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Abstract: Perception of the indoor environment is the basis of mobile robot localization, navigation,
and path planning, and it is particularly important to construct semantic maps in real time using
minimal resources. The existing methods are too dependent on the graphics processing unit (GPU)
for acquiring semantic information about the indoor environment, and cannot build the semantic map
in real time on the central processing unit (CPU). To address the above problems, this paper proposes
a non-use GPU for lightweight indoor semantic map construction algorithm, named NGLSFusion.
In the VO method, ORB features are used for the initialization of the first frame, new keyframes are
created by optical flow method, and feature points are extracted by direct method, which speeds up
the tracking speed. In the semantic map construction method, a pretrained model of the lightweight
network LinkNet is optimized to provide semantic information in real time on devices with limited
computing power, and a semantic point cloud is fused using OctoMap and Voxblox. Experimental
results show that the algorithm in this paper ensures the accuracy of camera pose while speeding
up the tracking speed, and obtains a reconstructed semantic map with complete structure without
using GPU.

Keywords: semantic map; non-use GPU; SLAM; RGBD-based VO; indoor environment

1. Introduction

As intelligent mobile robotics teams continue to evolve and robot-oriented technolo-
gies become more diverse, measuring their ability to perceive the geometry of objects
inside a scene, attach accurate semantic labels, and reconstruct the recognized objects with
semantic information in a map is a test of the robot’s ability to properly understand its
environment. When a robot comes to work in an unfamiliar environment, the ability to
build an accurate map helps it identify where obstacles are and locate itself in the envi-
ronment, and the semantic information it obtains provides the robot with the ability to
understand its surroundings and carry out commands given by humans, such as “bring the
food there” and “clean the trash to the left of the refrigerator”. There are many excellent 3D
reconstruction algorithms available today, such as Multi-View Stereo [1], Structure from
Motion [2], SLAM [3], etc. Meanwhile, there are also breakthroughs in semantic segmenta-
tion algorithms based on deep learning, such as [4–7], but there is not much intersection
between these two fields. In recent years, more attention has been focused on combining
3D reconstruction algorithms with deep learning algorithms and building semantic SLAM
systems, and so far, these two research fields have been revitalized by combining with
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each other. The more popular ones at this stage are dynamic semantic SLAM [8,9] and 3D
semantic SLAM [10–12]. However, the combination of the two fields also brings some new
problems. The 3D reconstruction algorithms rely on CPU, various algorithms based on
deep learning rely on GPU, and the combination of the two will make the whole system
work at high intensity, while mobile robots are mostly used as commercial service-oriented
robots, considering their commercial cost performance, so high performance processors will
not be configured on the robots. For this problem, this paper proposes a lightweight indoor
semantic map construction algorithm non-use GPU named NGLSFusion. In the past few
years, visual SLAM has been widely used, mainly because its framework is very stable and
mature, and the visual-based images store rich texture information, in which some excellent
algorithms have also achieved good results, such as ORB-SLAM2 [13], ORB-SLAM3 [14],
VINS-Mono [15], etc. Compared to most current visual odometry (VO) and visual–inertial
odometry (VIO) or 3D semantic reconstruction algorithms, NGLSFusion combines both,
and the algorithm is capable of accurate localization and real-time map building, relying
only on the CPU on mobile robots with low equipment performance. The VO part of the
algorithm uses an excellent open-source visual SLAM, ORB-SLAM2 [13]. In this paper,
an RGBD camera is used because it can provide accurate depth and scale information to
improve the robustness of the system. In the algorithm, the non-keyframes coming in
from the front end are combined using ORB features [16], optical flow method, and direct
method to jointly obtain the keyframes and extract the feature points on the keyframes, and
then PnP-Ransac is used to optimize the camera pose for the keyframes and feature points.
LinkNet [17], a lightweight network using encoding and decoding connections, is used
to identify indoor environmental objects to obtain object semantic segmentation results,
which fits well with our mobile robot platform due to its real-time segmentation and fast
operation. Since the algorithm in this paper is designed to run in real time, without GPU
support, the segmentation effect will be much reduced, so we use Intel’s neural network
gas pedal OpenVINO to optimize the pretrained model and speed up the model inference,
so as to achieve real-time recurrent inference without relying on GPU. Indoor semantic
map construction is performed using OctoMap [18] (for robot navigation) and Voxblox [19]
(for building more detailed textured maps).

Therefore, the algorithm given in this paper consists of a total of three modules: a VO
module based on RGBD, a lightweight semantic segmentation module with real-time
loops, and a 3D reconstruction module that fuses semantic information to generate maps.
In conclusion, the algorithm in this paper is modular, and the modules can be freely
combined to meet the requirements according to the work required when using the robot.

Considering the portability integrity on robotic platforms, NGLSFusion supports both
online builds using the Robot Operating System (ROS) [20] and test validation using offline
datasets. The main contributions made by the algorithms in this paper are summarized
as follows:

(1) A VO module with improved ORB-SLAM2 for fast extraction of image feature points
and excellent robustness. The module firstly initializes the system with ORB features
for the first frame of the front input, secondly tracks the feature points on subsequent
frames using optical flow method, eliminates mismatching using forward and reverse
optical flow and creates new key frames, then extracts the feature points on key
frames using direct method and calculates their descriptors. Finally, the camera pose
is optimized by using the PnP-Ransac algorithm for keyframes and feature points,
which can speed up the extraction of feature points and optimize the camera pose.

(2) A GPU-independent optimized inference lightweight model for constructing semantic
point clouds. A file containing a specific network topology and a binary file containing
weights and deviations are obtained by optimizing the lightweight LinkNet model,
and the model is repredicted using an inference engine that reads both files and
implements parallel operations using SIMD to meet real-time performance on a CPU-
only device. Two-dimensional image segmentation is performed on the objects in the
indoor environment acquired by the camera, and the segmented semantic colors and
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their confidence levels are compared using the optimal value comparison method to
generate a three-dimensional point cloud with semantic information by combining
the depth information corresponding to each pixel in the image.

(3) A lightweight semantic SLAM system for fusing semantics based on optimized models
in indoor environments. The system can run in real time on devices without GPU
and build maps using globally consistent pose and semantic information to ensure
robot localization accuracy and map construction, and the entire system has complete
debugging and visualization tools.

