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Abstract: Wheel odometry is a simple and low-cost localization technique that can be used for
localization in GNSS-deprived environments; however, its measurement accuracy is affected by many
factors, such as wheel slip, wear, and tire pressure changes, resulting in unpredictable and variable
errors, which in turn affect positioning performance. To improve the localization performance
of wheel odometry, this study developed a wheel odometry error prediction model based on a
transformer neural network to learn the measurement uncertainty of wheel odometry and accurately
predict the odometry error. Driving condition characteristics including features describing road types,
road conditions, and vehicle driving operations were considered, and models both with and without
driving condition characteristics were compared and analyzed. Tests were performed on a public
dataset and an experimental vehicle. The experimental results demonstrate that the proposed model
can predict the odometry error with higher accuracy, stability, and reliability than the LSTM and
WhONet models under multiple challenging and longer GNSS outage driving conditions. At the same
time, the transformer model’s overall performance can be improved in longer GNSS outage driving
conditions by considering the driving condition characteristics. Tests on the experimental vehicle
demonstrate the model’s generalization capability and the improved positioning performance of dead
reckoning when using the proposed model. This study explored the possibility of applying a transformer
model to wheel odometry and provides a new solution for using deep learning in localization.

Keywords: autonomous driving; localization; wheel odometry; deep learning; transformer model

1. Introduction

Autonomous driving has become a broad research topic in recent years, and it has great
potential to enhance driving safety and improve transport efficiency [1]. An autonomous
driving system includes many modules, such as decision, planning, and control modules [2],
which require accurate knowledge of the vehicle’s position to perform correct driving
decisions and actions [3]. For example, an error of a few decimeters may cause the vehicle
to position itself in the wrong lane, leading to incorrect driving decisions, and thus to
traffic accidents. Therefore, self-driving cars require robust localization systems with
decimeter-level or even centimeter-level accuracy [4].

Global navigation satellite systems (GNSS) [5] are the most commonly used method
for vehicle localization. A GNSS is suitable for open areas but is less reliable in obscured
environments involving structures such as tall buildings and viaducts due to signal oc-
clusion, multipath errors, and other factors. A GNSS can reach the centimeter level in
open areas with real-time kinematic (RTK) [6] technology; however, the effect of multipath
errors on localization estimates persists, so GNSS alone cannot provide consistent and
reliable localization accuracy. A GNSS is usually integrated with an IMU [7] to form a
localization system. IMUs consist of accelerometers and gyroscopes, which can measure
vehicle acceleration and angular velocity. This information can be further used to calculate
vehicle position relative to its initial position in a process called dead reckoning. However,
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IMU measurements are affected by multiple noises that are amplified during the multiple
integrations of acceleration to displacement and angular velocity to attitude angle, grow
exponentially, and accumulate over time.

Wheel odometry measures the number of pulses per unit of time at the wheel through
wheel encoders to calculate wheel speed and travel distance. Due to the necessity of an
anti-lock brake system (ABS), wheel encoder sensors are mounted on the vehicle, making
wheel odometry a localization technology that can be used universally. Compared to IMU’s
accelerometer sensors, wheel odometry requires fewer integration steps to determine
the vehicle position, reducing errors in the integration process and providing a better
positioning solution. Wheel odometry was initially widely used in mobile robotics and
was then gradually applied to vehicles to complete localization tasks. Thrun, S et al. [8]
improved the problem of poor estimation of vehicle attitude and IMU bias when GNSS
signals are weak or down, which occurs in common GNSS/IMU fusion algorithms, by
considering wheel odometry. Funk, N et al. [9] complemented visual–inertial odometry
with wheel odometry for automotive applications. In addition, wheel odometry can be
the primary localization algorithm in some special cases, such as low light conditions, low
speed driving, and parking scenes [10,11].

