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Abstract: The quality inspection of solder joints on aviation plugs is extremely important in modern
manufacturing industries. However, this task is still mostly performed by skilled workers after
welding operations, posing the problems of subjective judgment and low efficiency. To address these
issues, an accurate and automated detection system using fine-tuned YOLOv5 models is developed
in this paper. Firstly, we design an intelligent image acquisition system to obtain the high-resolution
image of each solder joint automatically. Then, a two-phase approach is proposed for fast and accurate
weld quality detection. In the first phase, a fine-tuned YOLOv5 model is applied to extract the region
of interest (ROI), i.e., the row of solder joints to be inspected, within the whole image. With the
sliding platform, the ROI is automatically moved to the center of the image to enhance its imaging
clarity. Subsequently, another fine-tuned YOLOv5 model takes this adjusted ROI as input and realizes
quality assessment. Finally, a concise and easy-to-use GUI has been designed and deployed in real
production lines. Experimental results in the actual production line show that the proposed method
can achieve a detection accuracy of more than 97.5% with a detection speed of about 0.1 s, which
meets the needs of actual production

Keywords: quality inspection system; solder joints; aviation plugs; fine-tuned YOLOv5

1. Introduction

Aviation plugs shown in Figure 1a are important electromechanical components in a
variety of modern electronic equipment. While the welding failures of solder joints inside
them will directly affect their conduction performance and then damage the reliability
of the circuit [1,2]. Therefore, quality inspection of solder joints on aviation plugs has
become a necessary and essential process. Currently, this task still relies heavily on manual
visual inspection after welding, which suffers from the problems of low efficiency and low
accuracy. In addition, it is susceptible to producing inconstant and unreliable detection
results due to subjective evaluation. Recently, to reduce manual intervention and increase
inspection accuracy and efficiency, a number of machine vision-based methods have been
used in several specific industrial scenarios and have delivered impressive results. Despite
that, due to the special structure of the aviation plugs studied in this paper, an automated
system for detecting solder joints on them has not yet been developed. Thus, it is becoming
increasingly urgent to develop an accurate and automated inspection system specifically
for inspecting solder joints on aviation plugs.

Throughout modern non-destructive testing technology, the approaches for weld in-
spection can be divided into ultrasonic testing [3–5], magnetic particle testing [6,7], X-rays
testing [8,9], and optical testing [10–12], etc. Since optical detection methods have low
requirements for the material being tested and the ability to monitor each product sustain-
ably, they are gradually becoming the preferred choice in the industry. The mainstream
is to take a photo of the regions to be examined by cameras and make estimates using
some image recognition algorithms. Earlier algorithms generally used some traditional
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image processing technologies, which required pre-processing of the captured images
firstly, typically including image normalization [12], filtering [13], enhancement [14,15],
and so on. Afterward, the pre-processed images are subjected to localization and segmen-
tation operations, such as template matching [14,16], thresholding [5,17], or edge-based
segmentation [18,19], and then some algorithmic rules are designed using human experi-
ence, such as shape, area, greyscale, texture, etc. to characterize the target features. Finally,
some common classification algorithms are adopted for quality assessment. For example,
Cai et al. [20] proposed a new automated optical inspection algorithm based on a Gaussian
mixture model to inspect the solder joints of integrated circuits. Some researchers [21,22]
have also tried the use of a support vector machine for the classification of solder joints.
In recent years, robust principal component analysis has been introduced into various
defect detection tasks [23,24] and achieved impressive results. However, as illustrated
in Figure 1b, typical defects of solder joints on aviation plugs have an extremely similar
appearance to normal solder joints. Therefore, it is difficult to distinguish them using only
handcrafted low-level features. Meanwhile, the above methods are usually not fast enough
for real-time online inspection. In general, although the above traditional methods using
handcrafted features perform well in some simple tasks, they suffer from low accuracy and
low robustness due to the limited feature representation capability.

(a) (b)

(a) (b)

1cm

Figure 1. The example of (a) aviation plug and (b) defects of solder joints.