The other sections of this paper are structured as follows: In Section 2, the related
work is presented. In Section 3, the methods used for the three modules are described.
In Section 4, the proposed modules are tested experimentally and the results are analyzed
rationally. In Section 5, the experimental conclusions and future perspectives are given.

2. Related Work

In recent years, the fusion of geometric maps of indoor environments with semantic
information to build semantic maps to link objects with semantic concepts has become a
popular research area in the field of mobile robotics, but there is no SLAM system that runs
in real time without using GPU and concurs with both robot pose and semantic information.
Indoor semantic SLAM generally consists of two modules: a VO (or VIO) module based on
visual SLAM, and a semantic point cloud fusion module.

When the mobile robot is in an unknown environment, VO then locates the current
location of the robot and draws a sparse map of the environment. The basic idea is to extract
and match the feature points of different frames of the same scene through a continuous
frame with translation and rotation, calculate the transformation between frames, and select
and save keyframes for relocalization, loop closure, and map building. There are two main
methods for VO (or VIO) to extract feature points from images: feature point method and
direct method. The application of the feature point method in VO (VIO) can be traced back
to some SLAMs based on monocular vision [21–25]. Among them, MonoSLAM [21] and
RT-SLAM [22] use extended Kalman filter (EKF) to implement SLAM. Sim [23] proposed
an SLAM method based on particle filter to improve the effect of system nonlinearity to
EKF by introducing a traceless Kalman filter, but it increased the computational complexity.
PTAM [24] chose to use nonlinear optimization as the back-end-dominant, and introduced
keyframe mechanism and multithreading mechanism to improve the efficiency of the
algorithm when the mainstream visual SLAM used EKF filter to process the back-end data
at that time, but it was susceptible to motion blur and camera rotation and only suitable for
small scenes due to its 2D–2D image matching algorithm, and did not consider the global
loop. ORB-SLAM [25] extended on this basis by using ORB features to establish short-term
and medium-term data associations, establishing co-views to increase visual relationships
and map construction, and using the bag-of-words database DBoW2 [26] for loop closure
and relocation to achieve long-term data association. Since monoculars cannot obtain
accurate scale information, and the constructed maps are inaccurate, ORB-SLAM2 [13]
adds stereo camera and an RGBD camera to obtain an absolute scale. ORB-SLAM3 [14] fuses
the camera and the inertial measurement unit (IMU) on this basis for joint optimization of
the camera pose. In terms of feature point extraction, eSLAM [27] accelerates ORB feature
point extraction on an FPGA [28] platform. GCNv2 [29] is improved on the basis of the deep
learning network GCN [30] to speed up feature point matching. SuperPoint [31] proposed
a fully convolutional neural network architecture that uses the self-supervised domain of
homographic adaptation to train images to detect key points and descriptors. Although the
theory of feature point method is mature and widely used, it is difficult to match feature
points for no texture or weak texture, and the extraction of feature points consumes a lot
of resources. Therefore, an optical flow method was proposed, which uses optical flow
to track key points instead of calculating descriptors, and it is obviously superior to the
feature point method in time consumption. When processing frames, it needs to ensure that
the ambient luminance is constant and that there is continuous “small motion” between
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frames, which can be subdivided into dense optical flow (such as Horn–Schunck optical
flow method [32]) and sparse optical flow (such as Lucas–Kanade optical flow method [33]),
depending on its working principle. Based on the optical flow method, the direct method
mentioned above was thus created, and both estimate the camera motion by minimizing the
photometric error, except that the direct method further optimizes the camera pose using
the least squares method. LSD-SLAM [34] is the first algorithm to apply the direct method
in a semi-dense monocular SLAM, which achieves real-time semi-dense reconstruction
based on the relationship between map gradients and the direct method. SVO [35] is fast,
but has large errors and no loopback detection. DSO [36] uses a sliding window consisting
of keyframes at the back end to obtain accurate camera pose even in weakly textured scenes,
running fast and with high robustness.

Three-dimensional reconstruction of the indoor environment is the foundation of
path planning and navigation for mobile robots. The most direct method is to acquire the
point cloud through the RGBD camera on board the robot, and as the number of point
clouds saved increases, the robot itself will have insufficient memory, and this method
obviously cannot meet the requirements. In recent years, there has been an increasing
interest in 3D reconstruction based on RGBD cameras. KinectFusion [37], as the first 3D
reconstruction algorithm, relies on depth maps alone to build 3D models without relying
on RGB maps, which is based on the principle of using truncated signed distance field
(TSDF) to continuously move the camera to obtain objects from different viewpoints for
reconstruction, but it relies on GPU parallel computation. Kintinuous [38] adds loopback
detection and loopback optimization to this, enabling 3D reconstruction of large scenes,
combining iterative closest point algorithm (ICP) and direct method for estimation of
camera pose, but inevitably still using GPU implementation. ElasticFusion [39] was the
first to represent the map as a surfel model when most 3D reconstruction algorithms use a
mesh model to fuse point clouds for reconstruction. ElasticReconstruction [40] processes
the input continuous frames in modules and removes the noise of the depth map according
to the frames in each module to obtain more accurate reconstruction results. InfiniTAM [41]
uses a hash table to store the implicit volume representation, which greatly saves the
memory consumption during reconstruction. BundleFusion [42] adopts a parallelized
optimization framework, makes full use of the correspondences extracted based on sparse
features and dense geometry and photometric matching, and uses bundle adjustment [43]
(BA) in the backend to optimize the pose, and its reconstruction results are the best among
the current static scenes. Depth information alone cannot enable a robot to locate accurately
in an unfamiliar environment, so it is necessary to link the reconstructed map with the
semantic information of the objects in the environment, where the semantic reconstruction
uses a camera, such as SemanticFusion [44], Qi [45], DynaSLAM [46], MaskFusion [47], Co-
Fusion [48], and the method of semantic reconstruction using LiDAR, such as SegMap [49],
SuMa [50], SuMa++ [51], and OverlapNet [52]. The above methods rely on GPU processing
regardless of whether they use vision or laser for semantic reconstruction, which limits the
application in robotics. Of course, there are also some CPU-based methods, such as [53–55],
among which Voxblox++ [53] requires pose estimation using sensors such as RGBD cameras
and wheel speed odometers to construct a Voxblox [19] map, and it relies on the GPU.
DXSLAM [54], used to extract feature points, and Kimera [55], used to obtain semantic
information, are obtained offline. Therefore, these three methods cannot be called semantic
SLAM in the strict sense. In summary, the NGLSFusion proposed in this paper has made
some improvements in solving these problems, and it has been proven to be more effective
through experiments. All the methods used are described in detail in Section 3.

