input of the 1D-CNN part. The 1D-CNN performs feature extraction of the spectral
information of the hyperspectral data using the 1D-hole convolution, where the size of
the convolution kernel in the 1D-hole convolution is (16 × 3). The dilation rate of the
1D-hole convolution is 2. The fifth step is to tile the output of the 1D-CNN part. Output
is tiled, expanded, and connected to the Dropout layer (20–22) to avoid overfitting the
network model. Finally, the Dropout layer is connected to two fully connected layers
(Dense). The activation function of the second Dense layer is set to Softmax and used as
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the output layer of the whole network. The distribution of specific network parameters is
shown in Table 1.

input
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Figure 3. Multidimensional fusion of Atrous-CNN.

Table 1. Multidimensional fusion of Atrous-CNN structure.

Layer Type Output Shape Param Connected to

input InputLayer (None, 7, 7, 204, 1) 0
Conv3_1 Conv3D (None, 7, 7, 204, 8) 224 input
Conv3_2 Conv3D (None, 7, 7, 204, 8) 1736 Conv3_1
Conv3_3 Conv3D (None, 7, 7,204, 8) 1736 Conv3_2

Pool MaxPooling3D (None, 7, 7, 102, 8) 0 Conv3_3
reshape1 Reshape (None, 7, 7, 816) 0 Pool3

Conv2 Conv2D (None, 3, 3, 8) 58, 760 reshape1
reshape2 Reshape (None, 72, 1) 0 Conv2

Conv1 Conv1D (None, 68, 16) 64 reshape2
flatten Flatten (None, 1088) 0 Conv1

Dropout Dropout (None, 1088) 0 flatten
D1 Dense (None, 50) 54,450 Dropout
out Dense (None, 4) 204 D1

2.2.4. Leaf Pixel Classification Based on Multidimensional Fusion Atrous-CNN

In conventional hyperspectral image processing, the conventional 1D-CNN network
can only process the spectral information of hyperspectral data while ignoring the spatial
information of hyperspectral data. Although 3D-CNN-based networks can synthesize
hyperspectral data’s spatial and spectral information, the model structure is complex and
requires high hardware consumption. Figure 4 shows the process of CNN fusion in three
dimensions—1D-CNN, 2D-CNN, and 3D-CNN. The network can effectively utilize the
feature information of hyperspectral data extracted from three different dimensional CNNs
with higher recognition accuracy and can further reduce hardware consumption. In the
data fusion process, this paper utilizes the reshape method to adjust the dimensionality of
the data and achieves the fusion of the data by connecting the CNNs of two dimensions.

3D-CNN 2D-CNN 1D-CNN

…

(77102) (771028)

reshape1 reshape2

3D-CNN feature extraction 2D-CNN feature extraction 1D-CNN feature extraction

(6816)

8102

(771028) (77816) (338) (721)

(77204)

(512512204)

Flatten

Dropout

D1

out

Center Location Label

(338)

Figure 4. Leafpixel classification based on multidimensional fusion of Atrous-CNN.
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As shown in Figure 4, the multidimensional fusion Atrous-CNN makes full use of the
spatial and spectral information of the hyperspectral data. In the 3D-CNN part, the “null-
spectral” information of the hyperspectral data is extracted using the 3D convolution-
pooling operation, with a feature size of (7 × 7 × 102) and many features of 8. In the
2D-CNN part, the hyperspectral data’s spatial information is extracted using the 2D-hole
convolution operation with the feature size of (3 × 3) and the number of features of 8. In the
1D-CNN part, the spectral information of the hyperspectral data is extracted by using the
1D-hole convolution operation with a feature size of 68 and many features of 16.

Figure 5 shows the structural comparison of the three CNNs. As noted, 3D-CNN
uses only 3D convolution (Conv3D) and 3D maximum pooling (MaxPooling3D) for fea-
ture extraction of hyperspectral data. Due to the large Conv3D computation with high
hardware consumption during model training, the multidimensional fusion CNN and
Atrous-CNN use 2D-CNN and 1D-CNN for feature extraction in the intermediate layer
to reduce computational loss. Among the feature extraction methods in the middle layer,
multidimensional fused CNN utilizes convolution-pooling operation and Multidimen-
sional fusion Atrous-CNN with specific feature extraction capability. In the last two layers
(D1, out) of the whole network, D1 acts as a fully connected layer to integrate and combine
the features of the previous flattened layer spread out. Finally, the four neurons in the
out layer correspond to the categories to which the four leaf pixels belong. Using the
activation function softmax, the results of the four neurons can be processed as probability
values between 0 and 1, and the one with the largest probability value is determined as the
category to which they belong.