In recent years, deep convolutional neural networks (CNNs) have attracted significant
attention in various anomaly detection tasks [25–28], particularly in image data [29–31],
since they are capable of automatically learning the features with robust and generalized
representation. Weld quality assessment is a typical anomalous object detection that
needs to locate and classify the anomalous objects in an image. In addition, there are two
main categories of detectors in the generic object detection methods: one-stage detectors
and two-stage detectors. Representative two-stage detectors like Fast R-CNN [32] and
Mask R-CNN [33] follow a coarse-to-fine detection pipeline, i.e., first generating the rough
object candidates and then using a region classifier to predict the classes and refine the
localization of these proposed regions. They can achieve high detection accuracy, but are
rarely used in engineering applications due to high computational complexity and poor
real-time ability. To accelerate detection speed, some one-stage detectors only need one-step
inference have been developed and can directly predict the coordinates of bounding boxes
and their class probabilities, such as SSD [34], YOLO [35], and their variants [36,37]. Due
to their good inference speed and decent detection precision, and, thus, are widely used
for quality inspection in several industrial fields. Dlamini et al. [38] designed a model to
detect surface mount defects on printed circuit boards, which consists of a MobileNetV2
and Feature Pyramid Network (FPN) to generate enhanced multi-scale features, followed
by an SSD to locate the objects. Yao et al. [39] adopted a YOLOv5 model for detecting
Kiwifruit defects. A fast and accurate inspection model BV-Net based on the YOLOv4 is
proposed in [40] for tubular solder joint detection. In [41], Hou and Jing integrated a Res-
Head and Drop-CA into YOLOv5 to accurately detect the complex surface texture of the
magnetic tile in real time. To achieve accurate inspection of tiny chip pads in semiconductor
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manufacturing, an object convolution attention module is introduced into YOLOv5 [42].
Meanwhile, the presented design principle for the attention layer can yield a lightweight
model. Yang et al. [43] proposed an improved YOLOv5 model for the detection of laser
welding defects in lithium battery poles and achieved a better result compared to the
original YOLOv5. Table 1 gives a concise overview of the above two types of CNN-based
detection methods and briefly discusses their advantages and disadvantages. It can be seen
that YOLOv5 has become the most popular and reliable approach in a wide range of defect
detection tasks due to its high efficiency, high accuracy, and strong generalization ability.
Following this trend, we are attempting to use it for weld quality detection of aviation
plugs.

Table 1. Strengths and weaknesses of different detection methods.

Taxonomy Methods Strengths Weaknesses

One-stage
detectors

Faster R-CNN [32]
Mask R-CNN [33] High accuracy

High computational complexity,
Bad real-time ability

Two-stage
detectors

SSD [34,38]
YOLOv1 [35]
YOLOv2 [36]

YOLOv4 [37,40]
YOLOv5 [39,41–43]

High efficiency,
High accuracy,

Strong generalization

Slightly weak at
detecting small targets

However, it is not appropriate to directly use existing YOLOv5 for solder joint quality
inspection of aviation plugs for the following reasons. Small solder joints in the complex
background: As shown in Figure 2, the solder joints are arranged in a regular, horizontally
staggered pattern. While the appearance of the rear solder joints is inevitably obscured by
the cables in the front solder joints. In addition, the aviation plug contains multiple small
solder joints, and the positions to be welded are not fixed. Therefore, directly applying
the YOLOv5 model to recognize these small solder joints from the complex background is
difficult. Difficulties with image collection: YOLOv5 is a data-driven model that requires
many images for training. Therefore, image collection is extremely critical and directly
related to the final detection performance. However, because the solder joints in aviation
plugs have a non-planar, layer-by-layer stack structure, they are at different object distances
from the lens, meaning that the camera cannot directly capture a complete and clear image.
As shown in Figure 2, only the intermediate region of the captured image is clear, while the
ends are slightly blurred, which affects the assessment of the solder joint quality.

The inevitable issue 
of occlusion

Only the solder joints 
in the middle row can 
be clearly captured

The solder joints to be 
welded are not fixed

The inevitable issue 
of occlusion

Only the solder joints 
in the middle row can 
be clearly captured

The solder joints to be 
welded are not fixed

Figure 2. An example of solder joints in the complex background on aviation plugs.

To overcome the mentioned difficulties, in this paper, we propose an accurate and
automated weld quality detection approach based on two fine-tuned YOLOv5 models and
design the corresponding system for aviation plug welding production lines. During the
inspection, we adopt a top-down strategy, i.e., detecting a row of solder joints as soon as
it has been welded to reduce the obscured issue between adjacent rows of solder joints.
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Meanwhile, the detecting process is implemented through two phases: ROI extraction
and quality assessment. Firstly, a fine-tuned YOLOv5 model is used to extract the ROI
within the entire captured image, i.e., the row of solder joints to be inspected after welding.
Then the extracted ROI is automatically moved to the center of the image via a sliding
platform to enhance its imaging clarity. Afterward, the adjusted ROI is fed into another
fine-tuned YOLOv5 model to realize the weld quality assessment. Meanwhile, a graphical
user interface (GUI) has also been developed, making it easier for operators on production
lines to use.