The accuracy of wheel odometry-based localization is affected by many factors; on
the one hand, it is affected by model parameters, such as tire diameter. Although these
can be calibrated during installation, they can change dynamically when the vehicle is
driven due to certain factors, such as wheel wear and load changes, which can affect the
odometry output. On the other hand, the measurement accuracy of odometry is affected
by wheel slip. In addition, unevenness on the road surface, such as bumps and potholes,
interferes with the odometry results. Therefore, the output errors of wheel odometry have
high uncertainty, and accurately predicting the wheel odometry error is key to improving
wheel odometry-based localization accuracy.

Fazekas, M et al. proposed an off-line iterative estimation algorithm in [12] and an online
estimation method in [13] in which Kalman filter and the least squares algorithm are performed
in an iterative loop for wheel circumference estimation of autonomous vehicles to improve
wheel odometry’s accuracy. They further estimated the wheel circumferences recursively
to improve the wheel speed estimation with a nonlinear least squares method in [14]. The
study [15] calibrated the parameters of the wheel odometry model with Gauss–Newton
regression and Kalman filter. Welte A et al. [16] presented a method able to accurately
calibrate the model parameters by using a Rauch–Tung–Striebel smoothing scheme which
enables to obtain state estimates close to the ground truth. In summary, these studies used
traditional state estimation methods to improve wheel odometry’s accuracy. However,
these methods rely on precise parameter adjustment, which lacks adaptability to various
driving conditions. On the other hand, the wheels are affected by many factors of road
conditions and their own parameters so that it is difficult to obtain an accurate model under
the action of multiple factors using traditional state estimation methods. Deep learning is a
data-driven approach that can learn complex nonlinear properties and uncertainty from
data. Researchers have proposed deep learning-based techniques to discover the error drift
characteristics of IMUs over time for better GPS/INS combined navigation solutions [17–20].
Several deep learning techniques have also been applied to wheel odometry: an LSTM model
was proposed to learn the uncertainty of wheel odometry in [21], and a WhONet model was
proposed in [22], which further improved the performance compared to the LSTM model.

The transformer model [23] emerged in the field of natural language processing (NLP),
and it was first used for machine translation tasks to achieve SOTA effects. A transformer
model can fully utilize the GPU resources for parallel computation to accelerate the training
speed. Compared with traditional models such as RNN and LSTM that deal with time
series, transformer models do not rely on past hidden states to capture the dependence on
previous information but learns the association of information at each moment in a time
series as a whole, avoiding the risk of losing past information and reducing the performance
degradation caused by long-term dependence.
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This study aims to explore a new low-cost localization method that combines wheel
odometry and deep learning techniques. The main contributions of this paper are as follows:

1. A transformer-based error prediction model is developed to learn the measurement
uncertainty of wheel odometry, and the end-to-end correspondence from the wheel
speed to the travel distance error is established. Tests on a publicly available dataset
and an experimental vehicle are performed to verify that the proposed model can
accurately predict the output error of wheel odometry and improve the accuracy,
stability, and reliability compared to LSTM and WhONet under various driving
conditions. In addition, the model trained using the public dataset is transferred to the
experimental vehicle to verify the model’s generalization capability and the improved
positioning performance of dead reckoning by combining the model.

2. Driving condition characteristics, including features describing road types, road con-
ditions, and vehicle driving operations, are considered. Models with different inputs
are developed and compared, one with and the other without driving condition char-
acteristics. The tests demonstrate that the model that considers driving characteristics
has better adaptability to longer GNSS outage driving conditions.

The rest of the paper is organized as follows: Section 2 describes the dead reckoning
method based on wheel odometry; Section 3 presents the Transformer model and the
selected input features; Section 4 defines the dataset and metrics used to train the model
and evaluate its performance, as well as the model parameters, in addition to showing the
process of model parameter tuning; Section 5 demonstrates the results based on a publicly
available dataset and when the model is applied to real vehicles, followed by a relevant
discussion; finally, the entire paper is concluded in Section 6.