Conv1_1(Conv3D)
Conv1_2(Conv3D)
Conv1_3(Conv3D)

Pool_1(MaxPooling3D)

Conv2_1(Conv3D)
Conv2_2(Conv3D)

Pool_2(MaxPooling3D)

flatten (Flatten)
Dropout (Dropout)

D1 (Dense)
out (Dense)  

Reshape1(Reshape)
conv2D(Conv2D)

Pool_2(MaxPooling2D)

Conv1_1(Conv3D)
Conv1_2(Conv3D)
Conv1_3(Conv3D)

Pool_1(MaxPooling3D)

Reshape2(Reshape)
conv1D(Conv1D)

Pool_3(MaxPooling1D)

flatten (Flatten)
Dropout (Dropout)
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out (Dense)  

Reshape1(Reshape)
Atrous_conv2D(Conv2D)

Conv1_1(Conv3D)
Conv1_2(Conv3D)
Conv1_3(Conv3D)

Pool_1(MaxPooling3D)

Reshape2(Reshape)
Atrous_conv1D(Conv1D)

flatten (Flatten)
Dropout (Dropout)

D1 (Dense)
out (Dense)  

3D-CNN Multi-dimensional fusion CNN Multi-dimensional fusion Atrous-CNN

Figure 5. Comparison of three CNN structures.
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2.2.5. Disease Classification Method: 1D-CNN

The network structure and parameter distribution of the 1D-CNN network, which
was utilized to classify Anthrax, leaf blight, and early blight, are given in Table 2. The mul-
tidimensional fusion’s identification of the sick area’s hyperspectral information (1 × 204).
By applying the cubic convolution pooling procedure, Atrous-CNN is used to extract
the spectral curve features of the diseased area. The flattened layer is then used for tile
expansion and linkage with the Dense layer. Parameter 3 in the output layer represents
model confidence for disease prediction.

Table 2. 1D-CNN network structure.

Layer Type Output Shape Param Connected to

input InputLayer (None, 1, 204, 1) 0
Conv1_1 Conv1D (None, 204, 32) 224 input

Pool1 MaxPooling1D (None, 51, 32) 0 Conv1_1
Conv2_1 Conv1D (None, 51, 64) 12,352 Pool1

Pool2 MaxPooling1D (None, 26, 64) 0 Conv2_1
Conv3_1 Conv1D (None, 26, 128) 49,280 Pool2

Pool3 MaxPooling1D (None, 13, 128) 0 Conv3_1
flatten Flatten (None, 1664) 0 Pool3

D1 Dense (None, 128) 213,120 flatten
out Dense (None, 3) 387 D1

This study takes potato leaves as the research object. The overall flow chart is shown
in Figure 6. Firstly, its hyperspectral image information is obtained as input features by
hyperspectral cameras. A mirror extension method is designed for the attribute definition
of edge labels of the data. Regarding extracting the hyperspectral information features,
the proposed multidimensional fusion Atrous-CNN utilizes 1D-Atrous-CNN, and 2D-
Atrous-CNN instead of the traditional convolution-pooling for feature extraction, thus
substantially increasing the perceptual field of convolutional computation while ensuring
no loss of data information. The paper then uses multidimensional fusion Atrous-CNN to
classify the hyperspectral information of potato leaves, achieving the extraction of disease
regions for the subsequent identification of disease species.
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3. Analysis of Experimental Results

For the method part, we use the dilated convolution layer instead of the conventional
convolution pooling operation to solve the data loss problem in information extraction.
We compare the standard convolution with the dilated convolution, as shown in Figure 7.
By comparing the experimental results, using the dilated convolution layer can improve
the efficiency of data feature extraction and increase the convolutional computational field
while maintaining information integrity.