In summary, the main contribution of this paper can be summarized as follows:

1. An accurate solder joint quality detection approach for aviation plugs is proposed,
which uses two fine-tuned YOLOv5 models to perform ROI extraction and quality
assessment, respectively. This two-phase strategy effectively eliminates the blurring
and occlusion problem of solder joints, resulting in high-quality solder joint defect
detection.

2. An intelligent solder joint quality inspection system for aviation plugs is developed,
which can automatically capture high-resolution images of solder joints from an
oblique angle. By combining the proposed detection approach, our system can effec-
tively recognize the weld defects of aviation plugs.

3. A concise and easy-to-use GUI has been designed and deployed in the real production
lines, which enables the recognized results to be viewed and stored in real time. The
application testing on real production lines also shows that our system can meet the
requirements for weld defect detection of aviation plugs.

The rest of this paper is structured as follows: in Section 2, the methods and materials
are described in detail, including data acquisition and detection approach. The experimental
results and experimental analysis are then presented in Section 4. Finally, the conclusion is
summarized in Section 4.

2. Methods and Materials
2.1. System Overview

The proposed solder joint quality detection system for aviation plugs is shown in
Figure 3. It is mainly composed of two parts: data acquisition and detection approach.
The data acquisition is the hardware part of our system and is mainly responsible for
moving and taking pictures of the aviation plugs. The detection algorithm is the software
part of our system, which consists of two main modules: ROI extraction and quality
assessment. They are responsible for providing the distance to fine-adjust the sliding
platform and achieving accurate defect detection, respectively.

The pipeline of our system is illustrated in Figure 4. Overall, we adopt a top-down
sequential inspection strategy, i.e., detecting a row of solder joints as soon as it has been
welded. Specifically, the proposed inspection system consists of the following steps.

Step 1: After welding a row of solder joints fixed in the bench clamp, our system moves
the aviation plug to the inspection position via the sliding platform and takes pictures via
the sampling system.

Step 2: Using a computer placed in the electronic cabinet, a fine-tuned YOLOv5 model
is applied to extract the ROI within the captured image, namely the row of solder joints
that have just been soldered and need to be detected.

Step 3: According to the coordinates of the extracted ROI, the ROI is fine-adjusted to
the center of the image via the sliding platform to enhance its imaging clarity.

Step 4: Another fine-tuned YOLOv5 model performs a quality assessment of solder
joints in the adjusted ROI, and the results are displayed on the displayer in real-time.

Step 5: The aviation plug is moved to the welding position. In addition, if a defect is
detected, the solder joints in that row are re-welded, otherwise welding the next row.

Obviously, the key components of our proposed system are the data acquisition and
detection approach, and we describe these in detail below.
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1

2

3

1   Sampling system 

2   Bench clamp

3   Sliding platform

4   Displayer

5   Control button

6   Electric cabinet

4

6
(a)

(b)

Data acquisition Detection approach

5

Figure 3. The scheme of solder joint quality detection system for aviation plugs. (a) Schematic
diagram. (b) Prototype platform.

Yes

NoCompleting a 
row of welding

Feeding plug into 
inspection position

Image capture

ROI extraction Fine-adjusting the 
ROI position

Quality assessment

Rewelding 
this row

Welding  
next row

Start

Feeding plug into 
welding position

Defects    
ddetected？

Data acquisition

Detection approach

Figure 4. The flowchart of solder joint quality inspection system for aviation plug.

2.2. Data Acquisition

The weld quality inspection for aviation plugs requires an acquisition system to cap-
ture the image of each solder joint. In addition, the resulting image dataset is directly related
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to the quality of the final inspection results. In this section, we will illustrate the details of
data acquisition, including the sampling system, image labeling, and image augmentation.

2.2.1. Sampling System

The designed image sampling system mainly consists of three parts, including a
rotatable mount, a high-resolution microscope camera, and a ring light source, as shown
in Figure 5. As you can see from Figure 1, the aviation plug contains multiple rows of
small solder joints, the smallest of which is just 1 mm. Therefore, with the aid of an
auxiliary microscope lens (0.5×magnification), an industrial camera with a pixel size of
0.01 mm and a resolution of 4000 × 3000 pixels, capable of capturing 30 frames per second
(FPS) is adopted. The rotatable mount is responsible for the angle adjustment of the shot.
Due to the non-planar, layered structure of solder joints in the aviation plug, the vertical
acquisition angle cannot capture the surface characteristics of the solder joints. To alleviate
this problem, we use an oblique angle to take the picture as shown in Figure 5. In practice,
to avoid the problem of occlusion between adjacent rows of solder joints, the angle between
the optical axis of the camera and the horizontal plane is set to 60◦. However, because the
angle of the shot is inclined, each row of solder joints is not at an equal distance from the
lens. As a result, a camera with a given depth of field (DoF) cannot cover the entire image,
resulting in only the middle region of the image can be clearly captured, while the others
are slightly blurred. For this reason, a two-phase strategy is used in the detection approach.
To provide sufficient and uniform light, a ring light source with a power of 5 w is mounted
at the end of the camera lens. Meanwhile, the camera and light source are kept on a center
line for a good shot. The sampling system is installed in a fixed position, and only moving
the aviation plug via a sliding platform is needed to capture the characteristics of these
small solder joints. In addition, the captured images are transferred to the computer via a
USB cable for subsequent processing.