2. Dead Reckoning Based on Wheel Odometry

The dead reckoning (DR) system relies on odometry, which measures the distance
traveled by the vehicle, and the angular velocity obtained from the chassis or a gyroscope
in IMUs, to estimate the relative position forward from the current position.

The wheel odometry is based on wheel encoders to track the number of revolutions
each wheel has made, and each wheel’s measured angular velocity can be derived. Then,
the distance traveled by each wheel per unit of time is calculated by combining the wheel
radius. According to wheel odometry, the vehicle’s measured travel distance from moment
t− 1 to moment t can be expressed as:

xmea =

t∫
t−1

(wrlr + wrrr)/2 dt (1)

where wrl and wrr are the measured left and right rear wheel angular velocities, respectively,
and r is the nominal wheel radius.

Many factors influence the measurement accuracy of wheel odometry. First, the
measurement of wheel angular velocity contains errors; second, some factors, such as the
vehicle load changes, change the wheel radius dynamic; third, some aspects, such as wheel
slip and road potholes, lead to the wheel rolling distance not being equal to the actual
distance the vehicle travels.

The vehicle’s real travel distance from moment t− 1 to moment t can be expressed as:

xreal =

t∫
t−1

((
wrl + εwrl

)
(r + εrl) + (wrr + εwrr )(r + εrr)

)
dt/2 + εs (2)

where εwrl is the error of the actual left rear wheel angular velocity compared with wrl , εwrr

is the error of the real right rear wheel angular velocity compared with wrr, εrl is the error
between r and the real left rear wheel radius during vehicle driving, εrr is the error between
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r and the real right rear wheel radius during vehicle driving, and εs is the error between
the rolling distance and the actual travel distance.

Let xbias be the error of the travel distance:

xbias = xmea − xreal (3)

where xmea is the measured travel distance.
In practice, the point coordinates measured by RTK-GPS have centimeter-level ac-

curacy and can be regarded as the true value of the localization coordinates. Suppose
p1, p2, . . . , pk are the recorded points from moment t− 1 to moment t, then xreal can be
expressed as:

xreal =
k−1

∑
i=1
|pi+1 − pi| (4)

where |pi+1 − pi| is the distance between pi and pi+1 on the Earth’s surface, which can be
calculated according to the Vincenty formula given in [24].

Suppose the vehicle’s travel distance in a short time ∆t is ∆s and the vehicle’s heading
angle is ψ, the transverse and longitudinal displacements ∆x and ∆y are:

∆x = ∆s cos ψ (5)

∆y = ∆s sin ψ (6)

The relative displacements between two moments t1 and t2 can be regarded as accumu-
lating relative displacements in a very short time ∆t. Therefore, the transverse displacement
x12 and the longitudinal displacement y12 from moment t1 to moment t2 can be expressed as:

x12 =
n

∑
i=1

∆si cos ψi (7)

y12 =
n

∑
i=1

∆si sin ψi (8)

According to Equations (5)–(8), after obtaining the travel distance between adjacent
moments with the wheel odometry, the vehicle’s relative displacement between two mo-
ments can be calculated by combining the vehicle’s heading angle. Figure 1 shows the
role of the wheel odometry error prediction model in the localization system. With the
established model, the travel distance error can be predicted accurately, and the travel
distance output by the odometry can be corrected so that a more accurate position of the
next moment can be obtained after dead reckoning.
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3. Transformer Model

As the output of wheel odometry is affected by many factors, the measurement error
has high uncertainty and keeps changing and accumulating over time. Transformer is a
deep learning model that processes time series, and the use of Transformer is studied in this
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paper to learn the error characteristics of wheel odometry from time series for more accurate
localization. In this section, a Transformer-based error prediction model is established to
predict the error of the wheel odometry output.