Figure 7. Standard Convolution and Hole Convolution.

To better validate the detection performance of the proposed algorithm, the traditional
3D-CNN and multidimensional fusion CNN and multidimensional fusion Atrous-CNN
are compared in training experiments. The total data volume is 262,144 (512 × 512),
with 209,715 data in training set accounting for 80% of the total data and 52,429 data in
the validation set accounting for 20% of the total data. The hardware environment is an
Intel Xeon E5-2650 v4 processor, NVIDIA Tesla V100-PCIE-16GB graphics card, and 256G
RAM. Figure 8 shows the training process of hyperspectral data disease detection of potato
leaves using three network models. The training results show that the loss function of the
training process using the proposed multidimensional Atrous-CNN model decreases faster
and converges better than the other two network models. Furthermore, the accuracy of
prediction using the multidimensional Atrous-CNN model is also significantly higher than
the other two network models. The training performance of this method outperformed the
other two models in both 100 and 500 training sessions.

Table 3 shows the comparative training results for classifying potato leaf hyperspec-
tral image data using three network models: 3D-CNN, multidimensional fusion CNN,
and multidimensional fusion Atrous-CNN. According to the training results, the training
time of the 3D-CNN model is longer than that of the multidimensional CNN structure
at 100 training times, the prediction accuracy of feature extraction using null convolution
is higher than that of the traditional convolution-pooling operation, and the accuracy of
the proposed multidimensional fusion Atrous-CNN model is improved by 0.69% over the
multidimensional fusion CNN model in the validation set at 100 training times. The accu-
racy of the proposed multidimensional fusion Atrous-CNN model is improved by 0.69%
compared to the multidimensional fusion CNN model in the validation set at 100 train-
ing cycles. The training time is significantly reduced compared to the 3D-CNN network.
At 500 training cycles, the accuracy of all three network models for potato plant leaf disease
classification improved with increasing training times on the training set performance.
Among them, the accuracy of the training set using the multidimensional fusion Atrous-
CNN method was as high as 99.78% after the 500th training. The accuracy of this method
on the training set was improved by 0.6% compared to the 500th-training 3D-CNN method
and by 0.21% compared to the multidimensional fusion CNN. In the validation set, the ac-
curacy of this method improves by 0.15% compared to the training 500 times 3D-CNN
method and 0.45% compared to the multidimensional fusion CNN method.
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Figure 8. Loss function and accuracy of three network model training.

Table 3. Training results of three network models.

Datasets Assessment Metrics
Models

3D-
CNN

Multidimensional
Fusion CNN

Multidimensional
Fusion Atrous-CNN

Train-100
Time-100 2:15:50 2:02:11 2:07:57

Train Loss-100 0.0259 0.0201 0.0141
Precision-100 98.92% 99.16% 99.41%

Val Loss-100 0.0231 0.0336 0.0233
Precision-100 99.07% 98.44% 99.13%

Train-500
Time-500 11:42:40 10:52:13 10:59:43

Train Loss-500 0.0195 0.0106 0.0054
Precision-500 99.18% 99.57% 99.78%

Val Loss-500 0.0214 0.0254 0.0226
Precision-500 99.16% 98.86% 99.31%

Table 4 shows the results of disease detection using three network models for potato
hyperspectral data. The potato hyperspectral data included four types of hyperspectral
images: normal leaf pixels, diseased leaf pixels, background pixels, and whiteboard pixels.
The results showed the highest prediction accuracy of the four types of pixels using the
multidimensional fusion Atrous-CNN model. The recognition accuracy of all types of pixels
reached more than 99.7%. Among them, in recognizing diseased leaf pixels, the accuracy
was improved by 7.09% compared with the 3D-CNN method and 1.7% compared with
the multidimensional fusion CNN method. The results proved that recognizing diseased
leaves using multidimensional fusion Atrous-CNN has high effectiveness. Regarding the
recognition accuracy of total pixels, the recognition accuracy using the multidimensional
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fusion Atrous-CNN model improved by 0.51% compared with the 3D-CNN method and
by 0.94% compared with the multidimensional fusion CNN method.

Table 4. Test results of three network models.