3. Method

In this section, four aspects are presented. Firstly, the complete algorithmic framework
diagram of NGLSFusion is given. Secondly, the improved VO module is introduced to
guarantee its pose estimation accuracy while achieving fast feature tracking. Then, the
LinkNet pretraining model is optimized to provide semantic information on CPU in real
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time, the best semantic information is computed using the optimal value comparison
method, and the semantic point cloud is generated by combining the depth information.
Finally, a lightweight semantic map construction method is proposed, which uses OctoMap
and Voxblox to fuse the semantic point clouds.

3.1. NGLSFusion Algorithm Framework

As shown in Figure 1, the algorithm in this paper takes RGB frames and depth frames
as inputs and obtains globally consistent poses from the RGBD-based VO module, giving a
fast and robust pose-estimation method. The RGB frames are processed using an optimized
lightweight network model to give a method to obtain the best semantic information.
Using globally consistent poses, semantic information and depth information are combined
to generate local semantic maps, and local semantic maps are fused to generate global
semantic maps. The algorithm contains a total of three modules, each of which is given
in this section, and it is the first method to achieve real-time semantic mapping on mobile
robots without relying on GPU. A detailed description of the three modules is given in the
following sections.
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3.2. Visual Odometry

The VO module used in the algorithm is improved based on ORB-SLAM2, and its
algorithm framework is shown in Figure 2, where green is the input, red is the output, and
yellow and blue are the judgment and processing, respectively.

The module is implemented by initializing the first frame of the input into the module
using ORB feature extraction due to its rotation, illumination, and scale invariance, extract-
ing key points using FAST [56] features, then comparing the point pairs selected in a fixed
pattern around the key points to obtain a binary BRIEF descriptor [57], and then combining
the obtained feature points with their depth information to generate map points using the
EPNP algorithm [58] to complete the initialization of the first frame.
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After initialization, the Lucas–Kanade optical flow method [33] is used to track the
feature points on the subsequent non-keyframes, assuming that the grayscale value of
the feature point in the previous frame at moment t is denoted as G(x, y, t), where (x, y)
denotes the coordinates of the feature point in the incoming image in the two-dimensional
plane. After time ∆t, the grayscale value of the same feature points in the current frame are
represented by G(x + ∆x, y + ∆y, t + ∆t), which leads to the following equation:

G(x + ∆x, y + ∆y, t + ∆t) = G(x, y, t) (1)

The Taylor expansion of Equation (1):

G(x + ∆x, y + ∆y, t + ∆t) = G(x, y, t) +
∂G
∂x

dx +
∂G
∂y

dy +
∂G
∂t

dt + o(dx, dy, dt) (2)

According to Equations (1) and (2), the following relationship is obtained:

∂G
∂x

dx +
∂G
∂y

dy +
∂G
∂t

dt + o(dx, dy, dt) = 0 (3)

Dividing both sides of Equation (3) by d simultaneously yields:

∂G
∂x
· dx

dt
+

∂G
∂y
· dy

dt
+

∂G
∂t

= 0 (4)

where ∂G
∂x and ∂G

∂y denote the partial derivative of the grayscale value of the feature point to

the coordinates x and y in the two-dimensional plane, ∂G
∂t denotes the partial derivative

to time t, dx
dt and dy

dt denote the displacement of the feature point in the previous frame,
and o(dx, dy, dt) denotes the minimum of the coordinates x and y and time t, and the
displacement can be used to locate the position of the same feature point in the current
frame and obtain the correspondence of the feature point. If there is a large movement, the
same feature points of the previous frame and the current frame are easily mismatched, so
it is necessary to use the reverse optical flow to eliminate the error. As shown in Figure 3
below, the feature points 1, 2, and 3 in the previous frame are tracked by forward and
reverse optical flow to determine their positions, such as 1 corresponds to 4, 2 corresponds
to 5, and 3 corresponds to 6 in the forward optical flow; 4 corresponds to 7, 5 corresponds to
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8, and 6 corresponds to 9 in the reverse optical flow. The error between 3 and 9 by forward
and reverse tracking is already greater than 0.5 pixels, which is defined as a wrong tracking
point and executed to delete it, so as to improve the optical flow tracking accuracy.
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New keyframes are created according to the matching relationship of feature points
on the extracted images, and, finally, the feature points are extracted and their descriptors
are calculated for the newly created keyframes using the direct method of DSO [36]. After
obtaining enough feature points, the camera pose is calculated and optimized using the
3D–2D PnP-Ransac algorithm, assuming that there are n feature points obtained by the
direct method of tracking keyframes, where the 3D points and feature points correspond
as follows:

si

ui
vi
1

 = K

R

Xi
Yi
Zi

+ t

, i = 1, 2, . . . , n. (5)

where si is the depth factor corresponding to the selected sensor, (ui, vi, 1)T is the feature
point location in the 2D image, (Xi, Yi, Zi)

T is the 3D point in space, K is the camera
intrinsics matrix, and R and t are the camera extrinsics matrices.

Then, the pose to be optimized and the 3D point to be generated are used as the
variables to be optimized for nonlinear optimization. Assuming that Tk,k−1 is the pose
between adjacent frames, the 2D plane coordinates of a feature point in the Ik−1 image
(u, v), and the depth is d, the 3D coordinates pk−1 of the feature point in the Ik−1 coordinate
system are obtained by Equation (5), the 3D coordinates pk in the Ik coordinate system are
obtained by using the transformation matrix Tk,k−1, and the 2D plane coordinates in the
Ik image coordinate system (u′, v′) are obtained by combining with the camera internal
reference to complete the reprojection process. Since there is an error in the above points
obtained by reprojection error, which also leads to unequal brightness values before and
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after projection, this error is reduced by continuously optimizing the poses, and, finally,
the preoptimized poses are obtained, which are derived as follows:

Tk,k−1 = argmin
Tk,k−1

1
2 ∑

i∈R
‖δI(Tk,k−1, ui)‖

2 (6)