60°

(a) (b)

Rotatable mount

High-resolution
 microscope camera

Ring light sourceDoF

Figure 5. Hardware structure of the sampling system. (a) Setup diagram. (b) Physical device.

2.2.2. Image Labeling

Once enough sample images are available, they need to be labeled to provide ground
truth, which is extremely important for model training. The process of labeling is to
manually mark the region of interest on the image with a bounding box according to the
objective of the model training. For example, in Figure 6, we show the different annotations
that are required for ROI extraction and quality assessment. The number 1 in Figure 6b
means the defective solder joints. During the labeling, each training image is labeled by two
professional quality inspectors from the factory. When two people have different opinions,
the sample is discarded, which effectively reduces mislabeling due to subjective judgment.
Meanwhile, an open-source graphical image annotation tool LabelImg is used to make
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labeling easier. In addition, the obtained annotation information is stored in a text format
for the training of YOLOv5.

(a)

(b)

0

0 10 0 0 0 0

Figure 6. The annotation example for ROI extraction (a) and quality assessment (b).

2.2.3. Image Augmentation

The YOLOv5 model we used is a deep learning-based method that requires a large
number of training images to achieve good detection results. However, to achieve high eco-
nomic efficiency, many efforts are made to avoid manufacturing defects in the production
process. At the same time, artificially creating a large number of defects can lead to a waste
of resources. Therefore, the number and type of defective samples that can be collected are
usually limited, leading to model over-fitting and performance degradation. Fortunately,
image augmentation can overcome this problem by producing some more diversified
versions of images from the given image dataset. Taking into account the characteristics
of the solder joints on aviation plugs, the following methods for image augmentation are
employed in this paper.

Image graying: Converting images from RGB to grayscale is intended to make predic-
tions about images without relying on any color information. This makes it easier for the
model to extract information from the Image context rather than the color and can improve
the model’s ability to generalize.

Image blurring: Due to platform movement, camera shake, and depth of field, the
captured images of solder joints may appear blurred. Therefore, we use mean filtering and
median filtering to simulate solder joints with varying degrees of clarity in aviation plugs,
which can improve the recognition ability for blurred images.

Horizontal flipping: As can be seen, the aviation plug is a left-right symmetrical struc-
ture, which means that the horizontal flapping cannot change its appearance. Therefore,
the horizontal flipping is adopted to expand the images in this paper.

HSV jittering: Converting the image from RGB space to HSV space, and then chang-
ing the values of the three channels, including hue, saturation, and value. In this way,
different scenes and illumination conditions can be simulated without destroying the key
information of the image, thus, increasing the diversity of the training images.
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Mosaic [38]: The four training samples are randomly scaled and distributed, then
merged into one image and sent to the model for training. Without any additional compu-
tational load, this method allows four images to be fed into the model at a time, and, thus,
can learn more robust features. Moreover, as the images are scaled, some small objects may
appear in the merged image. This will greatly improve the ability of the model to detect
small targets.

Taking the ROI extraction as an example, the augmented results are shown in Figure 7.
Although these generated images don’t change the image structure too much, they could
change the spatial and semantic information of the objects. Meanwhile, in practice,
the above data augmentation methods are used in conjunction with each other with a
certain probability to improve the number and diversity of the dataset.

(a) (b)

(e)(d) (f)

(c)

Figure 7. The example of image augmentation for ROI extraction. (a) Original image. (b) Image
graying. (c) Image blurring. (d) Horizontal flipping. (e) HSV jittering. (f) Mosaic.

2.3. Detection Approach

After obtaining enough training images with high-quality annotations, an accurate
two-phase approach for weld quality detection is presented in this section. It consists of
ROI extraction and quality assessment, which can provide the distance for fine adjustment
of the sliding platform and achieve accurate defect detection respectively.