Category Labels
Models

3D-CNN Multidimensional Fusion CNN Multidimensional Fusion Atrous-CNN
Correct Pixels Precision Correct Pixels Precision Correct Pixels Precision

Healthy leaf pixels (16,970) 16,894 99.55% 16,499 97.22% 16,934 99.79%
Diseased leaves pixels (3173) 2940 92.66% 3111 98.05% 3165 99.75%
Background pixels (29,773) 29,756 99.94% 29,752 99.93% 29,758 99.95%
Whiteboard pixels (2513) 2510 99.88% 2509 99.84% 2511 99.92%

Total (52,429) 52,100 99.37% 51871 98.94% 52,368 99.88%

In order to evaluate the performance of the model independently of the data set,
this study uses the k-fold cross-validation method to divide the hyperspectral data of
the diseased pixels five times, that is, the k-fold cross-validation species k = 5, and the
number of training sets for each division is 50,508. The number of test sets is 12,627.
The data division is shown in Figure 9. This study trained the five-times-divided data with
1DCNN, SVM, gradient_boosting_model, and multinomial naive Bayesian classification.
The evaluation results are shown in Table 5 and Figure 10. The average accuracy of k-
fold cross-validation of 1DCNN. Compared with the polynomial naive Bayesian model,
the accuracy rate increased by 0.3401. Compared with the gradient_boosting_model model,
the accuracy rate increased by 0.0276 and the average accuracy rate of SVN increased
by 0.047.
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Figure 9. Data partition diagram.

The proposed multidimensional fusion Atrous-CNN fuses 3D convolution with 2D-
AtrousCNN and 1D-AtrousCNN, which can not only reduce the training parameters of the
network but also ensure the model’s effective spatial feature extraction of hyperspectral
data compared with the training of the classification task by processing hyperspectral data
features entirely through the use of 3D convolution operation. The ability to extract the
spatial characteristics of hyperspectral data is also ensured. Compared with the traditional



Appl. Sci. 2023, 13, 5023 12 of 17

1D and 2D convolution pooling for feature extraction, the null convolution operation
provides no loss of data information. It significantly increases the perceptual field of
convolution calculation, which ensures the feature extraction capability of the model.
From the spectral data classification performance of leaves, the classification results of
hyperspectral data of potato leaves using the proposed algorithm in this paper are more
accurate than the other two deep learning models, and the multidimensional fusion Atrous-
CNN with cavity convolution is used to train the loss function to fall faster and converge
better during the training process.

Table 5. Comparison of evaluation results.

Dataset K-Fold cross Validation 1DCNN Multinomial Naive Bayes Classifier GBDT SVM

Train set

The first time 0.9979 0.6582 0.9707 0.9508
The second time 0.9987 0.6583 0.9706 0.9509
The third time 0.9989 0.6592 0.9708 0.9517

The fourth time 0.9978 0.6581 0.9706 0.9522
The fifth time 0.9982 0.6572 0.9706 0.9510

Average 0.9983 0.6582 0.9707 0.9513

Test set

The first time 0.9967 0.6577 0.9682 0.9527
The second time 0.9980 0.6516 0.9735 0.9528
The third time 0.9990 0.6664 0.9718 0.9482

The fourth time 0.9976 0.6526 0.9711 0.9470
The fifth time 0.9997 0.6627 0.9688 0.9554

Average 0.9982 0.6582 0.9707 0.9512

Figure 10. Comparison of evaluation results.

1DCNN uses convolutional operation for feature extraction, which can more effectively
identify the deeper feature information of hyperspectral data than traditional machine
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learning methods. In the model’s training, the difference between predicted and accu-
rate labels is used to construct the loss function, the gradient descent method minimizes
the loss function, and the optimal model is finally obtained through continuous training.
From the five tests of k-weight cross-validation, we can see that the potato disease iden-
tification model trained by 1DCNN has better accuracy than the three machine learning
algorithms. It indicates that the deep learning network using convolutional operations is
more effective for feature extraction of hyperspectral data and performs better in the task
of spectral classification than the traditional machine learning methods using polynomial
and kernel techniques.