Among them:
δI(T, u) = Ik(π(T · π−1(u, du)))− Ik−1(u) (7)

According to the position of the feature points in the previous 2D image and their
depth information, the 3D coordinate points are back-projected to the 3D space, and the
3D coordinate points are converted to the current coordinate system by using the transfor-
mation matrix; finally, they are projected back to the current frame, and the preoptimized
pose Tk,k−1 is obtained by continuous optimization iterations. The keyframe pose and the
map points observed on the keyframes are used as vertices; each vertex is linked with
an edge, and solved by general graph optimization [59]. Finally, the loop results are ob-
tained by comparing the similarity between the two frames using DBoW2 [26] based on
the descriptors saved by computation in each keyframe. Although there are redundant
calculations in creating new keyframes and extracting keyframe feature points, the optical
flow method and direct method based on photometric error are much faster than the feature
point method, as shown in the later experimental sections, and they have higher robustness
and higher speed.

The module uses color and depth images with a resolution of 640 × 480 as the front-
end input data, estimates the motion between adjacent frames through VO, and passes
them to the back end for optimization and loop detection, which determines whether the
robot “knows” the current environment and passes the acquired information to the back
end for processing, so as to obtain a globally consistent pose and maps through loop closure
and relocalization.

3.3. Semantic Segmentation

The original semantic segmentation algorithm LinkNet [17] used in this paper is based
on the implementation of Pytorch [60]. The network uses the autoencoder idea to connect
each encoder and decoder directly without using pooling index or full convolution to
recover the stepwise convolution, removing unnecessary spatial information and greatly
reducing the processing time and the number of parameters required by the network.
On the basis of such a lightweight real-time segmentation algorithm, this paper uses Intel’s
Open Visual Inference & Neural Network Optimization (OpenVINO) tool, as it provides a
complete deep learning inference toolkit (DLDT), which can be used for a variety of trained
models are deployed, but models trained by Pytorch deployment are not yet supported
by it, so it needs to be preprocessed in advance to convert the pretrained model format to
Open Neural Network Exchange (ONNX). The pretrained model is first optimized using
Model Optimizer to obtain a file containing the specific network topology and a binary
model file containing the weights and biases. The Inference Engine is then used to read the
above two files and repredict the model. Finally, parallel operation is achieved using single
instruction multiple data (SIMD) on the CPU to meet the real time, and the corresponding
optimized semantic segmentation algorithm framework is shown in Figure 4.
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Figure 4. Algorithm framework of optimized semantic segmentation.

Each frame of the input color map is predicted using an optimized model that returns
semantic information for each pixel in real time, where the semantic information includes
the semantic color (the color given in advance to the object category) and the confidence.
An optimal value comparison method is introduced to preprocess the semantic information
for each pixel, and the algorithmic structure of this method is given below (Algorithm 1).

Algorithm 1: Optimal value comparison

1: function Optimal Value Comparison (semantic1, semantic2)
2: if semantic1.color == semantic2.color
3: semanticoptimal .color = semantic1.color
4: semanticoptimal .con f =

semantic1.con f+semantic2.con f
2

5: else
6: if semantic1.con f > semantic2.con f
7: semanticoptimal .color = semantic1.color
8: semanticoptimal .con f = semantic1.con f
9: semanticoptimal .con f = semanticoptimal .con f × 0.95
10: else
11: semanticoptimal .color = semantic2.color
12: semanticoptimal .con f = semantic2.con f
13: semanticoptimal .con f = semanticoptimal .con f × 0.95
14: return semanticoptimal

3.4. Map Construction

In this paper, we fully consider the semantic map building module and propose to
build two forms of maps simultaneously. One is the OctoMap map, which is mainly a
occupancy grid, and the other is the Voxblox map, which is based on TSDF and can better
construct the environmental texture information. The former can be used to accomplish
autonomous indoor navigation tasks, while the latter provides maps with more texture
information. While constructing two types of maps, the map building process is divided
into building local and global maps. The local point cloud is first generated based on
the combination of pixels on the color map with their corresponding depth information,
and the point cloud is transformed into a local occupancy grid and a local TSDF at a
certain resolution using undersampling processing. Then, each keyframe in Section 3.3
is used to obtain semantic information using semantic segmentation and combine it with
its depth information to generate a local 3D semantic point cloud, which is then fused
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with the local occupancy grid map and local TSDF map to generate a local semantic map,
respectively. Finally, combining the current frame pose of the VO module with globally
consistent pose and semantic information, the local semantic map is fused and spliced to
generate the global semantic map, and the whole process is implemented on the CPU. The
corresponding semantic map construction algorithm framework is shown in Figure 5.
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4. Experiment

In this section, in order to validate the effectiveness of NGLSFusion, the experiments
demonstration is conducted, which is divided into three parts: dataset introduction, VO
module comparison, and semantic map construction performance comparison. Each mod-
ule is unfolded in the experiments using offline and online runs, and tested using currently
accepted and accurate rubrics.

The offline run method is chosen to expose the TUM RGB-D dataset [61]. In order
to compare the speed in front-end feature point extraction, this paper evaluates the time-
consumption per frame of ORB-SLAM2 [13], ORB-SLAM3 [14], and the algorithm in this
paper. On the VO module, the three algorithms are compared in terms of front end per
frame time-consumption and algorithm stability, and the error between the keyframe
trajectory pose and ground truth of the above three algorithms is calculated using the
method of Zhang et al. [62] to evaluate the accuracy using absolute translation root mean
square error (RMSE). The RMSE is defined as follows:

RMSEatrans =

(
1
M

M

∑
i=1
‖∆atrans‖2

) 1
2

(8)

To check the dispersion of the error between the keyframe trajectory pose and the
ground truth, standard deviation (STD) is used to evaluate the error dispersion. The STD is
defined as follows:

STD∆p =

(
1
M

M

∑
j=1
‖∆p‖2

) 1
2

(9)

where ∆atrans is the error between the pose and ground truth estimated by the algorithm
after its timestamp, ∆p is the difference between the pose and ground truth averages
estimated by the algorithm after its timestamp, and M denotes the total number of ac-
quired poses.