2.3.1. ROI Extraction

The special structure of solder joints in aviation plugs prevents the camera with a
limited DoF from covering the entire image, resulting in only the middle region of image
can be clearly captured. The top-down sequential detection strategy cannot ensure that
the row of solder joints to be detected remains in the DoF. Therefore, in our detection
approach, we first use a fine-tuned YOLOv5 to detect the coordinate of the row to be
examined, i.e., ROI extraction. According to this coordinate, the extracted ROI is then
fine-adjusted to the center of the DoF via the sliding platform. In this case, the clarity and
detail of ROI can be significantly enhanced to facilitate subsequent quality assessment.
Moreover, limiting the scope of quality assessment to ROI will greatly reduce background
interference. Among the four versions of YOLOv5, we choose YOLOv5m with a good
balance between accuracy and speed for ROI extraction. The structure of YOLOv5m with
the added squeeze-and-excitation (SE) block [44] is shown in Figure 8, and is made up of
three main components: backbone, neck, and prediction head. The numbers indicate the
size of the longest side of the image or feature map.
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Figure 8. The structure of YOLOv5m with the added SE block.

The backbone module is designed to extract multi-scale features of the input image
through layer-by-layer convolution. It consists of five CBS blocks, four CSP1_X blocks, one
SPPF block and one SE block. The CBS block is used to achieve image downsampling, and it
is stacked with a convolution operation, a batch normalization (BN), and a SiLU activation
function. In practice, with the exception of the first CBS block, which uses a convolutional
layer with kernel size 6, stride 2, and padding size 2, the others in the backbone are all
with kernel size 3 and stride 2. The SCP1_x block is derived from the cross stage partial
network [45], and used to enhance model learning capability while ensuring lightweight. It
splits the input feature into two paths. One path passes through a CBS model followed by X
residual structures, while the other goes directly through a CBS block. Finally, the outputs
of the two paths are concatenated and then go through a CBS model. The SPPF block is a
fast version of spatial pyramid pooling, which can integrate the feature maps of different
receptive fields at a low computational cost. As shown in Figure 8, firstly, a CBS block with
kernel size 1 is used to halve the feature channel, and then three serial Maxpool operations
are used to obtain three feature maps of different receptive fields, and finally, the above
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four outputs are concatenated followed by a CBS block with kernel size 1 to restore the
original feature channel.

The Neck module fuses and combines the feature maps generated from the backbone
module through the FPN-PAN [46] structure. It is mainly constructed by four CBS blocks,
four CSP2_X blocks, some concatenation and upsampling operations. The CSP2_X block is
similar to the CSP1_X block but does not have a shortcut connection in the residual structure.
As shown in Figure 8, the FPN structure can propagate semantically strong features via a
top-bottom path, while the PAN structure boosts the propagation of localization information
existing in the shallower layer via a bottom-top path. This dual fusion strategy ensures
that each feature layer contains sufficient semantic and localization information, thus,
enhancing the ability to detect objects of different sizes and scales.

The prediction head aims to output object detection results from three feature maps
with different sizes respectively. Since different feature layers contain different semantic
and location information, such multi-scale prediction can improve the final detection results
and has become a basic operation in modern object detection models. For each feature
layer, the number of channels is first reduced to (nc + 5) × na using a 1 × 1 convolutional
layer, where nc means the number of target classes, and na is the default number of anchors
set to 3. Then, a detector using the joint loss function, including classification, localization
and confidence loss, is used to predict target categories, and generate bounding boxes with
confidence. Specifically, localization loss employs a CIoU loss to obtain the more accurate
coordinate of object. The confidence loss uses a BCE loss to indicate the reliability of the
predicted bounding box. The classification loss also uses BCE loss to predict the class
probability of the object in the bounding box. Note that classification loss is disabled in the
case of ROI extraction (nc = 1).

With the YOLOv5 described above, a large number of candidate bounding boxes are
generated at the same target location, so a non-maximum suppression (NMS) is applied to
eliminate the redundant bounding boxes and find the optimal bounding box of the objects
to be inspected.

2.3.2. Quality Assessment

Having acquiring a clear image of ROI, we use another YOLOv5m model as the basic
network for quality assessment, and propose an improvement described below. Note that
the value of nc in prediction head is set to 2, as the solder joint needs to be judged as fine
or bad.