After k-fold cross-validation, this study re-divided the data set. The number of
training sets was 47,352, including 11,782 pieces of spectral information of anthracnose
leaves, 25,402 pieces of spectral information of leaf blight leaves, and 10,168 pieces of
spectral information of early blight leaves information. The number of test sets is 15,784,
including 3957 pieces of spectral information of anthracnose leaves, 8595 pieces of spectral
information of leaf blight leaves, and 3232 pieces of spectral information of early blight
leaves. Figure 11 shows the confusion matrix of the prediction results of the three diseases
using the 1D-CNN network. The marked position is the number of disease categories
correctly identified using the spectral information of the diseased leaves using the 1D-CNN.
Table 6 shows the classification accuracy and recall rate of the three diseases calculated
using the confusion matrix. The accuracy and recall rates of the three diseases in the training
set using the 1D-CNN network are above 0.99. In the test set, the recognition accuracy rates
of the three diseases were all above 0.98, among which the recognition accuracy rate of
anthracnose reached 0.9987, and the recognition recall rates of the three disease test sets
were all above 0.97, of which for the anthracnose and leaf blight, the recognition recall
rate was above 0.99. In summary, using the 1D-CNN network and hyperspectral image
technology to identify potato plant diseases is feasible.

Figure 11. Confusion matrix of the three disease identification results using 1D-CNN.

Table 6. Accuracy and recall of prediction results for different disease categories.

Datasets Accuracy and Recall
Disease Category

Anthrax Blight Early Blight

Train Accuracy 1 0.9969 0.9979
Recall 1 0.9992 0.9923

Test Accuracy 0.9987 0.9895 0.9842
Recall 0.9997 0.9942 0.971

Figure 12 shows the detection results of potato leaves with three anthracnose diseases,
leaf blight, and early blight, using multidimensional fusion Atrous-CNN. The results show
that this method can effectively extract the characteristic information of hyperspectral data
and realize the accurate detection of potato leaf diseases.
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Figure 12. Disease detection through multidimensional fusion of Atrous-CNN.

In the two classification processes mentioned above, we classified four categories of
healthy leaf pixels, diseased leaf pixels, background pixels, and whiteboard pixels, and the
other for three diseases, respectively. The latter of these classifications is based on the
classification task for the former. We labeled diseased leaf pixels from the first classification
result as a new object of study. We performed a secondary classification using 1DCNN
in combination with the hyperspectral number of diseased leaf pixels. Both varieties use
the hyperspectral data of the leaves. However, because the four categories of objects on
the leaves—healthy leaf pixels, diseased leaf pixels, background pixels, and whiteboard
pixels—have specific regional connectivity and need to consider the influence of the spectral
information of the pixels in their neighborhood, the structure of the network is enriched
by considering the spatial, spectral data in the first classification. The second classification
does not influence surrounding pixels, and the variety is predicted only based on the
tremendous spectral details of the diseased pixels of the leaves.

4. Conclusions

In this paper, we propose a multidimensional fusion-based Atrous-CNN network
structure and use the method to achieve disease detection and identification of potato
hyperspectral images. The technique integrates hyperspectral data’s spatial and spectral
information for analysis, effectively reducing the network’s computational cost compared
with the traditional 3D-CNN. Since the network fuses multiple dimensional convolutions
and uses null convolution to increase the perceptual field of the convolution kernel, it
reduces the loss of hyperspectral data information. It makes the extracted spectral fea-
tures more expressive, which in turn improves the performance of the classification of
hyperspectral data. In this paper, Atrous-CNN is applied to potato leaf disease detection.
The experimental results show that the proposed method has better classification results
than the single 3D-CNN and the traditional method using convolution-pooling operation
feature extraction and is an effective network structure for classification and feature ex-
traction of hyperspectral data. Finally, combined with the use of the 1D-CNN network
to classify and identify three types of diseases, anthracnose, leaf blight, and early blight
leaves, the recognition accuracy of this structure is up to 0.9987. Therefore, this study can
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be a heuristic method for researchers to design crop disease detection and identification
models and provide new solutions for the field.

The model proposed in this paper effectively solves the common problems in current
agricultural disease image detection and has broad application prospects in precision
agriculture and agricultural industry efficiency. Future work will expand this area of
research to include more complex agrarian scenarios.
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