The online operation method uses ROS [20], which allows the camera to communicate
directly with the master controller and other sensors through topic messaging, and provides
debugging and visualization tools for user-friendly operation, and, most importantly, many
of the open-source algorithms used in the algorithms of this paper are implemented on
ROS, such as ORB-SLAM2 [13], OctoMap [18], and Voxblox [19].
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All experimental data throughout the text were analyzed on the mobile robot, which
was equipped with an Intel i7-9750H CPU @ 2.60 Hz, 16 GB RAM and NVIDIA GTX1650
4G discrete graphics card, an external HDMI display, a Songling SCOUT MINI four-wheel
differential mobile chassis, and a CAN to USB interface and ROS driver to provide the
robot with stable operating environment. The parameters in the subsequent algorithm will
be explained during the experiment.

4.1. Dataset Introduction

The TUM RGB-D dataset includes static environment (handheld cameras and mobile
robots), fast camera moving environment, and dynamic environment, among which the
latter two environments are extremely challenging for the robustness and accuracy of the
algorithm. The dataset also provides real-world robot data, including blurred, dimly lit
scenes, scenes without distinctive features, and rapidly transforming scenes. In this paper,
the above datasets are tested and validated to give the most real experimental results and
detailed analysis. Most importantly, the dataset uses a highly accurate, time-synchronized
motion capture system to record real camera poses and encapsulate them into an image
sequence that provides a very accurate reference standard for this paper.

4.2. VO Module Comparison

The experiments in this section select sequences from eight TUM RGB-D datasets for
validation, which contain the various complex environments described above. The average
time-consumption of ORB-SLAM2 [13], ORB-SLAM3 [14], and the algorithm in this paper
were compared by calculating the feature point extraction time-consumption per frame,
in which the dataset of fr2/slam, a mobile robot viewpoint, has spatial jumps, which led
to visualization jams in ORB-SLAM3, so these data were not used. The average time-
consumption for feature point extraction is shown in Table 1.

Table 1. Comparison test of the three algorithms in terms of feature point extraction speed per frame
(ten experiments are taken as the average value, in milliseconds).

Sequence Name ORB SLAM2 ORB SLAM3 Ours

fr1/desk 18.454 17.177 9.856
fr1/desk2 18.660 17.072 9.479
fr1/room 17.088 15.982 9.342
fr2/desk 16.555 15.241 9.854
fr2/slam 15.573 - 7.979
fr3/office 16.621 15.910 8.418

fr3/stn 12.653 11.915 6.923
fr3/rpy 21.366 19.138 11.508

The experimental results show that it is nearly twice as fast as the original ORB-SLAM2
in terms of feature point extraction per frame. ORB-SLAM2 uses ORB features for front-end
feature point extraction, on the basis of which ORB-SLAM3 changes the original static
matrix to feature matrix, and the speed is significantly improved. The results also show that
the combination of ORB features, optical flow method, and direct method used in this paper
to process image frames is far superior to ORB-SLAM2 and ORB-SLAM3 in terms of speed.
The following is a comparison of the average time-consumption per frame by the three
algorithms at the front end, as shown in Table 2 of the average front-end time-consumption.
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Table 2. Comparison experiments on the processing time per frame of the three algorithms in the
front end of the VO module (ten experiments to take the average value, in milliseconds).

Sequence Name ORB SLAM2 ORB SLAM3 Ours

fr1/desk 39.211 33.819 30.904
fr1/desk2 39.207 33.534 29.392
fr1/room 34.941 30.634 26.732
fr2/desk 34.408 30.125 26.109
fr2/slam 27.191 - 20.781
fr3/office 37.443 32.903 25.847

fr3/stn 25.932 22.289 19.049
fr3/rpy 40.540 37.073 30.372

The experimental results show that the improved feature point extraction method
leads to a speedup in the overall VO front-end time consumption. In the VO module front
end, feature point extraction and matching occupy a large amount of time. In this paper, the
VO module is improved from feature point extraction, and although redundant calculations
are generated when processing non-keyframes, in terms of the VO module as a whole, this
paper provides a lightweight VO that can estimate the pose faster. The faster the speed of
VO, the more frames are tracked, allowing VO to track more accurately in fast-moving or
rotating datasets. Of course, this paper pays more attention to the stability of the algorithm,
and counts the success rates of the three algorithms running datasets, as shown in Table 3.

Table 3. Three algorithm stability experiments (number of successes in ten experiments).

Sequence Name ORB SLAM2 ORB SLAM3 Ours

fr1/desk 90% 100% 100%
fr1/desk2 90% 100% 90%
fr1/room 100% 100% 100%
fr2/desk 100% 100% 100%
fr2/slam 20% - 30%
fr3/office 100% 100% 100%

fr3/stn 100% 100% 100%
fr3/rpy 100% 100% 100%

The experimental results show that the original ORB-SLAM2 algorithm is prone to run
failure in datasets where the camera moves too fast and dynamic objects are present, while
the ORB-SLAM3 algorithm completes the whole process by rebuilding the map when the
tracking fails because of the presence of a multimap system. However, the algorithm in this
paper does not need obvious texture features in the tracking process, and it can only track
the gray changes in the image, which fully reflects its stability. The accuracies of the three
algorithms are further compared while satisfying a rapidity and stability. The ORB-SLAM2
and ORB-SLAM3 gave some results processed by double standard deviation in their papers.
Considering the influence of different devices on the algorithm results, the results given in
this paper meet the requirements of the original paper after testing, as shown in the RMSE
comparison of the three algorithm in Table 4.