The difference between the qualified and unqualified solder joints is subtle and mainly
concentrated in the contour and gray characteristics. To make the model focus more on
these indistinctive characteristics and suppress other useless information, we introduced
an attention structure, SE block [45], before the SPPF block in backbone. The SE block
illustrated in Figure 8 mainly contains two operations of squeeze and excitation. First,
the squeeze operation performs a global average pooling on the input feature x ∈ Rw×h×c

to encode the spatial feature on each channel into a constant statistic z ∈ R1×1×c. Then,
in the excitation operation, two 1 × 1 convolutional layers and non-linearity activations
are used to fully capture channel-wise dependencies and yield the weight for each input
channel. In addition, the channel-wise multiplication between the input and the learned
weight z ∈ R1×1×c results in the final output of the SE block. Formally, given an input
x ∈ Rw×h×c, the output in SE block x̃ ∈ Rw×h×c can be represented as

z = Fex(x) =
1

w× h ∑w
i=1 ∑h

j=1 x(i, j)

z̃ = Fsq(z) = σ(W2δ(W1z))
x̃ = x⊗ z̃

(1)

where δ and σ denotes the ReLU and Sigmoid activation functions respectively. W1 and W2
refer to the parameters of two 1 × 1 convolutional layers used to reduce and increase the
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dimensionality respectively. By this means, our model can adaptively learn the importance
of different channels for the current task and reassign their weights accordingly.

3. Experiment and Analysis
3.1. Experimental Setups
3.1.1. Implementation Details

Our two-phase detection approach is implemented using Pytorch framework on a
Windows 10 platform, which has an Intel i9-7900X CPU and an NVIDIA GeForce RTX2070
(8 GB) GPU for acceleration. The software environment is CUDA 10.2, CUDNN 7.6,
and Python 3.7. Two YOLOv5 models used for ROI extraction and quality assessment
are trained separately. We update the network parameters using SGD optimizer with
momentum 0.937 and weight decay 0.0005. Batch size and the maximum epoch are set to 8
and 600, respectively. The OneCycleLR scheduler with lr_man = 0.01 and lr_mix = 0.001
is adopted to adjust the learning rate during each epoch. During the training, depending
on the respective training dataset, the optimal values of anchor boxes in two models are
adaptively calculated using k-means clustering algorithm. Meanwhile, adaptive image
scaling is utilized to resize the images to a size where the longest side is 640.

3.1.2. Dataset

Two home-made datasets are provided to demonstrate the applicability of the pro-
posed solder joint quality inspection system, including an ROI extraction dataset and a
quality assessment dataset. They are collected from the production line of an astronautics
electronics equipment manufacturing factory in Beijing, China. The ROI extraction dataset
contains 60 training samples and 60 testing samples with a resolution of 1920 × 1080 pixels.
The quality assessment dataset consists of 150 training samples and 150 testing samples,
whose raw resolutions are about 1500 × 160 pixels. High-quality annotations of all samples
are provided by the strategy described earlier, and the examples with annotations of two
datasets are shown in Figure 6. Meanwhile, to avoid the overfitting problem for the models,
the training samples in both datasets are enhanced by the five image enhancement methods
described earlier. The luminance of the testing samples in the two datasets is also reduced
and increased respectively to test the performance of the proposed method under different
lighting conditions.

3.1.3. Evaluation Criteria

We evaluate our method using the following criteria: Precision, Recall, AP, and mAP.
Precision is used to evaluate whether the predictions of objects are accurate, and Recall is
adopted to evaluate whether all the objects have been inspected. They are computed as
follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(2)

where TP, FP, and FN mean the number of positive samples with correct prediction, negative
samples with false prediction and positive samples with incorrect prediction, respectively.

AP represents the average precision, the value of which is the area under the Precision-
Recall curve. AP@0.5 is the value of AP when IoU threshold is set to 0.5, and AP@0.5:0.95
is the average value of AP when IoU threshold is set to 0.5 to 0.95 with an interval of 0.05.
The mAP denotes the mean average precision, which is calculated by summing the AP
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of all classes and then dividing by the number of classes. Formally, the AP and mAP are
formulated as

AP =
1∫

0

Precision(Recall)d(Recall)

mAP =
1

nc

nc

∑
i=1

APi

(3)

3.2. Results for ROI Extraction

Figure 9 visualizes the training loss of the YOLOv5 model used for ROI extraction,
including localization, classification and confidence losses. It can be seen that the clas-
sification loss is not available and its value is always 0, since ROI extraction is a single
target detection problem. Meanwhile, as the number of iterations rises, the two remaining
curves gradually converge and the final loss values fall to close to zero. This means that the
training process of the model used for ROI extraction should be correct.

Figure 9. The curves of training loss on ROI extraction.