The Transformer model is based on encoder/decoder architecture. The original input
is translated into the model input containing location information through embedding
and location coding. The encoder consists of a stack of N identical layers with two sub-
layers. The first sub-layer is a multi-head self-attention layer used to extract the features
of different attention heads of the model. The second sub-layer is a fully connected feed-
forward network, which can enhance the nonlinear representation ability of the model.
Both sub-layers use residual connection and normalization. Residual connection further
enhances the fitting ability of the model, and normalization can avoid the problem of the
slow convergence of the model caused by the parameters being too large or too small. The
decoder is also composed of N identical layers stacked. In addition to the two sub-layers
in each encoder layer, the decoder inserts a third sub-layer, which is used to perform a
multi-head attention calculation on the output of the last encoder. Similar to the encoder,
the decoder uses residual connection and normalization for each sub-layer. The first self-
attention sub-layer of the decoder is designed in a masked form to ensure that the prediction
of position i depends only on the known output at positions less than i. The output of the
decoder is converted to the required dimension through a linear layer, and the value with the
highest probability calculated through the softmax layer is the final output of the model.

Considering that different driving conditions may influence the wheel states and affect
the odometry output, two different Transformer error prediction models are designed.
The first model contains four-wheel wheel speed as the input to the encoder, and the
second model considers the driving condition features and four-wheel wheel speed as the
input to the encoder. Both models output the predicted error sequence. The Transformer
model that does not consider the driving conditions is referred to as Transformer-NDC for
convenience, and the Transformer model that considers the driving conditions is referred to
as Transformer-DC for convenience. The structures of the two models are shown in Figure 2.

Referring to the different driving conditions in the public dataset (IO-VNBD) [25]
and common driving condition features, a total of 29 features describing different driving
conditions were selected, as shown in Table 1. Features 1–9 describe different road types,
features 10–15 describe different road conditions, and features 16–29 describe various
vehicle driving operations. The data subsets are preprocessed in combination with the
selected features. The feature value takes the value of 1 when the corresponding driving
condition of the data subset contains the related feature; otherwise, it takes the value of 0.

Table 1. Selected characteristics describing different driving conditions.

Serial
Number Features Serial

Number Features Serial
Number Features Serial

Number Features

1 Roundabout 9 Valleys 17 Sharp left and
right turns 25 Bumps

2 Mountain roads 10 Rain 18 Swift maneuvers 26 Zig-zag driving

3 Country roads 11 Dirt roads 19 Slipping 27 Approximate
straight-line motion

4 Expressway 12 Gravel
roads 20 Successive left and

right turns 28 Stationary

5 Town-center
driving 13 Wet roads 21 Varying acceleration

within a short time 29 Parking

6 Inner-city driving 14 Mud roads 22 U-turns
7 Winding roads 15 Potholes 23 Reverse driving
8 Residential roads 16 Hard brake 24 Drifts
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4. Experimental Setup

The model is trained using the Pytorch framework commonly used for deep learning.
The dataset for training and testing is the IO-VNB dataset [25], which records driving
data with a total length of 5700 km and a total driving time of 98 h in multiple driving
conditions. This dataset captures multiple signals such as longitudinal vehicle acceleration,
yaw rate, heading angle, GPS coordinates (latitude and longitude), and wheel speed from
each timestamp of the vehicle ECU at a sampling interval of 10 Hz.

4.1. Training

To facilitate model comparison, the model’s training set is consistent with the training
set in [22], as shown in Table 2, which is characterized by about 1590 min of drive time
over a total distance of 1165 km. The model training parameters are shown in Table 3. The
model uses the Adam optimizer, where β1 = 0.9, β2 = 0.98, ε = 10−9. During training, the
learning rate varies according to the following equation:

lrate = d−0.5
model ·min

(
step_num−0.5, step_num · warmup_steps−1.5

)
(9)
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where warmup_steps is a constant taking the value of 100. Equation (9) means that the
learning rate increases linearly in the first warmup_steps step and decreases proportionally
to the reciprocal of the square root of the number of steps step_num. The loss function used
in training is the mean absolute error loss function.