The experimental results show that the VO module in this paper has the highest
accuracy on seven datasets, and ORB-SLAM3 has the highest accuracy on only one dataset,
respectively. By comparing the accuracy values, the VO accuracy in this paper is better
than the original ORB-SLAM2 and can achieve similar accuracy to, or even higher accuracy
than, ORB-SLAM3; the main reason is that the VO will perform a preoptimization after
extracting the keyframe feature points, and then the back end will perform nonlinear
optimization to achieve higher accuracy. For the Handheld Camera dataset, the VO in
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this paper has the highest accuracy among the two datasets, fr1/desk and fr1/desk2, in
which the camera moves faster, and this high accuracy is due to a fast frame-tracking VO
module. ORB-SLAM3 has the highest accuracy on fr1/room, which is affected by the
ambient illumination of this dataset, resulting in inaccurate pixel gray extracted by this
algorithm. In two datasets, fr2/desk and fr3/stn, where the camera moves slowly, the
VO in this paper is significantly superior to the original ORB-SLAM2 in accuracy, and
is similar to ORB-SLAM3. In a home-environment-like dataset fr3/office, the camera is
rotated along its environment for map construction, which is a test of the algorithm’s loop
closure performance. Fortunately, all three algorithms are able to perform accurate loop
closure, but in this paper, VO is able to obtain a better accuracy due to the optimization
of the pose using more information of keyframes. For the Robot dataset, the spatial jump
amplitude of the fr2/slam dataset is relatively small, and the presence of debris on the
ground causes the robot to shake, which results in transient tracking loss of the camera,
and the subsequent tracking process is quite stable. This Robot dataset is only used for
reference purposes in this paper due to their own data loss problems, and their accuracy is
not judged. For the Dynamic Objects dataset, the fr3/rpy dataset will inevitably generate
the feature points on the human body in 3D space in the form of map point while the
camera is moving, and thus the camera will make misjudgments when solving the pose,
resulting in the reduction of pose accuracy. The method in this paper can reduce the
extraction of feature points on dynamic objects as a way to reduce misjudgment in pose
estimation. In the case of a satisfactory accuracy result, this paper is also interested in the
degree of dispersion of the trajectory error of this VO module, so the performance of the
three algorithms in eight datasets is counted separately, as shown in Table 5 of the STD
comparison of the three algorithms.

Table 4. RMSE of the three algorithms (median value after 10 tests, in meters).

Sequence Name ORB SLAM2 ORB SLAM3 Ours

fr1/desk 0.017280 0.017063 0.016755
fr1/desk2 0.026217 0.025845 0.025596
fr1/room 0.059723 0.055109 0.096578
fr2/desk 0.008506 0.007727 0.007046
fr2/slam 0.109209 - 0.075307
fr3/office 0.009770 0.009472 0.008647

fr3/stn 0.010764 0.010350 0.010117
fr3/rpy 1.149160 0.772202 0.645489

Table 5. STD of three algorithms (median value after 10 tests, in meters).

Sequence Name ORB SLAM2 ORB SLAM3 Ours

fr1/desk 0.009794 0.010109 0.008273
fr1/desk2 0.011452 0.011167 0.008016
fr1/room 0.034836 0.028755 0.022864
fr2/desk 0.003302 0.003041 0.002659
fr2/slam 0.048128 - 0.027429
fr3/office 0.004309 0.004108 0.003326

fr3/stn 0.003955 0.005600 0.003475
fr3/rpy 0.560861 0.338517 0.350338

The experimental results show that the VO module in this paper has the smallest STD
between the trajectory estimates and the ground truth means in the seven datasets, reflecting
the excellent precision of the module. For the Handheld Camera dataset, combined with
Table 4 for analysis, the RMSE effect of the VO module on fr1/room in this paper is not ideal,



Appl. Sci. 2023, 13, 5285 14 of 25

but its STD is the smallest, and it can be concluded that the camera trajectory estimation
does not show substantial fluctuations compared to ground truth. This reason is mainly
attributed to the use of the PnP-Ransac algorithm for preoptimization of camera pose and
nonlinear optimization of the back end in this paper, which makes the camera trajectory
estimation error smaller. For the Robot dataset, the use of RMSE and STD metrics is still
not convincing, so the results are only for reference. For the Dynamic Objects dataset, the
STD of VO in this paper is smaller, even half of the original ORB-SLAM2. Considering that
the trajectory estimation of the algorithm in this paper cannot be visualized from the data
perspective, the trajectory is depicted on the basis of the data in Tables 4 and 5, as shown in
Figures 6 and 7 for the comparison of trajectory pose.

Among them, Figure 6a–c,g,i,j are the top view of the trajectory, and Figure 6d–f,h,k,l
are the side view of the trajectory. The experimental results show that the VO module
in this paper achieved the expected effect in estimating the camera pose. In Figure 6, by
testing the performance of the module on six datasets and comparing the trajectories with
the original ORB-SLAM2 and ORB-SLAM3, it is found that the module far exceeds the
original ORB-SLAM2 in terms of estimated pose accuracy and is similar to ORB-SLAM3
in terms of accuracy, and is even better in terms of pose accuracy for some trajectories,
which is closer to the ground truth. In this dataset, for the camera pose estimated by the VO
module of this paper in the trajectory maps of (a, d) and (i, k), two viewpoints fit the ground
truth more closely than the other two algorithms. The camera poses in (b, e), (c, f), and (j, l)
in both views show a certain magnitude of trajectory jumps, while the trajectory estimated
by VO in this paper is closer to the ground truth, which shows the precision of this module.
The camera poses estimated in (g, h) views show substantial trajectory jumps, but the VO
in this paper can track a large number of frames and obtain more information about the
pose, so the camera poses estimated by VO in this paper are the best in the trajectory.
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Figure 6. The trajectory position comparison diagram of the Handheld Camera dataset. (a–c,g,i,j) the
top view of the trajectory; (d–f,h,k,l) the side view of the trajectory.

Among them, Figure 7a,c are the top view of the trajectory, and Figure 7b,d are the
side view of the trajectory. In the Robot dataset, (a, b) cannot provide an accurate basis
for the VO in this paper, but it can verify the robustness of the VO in this paper on the
mobile robot platform theoretically and practically through RMSE, STD, and trajectory
pose plots, respectively. In the Dynamic Objects dataset, the (c, d) dataset shows a serious
drift when the algorithm estimates the camera pose, while the method used in this paper
filters part of the dynamic points well, and thus the estimated pose is closer to the ground
truth compared to the original ORB-SLAM2 and ORB-SLAM3.

In summary, this paper performs experimental validation in three parts: front-end
tracking, positional estimation, and trajectory depiction, and finally gives a VO module
with fast frame tracking and high robustness.
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4.3. Semantic Map Construction Performance Comparison

In this section, two scenes are selected to verify the algorithm of this paper: one is a
small office scene with length and width of 6.6 m × 3.3 m, respectively. The other is a large
laboratory scene with length and width of 14.4 m × 6.6 m, respectively. The above two
scenes’ data are all run in real time on the robot with the configuration given in this section,
and the image information is captured by the AstraPro camera equipped with the robot,
which is trained on the public dataset SUNRGBD [63] in this paper to obtain a LinkNet
pretraining model that uses different colors to differentiate the semantic information of
each class of objects, as shown in Table 6, which outlines the semantic information of objects
in indoor environments.