The performance comparison of different methods on ROI extraction are listed in
Table 2, and the partial visual results results of our method are shown in Figure 10. As can
be seen from the data in Table 2, the most striking observation is that both precision and
recall values of our adopted YOLOv5 can reach 100%. The AP values at two different
thresholds are also high, which are 99.5% and 99.3%, respectively. Another mainstream one-
stage detector, the SSD, has an acceptable detection speed of 0.019 s, but its performance
is relatively poor. Although the Faster R-CNN, a representative of the two-stage detector,
is competitive in terms of individual criteria, it takes 0.097 s to detect a single image,
which is much slower than the 0.013 s of our method. Figure 10 shows that with the
adopted YOLOv5 model, the rows to be detected (i.e., the ROI) can all be detected with
high confidence, without interference from the cables behind them.

To verify the robustness of the method used for ROI extraction to lighting, we test it
on the ROI extraction dataset with different levels of lighting conditions. As can be seen in
Figure 11, our method has strong light resistance and can always locate the ROI accurately.
From Table 3, we can observe that the used model, YOLOv5, consistently maintains a high
performance regardless of whether the light gets brighter or darker. The above numerical
and visual results consistently show that the original YOLOv5, after fine-tuning, is fully
competent for the ROI extraction task. Meanwhile, it has excellent robustness to lighting,
making it ideal for use in industrial scenarios where the environment is uncertain.

Table 2. Performance comparison of different methods on ROI extraction.

ROI Extraction Precision (%) Recall (%) AP@0.5 (%) AP@0.5:0.95 (%) Times (s)

Faster R-CNN [32] 99.5 96.6 99.5 88.5 0.097
SSD [34] 96.5 84.7 98.5 80.2 0.019
Results 100 100 99.5 99.3 0.013
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Figure 10. Visual results of the adopted YOLOv5 on ROI extraction.

Table 3. Quantitative results of our method under different levels of lighting conditions. P, R, mAP1

and mAP2 mean Precision, Recall, mAP@0.5, and mAP@0.5:0.95, respectively

Lighting Low Light High Light

Varying P (%) R (%) mAP1 (%) mAP2 (%) P (%) R (%) mAP1 (%) mAP2 (%)

ROI
extraction 99.7 99.8 99.1 98.9 99.9 99.6 99.3 99.1

Quality
assessment 99.2 98.7 98.2 96.1 99.4 99.3 98.5 95.8

(a) (b)

Figure 11. Visual results of our method under different levels of lighting conditions. (a) Low light;
(b) high light.

Figure 12 shows the importance of ROI extraction for the solder joint quality inspection
on aviation plugs. From Figure 12a, we can observe that the row of solder joints to be
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inspected, located at the top or bottom of the aviation plug, are not within the DoF of the
camera before the fine-adjusting, so their surface is blurred. Obviously, direct inspection at
this moment is prone to false detections. After the ROI extraction, the row of solder joints to
be inspected is fine-adjusted into the camera’s DoF using a sliding platform. Consequently,
the captured images of the solder joints shown in Figure 12b become clear and shiny, which
will facilitate the subsequent quality assessment task.

(a)

(b)

Figure 12. The comparison of ROI before (a) and after (b) the fine-adjusting.

3.3. Results for Quality Assessment

The comparison between the different methods on quality assessment is tabulated in
Table 4. It can be seen that the detection performance of the SSD model is poor and clearly
cannot meet the need for accurate detection. Compared to the SSD model, the Faster R-CNN
performs much better, with a precision of 94.3% and a mAP@0.5 of 94.6%. However, its
recognition speed is slow and cannot meet the demand of real-time detection. The precision,
recall and mAP@0.5 values of the original YOLOv5 model are 99.98%, 100% and 99.5%
respectively, reaching a very high peak with little room for improvement. While under the
condition that the IoU threshold is set from 0.5 to 0.95, its mAP@0.5:0.95 value is only 91.4%.
To make the model focus more on the features helpful for quality assessment, we introduce
an SE block into the original YOLOv5 model, namely the YOLOv5-Ours model. It can be
observed that by adding the SE block, the YOLOv5-Ours gets a decent improvement of
5.4% and there is no increase in detection speed.

Table 4. Performance comparison of different methods on quality assessment.

Quality Assessment Precision (%) Recall (%) AP@0.5 (%) AP@0.5:0.95 (%) Times (s)

Faster R-CNN [32] 94.3 88.7 94.6 82.1 0.098
SSD [34] 68.6 78.5 71.6 54.3 0.023
YOLOv5 99.98 100 99.5 91.4 0.015

YOLOv5-Ours 99.98 100 99.5 96.4 0.015
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The results in Figure 13 are consistent with the conclusion drawn from Table 4. We can
clearly observe from the comparison curves that as the iteration increases, the mAP@0.5
values of two models gradually stabilize and reach a similar maximum value. It should
be noted that the mAP@0.5 curve of YOLOv5-Ours rises more steeply and peaks earlier,
meaning it is easier to optimize after improvement. Another noteworthy finding is that
the mAP@0.5:0.95 curve of YOLOv5-Ours is consistently higher than that of YOLOv5
throughout the training process.