Table 2. IO-VNB data subsets used for the Transformer model training.

Serial Number IO-VNB Data Subset Serial Number IO-VNB Data Subset

1 V-S1 18 V-Vta27
2 V-S2 19 V-Vta28
3 V-S3c 20 V-Vta29
4 V-S4 21 V-Vta30
5 V-St1 22 V-Vtb1
6 V-M 23 V-Vtb2
7 V-Y2 24 V-Vtb5
8 V-Vta2 25 V-Vtb9
9 V-Vta8 26 V-Vw4
10 V-Vta9 27 V-Vw5
11 V-Vta10 28 V-Vw14b
12 V-Vta13 29 V-Vw14c
13 V-Vta16 30 V-Vfa01
14 V-Vta17 31 V-Vfa02
15 V-Vta20 32 V-Vfb01a
16 V-Vta21 33 V-Vfb01b
17 V-Vta22

Table 3. Training parameters of Transformer-NDC and Transformer-DC.

Parameters Transformer-NDC Transformer-DC

Number of encoders and decoders N 6 6
Output dimension dmodel of the sublayers and the embedding layer 512 256

Layer number dff of the intermediate layer in fully connected feed-forward networks 32 64
Number of attention heads h 8 8

Batch size 32 32
Epochs 100 100

Time step (sliding window) 11 s 11 s
Random inactivation ratio Dropout 0 0

Activation function ReLU ReLU

4.2. Testing

Two evaluation metrics, the cumulative root mean square error (CRSE) and the cumu-
lative true error (CTE), are listed in [22]. The CRSE describes the cumulative root mean
square of the prediction error per 1 s within the total duration Nt. This metric ignores
the negative sign of the estimation error and thus provides a better understanding of the
performance of the positioning technique. CTE measures the sum of the prediction errors
per 1 s within the total duration Nt. The CTE metric mainly reflects whether the estimated
value is higher or lower than the actual value. Compared with the CRSE, the CTE is less
realistic when comparing the performances of positioning techniques. Therefore, the CRSE
is used to evaluate the model performance in this paper. The CRSE is defined as follows:

CRSE =
Nt

∑
t=1

√
epred

2 (10)

where t is the sampling period and epred is the prediction error.
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Mean (µ): the average value of the CRSE for all series to reveal the average prediction
accuracy of the model in each driving condition.

µ =
1

Ns

Ns

∑
i=1

CRSE (11)

where Ns is the total number of sequences in each driving condition.
Standard deviation (σ): this metric indicates the variation in the CRSE in all series. It

demonstrates the stability of the model.

σ =

√
∑(CRSEi − µ)2

Ns
(12)

Maximum (max): the maximum CRSE value among all sequences evaluated in each
driving condition. It indicates the model’s reliability, which means the model cannot be
applied to odometry error correction if the maximum CRSE is too large.

Minimum (min): the minimum CRSE value of all sequences evaluated in each driving
condition. It indicates the model’s highest possible accuracy.

The data subsets for performance evaluation are shown in Table 4. The test was first
performed on the V-Vw12 dataset, which depicts near-straight-line driving on a highway,
to assess the model’s performance under relatively easy driving conditions. Nevertheless,
the highway scenario can be considered challenging due to the large distances covered per
second. Since more challenging driving conditions, such as wet roads, roundabouts, and
hard brake, are pretty challenging for the localization algorithm [26] and introduce high un-
certainty to wheel odometry measurements, the model’s performance was simultaneously
evaluated under challenging driving conditions. The data subsets used in these tests were
divided into a number of test sequences of 10 s lengths each that predicted the changes in
the subsequent 1 s. In addition, the data subsets were split into several test sequences of
30, 60, 120, or 180 s depending on the outage driving condition being evaluated to test the
model’s performance in longer-term GNSS outage driving conditions.

Table 4. IO-VNB data subsets for performance evaluation.