Table 6. Semantic information of objects in indoor environments.

Objects wall floor cabinet door chair mural desk

Color
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In this paper, we conducted extensive experiments using the semantic colors and
categories of objects given in Table 6, in which we found that it is difficult to restore the
environment semantic map in real time if running on devices with limited hardware per-
formance. For the semantic map construction performance, this paper will be compared
with building maps using CPU and using GPU, and a review of the algorithm will be con-
ducted in four aspects: semantic segmentation time-consumption per frame, local semantic
map time-consumption per frame generated, map building effect, and GPU occupancy
of the three methods, and to ensure the consistency of experimental data, the resolution
of building maps will be uniformly set to 0.02 m. In the subsequent experiments, UCSS-
LAM (Use-CPU Semantic SLAM) and UGSSLAM (Use-GPU Semantic SLAM) are used to
represent the methods of constructing semantic maps using CPU and GPU, respectively.

4.3.1. OctoMap

Considering that there is no professional equipment to obtain the ground truth, a color
map of the two environments is given as a reference for comparison, using [64]. When deep
learning is used to extract semantic information about objects in the environment, GPU
is usually used to speed up the algorithm to achieve a satisfactory real-time performance.
In order to give a quantitative evaluation, the frame time-consumption between the previ-
ous frame (Lt) ID containing semantic information and the current frame (Ct) ID is defined,
and the semantic frame time-consumption is defined as follows:

d = FrameID(Ct)− FrameID(Lt) (10)

Therefore, the first experiment is designed in this section to give a comparison of the
real-time performance using CPU, GPU, and the methods in this paper, as shown in Table 7
of the semantic segmentation time per frame for the three methods.

Table 7. Three methods of semantic segmentation per frame time-consumption table (ten experiments
to take the average value, in seconds).

Environment UCSSLAM UGSSLAM Ours

Office 0.40 0.07 0.14
Laboratory 0.45 0.08 0.16

The experimental results show that with the support of powerful GPU arithmetic,
UGSSLAM processing speed per frame segmentation is the fastest, almost 1/6 of the
time-consumption by UCSSLAM processing per frame. The algorithm in this paper also
uses CPU for processing, which is 1/3 of UCSSLAM in terms of time-consumption per
frame. Although there is still a gap in real-time performance with UGSSLAM using GPU
acceleration, the application in mobile robots already meets the real-time requirement.
Without relying on GPU, the algorithm in this paper gives a very desirable real-time result,
based on which the second experiment in this section will be centered on generating
local semantic map time-consumption per frame, because the process of generating local
semantic maps contains local semantic point cloud generation, local OctoMap generation,
and local map with fused semantic point cloud. Table 8 shows the three methods used to
generate local semantic map time-consumption per frame.

Table 8. Three methods to generate per frame of local semantic map time-consumption table (ten ex-
periments to take the average value, in seconds).

Environment UCSSLAM UGSSLAM Ours

Office 0.92 0.47 0.54
Laboratory 0.93 0.48 0.56
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The experimental results show that the whole semantic map construction process
consumes a lot of time with or without using GPU, and these times are mainly consumed
in the local map process of fusing semantic point clouds, so that the robot’s perception of
the environment and the generation of semantic map detail textures are maximally affected.
The advantage of using GPU in UGSSLAM is mainly in generating semantic point clouds
using segmentation results combined with depth information. However, this advantage
does not excel in mobile robots with limited hardware devices. Compared with UCSSLAM,
when only one CPU is used, the speed of generating local semantic maps is improved by
41%, which is undoubtedly exciting. The above two experiments verify the feasibility of
the algorithm in this paper in terms of building maps in real time, but this cannot be judged
as a key factor. Two scene semantic maps constructed by the robot in real time are given
below: the global semantic map of small scenes in the office of Figure 8 and the global
semantic map of large scenes in the laboratory of Figure 9.
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The experimental results show that the semantic maps constructed by the algorithm
in this paper can fully restore the location of semantic objects in the environment, as
in Figures 8a,d and 9a,d, and color them correctly according to the set semantic objects.
Compared with the semantic map of the office constructed by UCSSLAM, the algorithm
in this paper highlights its superiority in constructing details of walls, floors, and objects,
where UCSSLAM cannot support accurate loop closure when the robot returns to the origin,
while this paper, again relying only on CPU processing, is able to obtain a complete and
closed-loop map, as shown in Figure 8b,d. The office semantic map constructed by the
algorithm in this paper achieves almost similar accuracy to that constructed by UGSSLAM,
all thanks to a fast-tracking frame VO module that provides continuous compact input
frames for the semantic map building module in this paper; but the overall performance of
UGSSLAM is better, as shown in Figure 8c,d. The semantic map construction performance
in large scenes is a great challenge for almost all semantic map construction algorithms,
and the semantic maps constructed by UCSSLAM show severe distortion and incorrect
semantic mapping, while the algorithm in this paper can be constructed accurately and
mapped correctly without GPU arithmetic support in large scenes, as shown in Figure 9b,d.
In Figure 9c,d, UGSSLAM relies on the powerful arithmetic power of GPU to give high-
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performance semantic mapping of objects, while the algorithm in this paper reverts to a
similar extent and relies only on CPU; but in individual objects such as wall murals, the
method in this paper still has incorrect semantic mapping. In this paper, semantic maps of
two scene environments are given in terms of environment geometry reconstruction, object
semantic mapping, and overall map building effect. The complete performance is close to
the accuracy of building maps using GPU, which makes it a possibility for mobile robots
to perform a complete 3D reconstruction in indoor scenes. To ensure that it can be used on
devices with limited computational resources, a fourth experiment is designed in this section
to count the GPU dependency of the three methods, as shown in Figure 10 (GPU occupancy).
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Appl. Sci. 2023, 13, 5285 20 of 26 
 

ensure that it can be used on devices with limited computational resources, a fourth ex-
periment is designed in this section to count the GPU dependency of the three methods, 
as shown in Figure 10 (GPU occupancy). 

 
Figure 10. GPU occupancy. 