0 200 400 600
0

0.2

0.4

0.6

0.8

1
mAP@0.5

YOLOv5
YOLOv5-Ours

0 200 400 600
0

0.2

0.4

0.6

0.8

1
mAP@0.5:0.95

YOLOv5
YOLOv5-Ours

Figure 13. The Comparison of mAP curves between the two models on quality assessment.

From Figure 14, it can be clearly observed that the original YOLOv5 model can
successfully detect and correctly classify solder joints, but the confidence of the detection
results is not at a high level, ranging from 0.91 to 0.96. The reason for this may be that the
distinction between normal and abnormal solder joints is not obvious, making it difficult
for the original model to distinguish them with certainty. With the addition of SE block,
our model can automatically learn more information that is useful for quality assessment,
resulting in a better confidence score in the prediction, ranging from 0.96 to 0.98. Higher
confidence means that the abnormal solder joints can be detected more accurately and have
more reliable performance. Meanwhile, the quantitative results of quality assessment in
Table 3 show that the YOLOv5-Ours model is almost unaffected and continues to perform
well at both low and high light. The visual results in Figure 11 are also consistent with this,
demonstrating that YOLOv5-Ours model is less sensitive to lighting changes. The above
results show that by introducing the SE block, our model can be better adapted to the needs
of engineering applications.

(a) (b)

Figure 14. The visual comparison of quality assessment before (a) and after (b) improvement.

3.4. Results on Production Lines

After the two YOLOv5 models are fine-tuned separately on their respective training
datasets, they could have been directly integrated into the designed solder joint quality
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inspection system. However, since the ultimate aim of this work is to propose an accurate
and automated solder joint inspection method for application in real production, we
develop a simple and easy-to-use graphical interface software shown in Figure 15 for
workers to operate. In addition, it is implemented with PyQT5, where the toolbox of Qt
Designer is need. After clicking on the “Detection” button, the software will read the
real-time image from the camera and display the processed result on the right. Once a
defect is detected, manual confirmation is forced before the next step can be taken. At the
same time, the abnormal parts are recorded for later review. A demo video of our system
in action is available to view (https://pan.baidu.com/s/13Gt9eT9yRR-bEZW2MTwUbg?
pwd=0927) (accessed on 22 March 2023).

Figure 15. The developed graphical interface software of inspection system.

The developed inspection system has been successfully used on a complex real pro-
duction line for about a month and has shown strong performance. For ROI extraction,
the detection speed is relatively fast at 0.06 s with a high detection accuracy of more than
99.8%. For the quality assessment, the detection accuracy can reach 97.8% at a speed of
less than 0.1 s. Overall, the proposed system can meet the requirements for accurate and
continuous solder joints quality inspection of aviation plugs. In addition, the cost of the
system built is mainly for the camera and computer, with a total value of only about RMB
25,000. Its application on production lines significantly reduces quality inspection time and
increases production speed. It also minimizes the rate of non-conforming products and
enhances the competitiveness of the products, which has a profound effect on increasing
the economic efficiency of the manufacturer.

4. Conclusions and Future Work

An automated inspection system is presented in this paper for accurate quality eval-
uation of solder joints on aviation plugs. According to the characteristics of the aviation
plug, we specially designed a sampling system to capture small solder joints from an
oblique angle of 60◦. Then, two fine-tuned YOLOv5 models are used for ROI extraction and
quality assessment respectively to effectively recognize the defective solder joints. Finally,
an easy-to-use GUI is designed and successfully deployed into a real-world production
line. The experimental results show that our method can quickly inspect the defects of
solder joints with high accuracy and high confidence. Moreover, our method has a strong

https://pan.baidu.com/s/13Gt9eT9yRR-bEZW2MTwUbg?pwd=0927
https://pan.baidu.com/s/13Gt9eT9yRR-bEZW2MTwUbg?pwd=0927
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robustness to changes in lighting conditions. Therefore, we conclude that our system can
meet the requirements of actual production.

Although our inspection system achieves promising assessment results for weld
quality on aviation plug, it can only identify the localization of the defective solder joints.
Meanwhile, our method still requires a high hardware configuration for fast detection.
In the future, we plan to conduct research on how to determine the attributes of defective
solder joints and use pruning technology to optimize our method for deployment into
mobile applications.
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