Driving Condition IO-VNB Data Subset Total Travel Time, Distance Traveled, Speed and Acceleration

Motorway V-Vw12 1.75 min, 2.64 km, 82.6 to 97.4 km/h, −0.06 to 0.07 g

Sharp cornering and successive left
and right turns

V-Vw6 2.1 min, 1.08 km, 3.3 to 40.7 km/h, −0.34 to 0.26 g
V-Vw7 2.8 min, 1.23 km, 0.4 to 42.2 km/h, −0.37 to 0.37 g
V-Vw8 2.7 min, 1.12 km, 0.0 to 46.4 km/h, −0.37 to 0.27 g

Wet road
V-Vtb8 1.2 min, 1.35 km, 60.9 to 76.5 km/h, −0.35 to 0.08 g

V-Vtb11 0.7 min, 0.84 km, 65.1 to 75.3 km/h, −0.05 to 0.12 g
V-Vtb13 2.1 min, 0.99 km, 7.5 to 43.3 km/h, −0.31 to 0.22 g

Quick changes in
vehicle’s acceleration

V-Vfb02e 1.6 min, 1.52 km, 37.4 to 73.9 km/h, −0.24 to 0.19 g
V-Vta12 1.1 min, 1.27 km, 44.7 to 85.3 km/h, −0.44 to 0.13 g

Roundabout
V-Vta11 1.0 min, 0.92 km, 26.8 to 97.7 km/h, −0.45 to 0.15 g

V-Vfb02d 1.5 min, 0.84 km, 0.0 to 57.3 km/h, −0.33 to 0.31 g

Hard brake
V-Vw16b 2.0 min, 1.99 km, 1.3 to 86.3 km/h, −0.75 to 0.29 g
V-Vw17 0.5 min, 0.54 km, 31.5 to 72.7 km/h, −0.8 to 0.19 g

Longer GNSS outage
V-Vtb3 13.8 min, 0.71 km, 0.0 to 37.5 km/h, −0.23 to 0.33 g

V-Vfb02a 59.9 min, 96.5 km, 0.0 to 122.3 km/h, −0.5 to 0.37 g
V-Vfb02b 18.3 min, 7.69 km, 0.0 to 84.3 km/h, −0.5 to 0.35 g

4.3. Model’s Parameter Adjustment Process

Taking Transformer-NDC as an example, the parameter adjustment process is shown
in this section. Taking the test on the V-Vfb02d dataset as an example, the four rightmost
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columns of Table 5 list the model’s corresponding performance on the four evaluation metrics.
The parameter values listed for the baseline model are the final parameter values selected.

Table 5. Parameter adjustment process of Transformer-NDC (parameter values not listed are the
same as the corresponding parameter values of the baseline model).