The experimental results show that the dependence of UCSSLAM and the algorithms 
in this paper on GPU is much smaller than that of UGSSLAM. This undoubtedly provides 
a strong practical support for the algorithms in this paper to build indoor semantic map 
on the devices with limited computing power, where in order to ensure the uniqueness of 
the running environment and the validity of the experimental data, all three methods are 
experimented on devices configured with GPU. The VO module in tracking image frames 
will cause all three methods to use GPU, but the occupied GPU is small, so it is logical that 
both UCSSLAM and the algorithm in this paper have a small GPU occupation when build-
ing maps. 

4.3.2. Voxblox 
In the absence of an accurate ground truth, the original Voxblox [19] map was used 

to provide a color map of the environment, and Kimera [55] was used to provide a com-
parable semantic map. To avoid experimental reproducibility, only semantic map con-
struction experiments are provided in this subsection to verify the reliability of the algo-
rithms in this paper in terms of construction accuracy, as shown in Figures 11 and 12. 

The experimental results show that the algorithm in this paper completely restores 
the objects in the environment in two scenes and assigns the given semantic colors to the 
objects, as shown in Figures 11a,e and 12a,e, and the constructed semantic texture maps 
can truly restore the object positions as well as shapes in the environment. Compared with 
the maps constructed by Kimera, the algorithm in this paper is closer to the real objects in 
terms of the performance of object detail restoration, but Kimera uses offline processing, 
and its overall performance is better, as shown in Figure 11b,e. In the case of using only 
CPU to build the map, the algorithm in this paper is superior to UCSSLAM in terms of 
object details in the environment as well as the overall map building performance. The 
map cabinet built by UCSSLAM shows partial distortion and partial incomplete recon-
struction of the ground, as shown in Figure 11c,e. It is exciting that the algorithm in this 
paper has almost the same performance effect as the map constructed by UGSSLAM, 
which is very important for semantic SLAM without using GPU. For the semantic map 
construction algorithm in large scenes, one is more concerned with whether the scene is 

Figure 10. GPU occupancy.



Appl. Sci. 2023, 13, 5285 20 of 25

The experimental results show that the dependence of UCSSLAM and the algorithms
in this paper on GPU is much smaller than that of UGSSLAM. This undoubtedly provides
a strong practical support for the algorithms in this paper to build indoor semantic map
on the devices with limited computing power, where in order to ensure the uniqueness of
the running environment and the validity of the experimental data, all three methods are
experimented on devices configured with GPU. The VO module in tracking image frames
will cause all three methods to use GPU, but the occupied GPU is small, so it is logical
that both UCSSLAM and the algorithm in this paper have a small GPU occupation when
building maps.

4.3.2. Voxblox

In the absence of an accurate ground truth, the original Voxblox [19] map was used to
provide a color map of the environment, and Kimera [55] was used to provide a comparable
semantic map. To avoid experimental reproducibility, only semantic map construction
experiments are provided in this subsection to verify the reliability of the algorithms in this
paper in terms of construction accuracy, as shown in Figures 11 and 12.
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the details on the wall mural as well as the chair in the lower left corner better, but Kimera 
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With regard to Figure 12c,e, the reason why UCSSLAM cannot obtain satisfactory results 
without the use of GPU is that UCSSLAM cannot process the key frames provided by the 
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The experimental results show that the algorithm in this paper completely restores
the objects in the environment in two scenes and assigns the given semantic colors to the
objects, as shown in Figures 11a,e and 12a,e, and the constructed semantic texture maps
can truly restore the object positions as well as shapes in the environment. Compared with
the maps constructed by Kimera, the algorithm in this paper is closer to the real objects in
terms of the performance of object detail restoration, but Kimera uses offline processing,
and its overall performance is better, as shown in Figure 11b,e. In the case of using only
CPU to build the map, the algorithm in this paper is superior to UCSSLAM in terms of
object details in the environment as well as the overall map building performance. The map
cabinet built by UCSSLAM shows partial distortion and partial incomplete reconstruction
of the ground, as shown in Figure 11c,e. It is exciting that the algorithm in this paper has
almost the same performance effect as the map constructed by UGSSLAM, which is very
important for semantic SLAM without using GPU. For the semantic map construction
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algorithm in large scenes, one is more concerned with whether the scene is realistically
restored, and the increase of the scene also leads to the increase of the cumulative error of
the algorithm, which can also test the robustness of the algorithm.

Compared with the map constructed by Kimera, the algorithm in this paper handles
the details on the wall mural as well as the chair in the lower left corner better, but Kimera
uses offline processing and its completeness comes through, as shown in Figure 12b,e.
With regard to Figure 12c,e, the reason why UCSSLAM cannot obtain satisfactory results
without the use of GPU is that UCSSLAM cannot process the key frames provided by the
VO module in time. In terms of the smoothness of the constructed maps, UGSSLAM works
best, but the algorithm in this paper gives similar results with only one CPU, as shown in
Figure 12d,e.

5. Conclusions

In this paper, we propose an SLAM system for indoor semantic map construction on a
mobile robot with limited computational power by combining the pose acquired by visual
SLAM with the semantic information acquired by semantic segmentation in a lightweight
way, named NGLSFusion. The system includes a fast frame tracking and highly robust VO
module, a real-time semantic point cloud construction module, and a lightweight semantic
map construction module. These three modules can provide an effective environment map
information for robots in unfamiliar environments. Among them, a VO module for fast
frame tracking gives accurate globally consistent poses, the robustness of which is verified
with publicly available datasets. The optimized semantic segmentation pretraining model
gives similar performance for semantic maps built by the robot without GPU to those
built with GPU. In future research, the robot will be placed in a dynamic environment for
accurate localization and mapping.

In the VO module, this paper reduces the feature point extraction time by 50% for key
frames, and the front-end processing speed of VO is verified to be faster and provide an
accurate pose in the subsequent experiments. In the semantic map construction module, this
paper achieves a speed and accuracy close to that of GPU construction without using GPU.

However, there are still some problems in the semantic map construction method
presented in this paper. While pursuing real time, the requirement of segmentation accuracy
was abandoned. In the future, some other networks, such as PSPNet, will be tried as a
method to improve segmentation accuracy and real-time performance, where the robot
returns to the beginning, which has been ported to the robot device used in this paper and
tested in large and small environments, respectively, and the performance of each detection
is good.
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