N dmodel dff h Dropout max min µ σ

baseline 6 512 32 8 0 0.36 0.03 0.09 0.07

A
4 0.42 0.03 0.12 0.06

16 0.33 0.03 0.09 0.07

B
4 0.38 0.03 0.12 0.06
8 0.42 0.03 0.09 0.08

C
1024 0.51 0.03 0.09 0.10
256 0.51 0.03 0.09 0.10

D
16 0.43 0.03 0.11 0.06
64 0.85 0.03 0.25 0.20

E
0.1 1.13 0.04 0.14 0.20
0.2 0.94 0.04 0.20 0.18

The five sections A–E listed in Table 5 test the effect of changing the corresponding
parameters on the results. A changes h with respect to the baseline, and it can be seen
that the mean and maximum error increase when h decreases to 4, indicating a decrease in
the accuracy and reliability of the model. When h increases to 16, although the maximum
error is slightly reduced, the number of model parameters increases and the model’s
computational efficiency decreases, so this parameter value is not chosen. B changes N
with respect to the baseline, and the maximum error increases when N decreases to 4
and increases to 8, indicating a decrease in the model’s reliability, and the mean error
increases when N decreases to 4, indicating a decrease in the model’s accuracy. C changes
dmodel relative to the baseline, and when dmodel decreases to 256 and increases to 1024, the
maximum error increases significantly, indicating a decrease in the model’s reliability, and
the standard deviation increases showing that the model stability decreases. D changes dff
with respect to the baseline, and it can be seen that the mean and maximum error increase
when dff decreases to 16. When dff increases to 64, there is a large increase in the maximum
value, mean, and standard deviation of error, indicating that the reliability, accuracy, and
stability of the model decrease significantly. E changes Dropout relative to the baseline, and
when Dropout increases to 0.1 and 0.2, the maximum value, mean, and standard deviation
of error increase significantly, indicating that the reliability, accuracy, and stability of the
model decrease significantly.

5. Results and Discussion
5.1. Tests on the Dataset

In this section, the proposed wheel odometry error prediction model based on Trans-
former was compared with the LSTM model proposed in [21] and the WhONet model
proposed in [22] to evaluate the model performance using the metrics described in Section 4.2.

5.1.1. Tests in Challenging Driving Conditions
Motorway

The test results of the motorway scenario are displayed in Table 6 and Figure 3. It can
be seen that the four metrics of Transformer-DC and Transformer-NDC were equal and
were lower than those of LSTM and WhONet. Compared with LSTM and WhONet, both
Transformer models showed 76% and 52% error reductions in the max metric, 83% and
69% error reductions in the µ metric, and 92% and 85% error reductions in the min metric,
respectively, demonstrating better positioning reliability and positioning accuracy. All the
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models had a low standard deviation below 0.1 m and had good stability in this driving
condition. On the whole, all four models show good performance in this driving condition.
Compared with the LSTM and WhONet, the proposed model significantly improves the
average and maximum prediction accuracy.

Table 6. Test results for the motorway scenario.

IO-VNB Dataset Performance Metrics

Model Error (m)

CRSE

LSTM WhONet Transformer-NDC Transformer-DC

V-Vw12

max 0.68 0.33 0.16 0.16
min 0.25 0.13 0.02 0.02

µ 0.46 0.26 0.08 0.08
σ 0.08 0.04 0.03 0.03
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Sharp Cornering and Successive Left and Right Turns

Table 7 and Figure 4 illustrate the test results for the driving condition with sharp
cornering and successive left and right turns. The four metrics of Transformer-DC and
Transformer-NDC on all three data subsets were approximately equal. Compared to LSTM,
the two proposed models show considerable performance improvements, specifically up
to 76%, 93%, 90%, and 80% on the four metrics. Compared to WhONet, the performances
on the max and standard deviation metrics were identical; the minimum and mean errors
were reduced by up to 73% and 68%, respectively. In summary, the proposed models
improve the reliability, highest possible accuracy, average accuracy, and standard deviation
compared to LSTM, and they improve the highest possible and average accuracy compared
to WhONet under this driving condition.
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Table 7. Test results for the driving condition with sharp cornering and successive left and right turns.

IO-VNB Dataset Performance Metrics

Model Error (m)

CRSE

LSTM WhONet Transformer-NDC Transformer-DC

V-Vw6

max 1.45 0.57 0.68 0.68
min 0.34 0.11 0.04 0.03

µ 0.84 0.36 0.12 0.12
σ 0.29 0.09 0.10 0.10

V-Vw7

max 1.93 0.61 0.62 0.64
min 0.29 0.08 0.04 0.04

µ 1.14 0.36 0.12 0.12
σ 0.46 0.13 0.11 0.11

V-Vw8

max 1.91 0.57 0.46 0.48
min 0.43 0.11 0.03 0.03

µ 1.19 0.37 0.12 0.12
σ 0.44 0.12 0.09 0.09
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Wet Road

The test results for the wet road scenario are shown in Table 8 and Figure 5. Both
Transformer-DC and Transformer-NDC performed approximately the same on the three
data subsets. Compared to LSTM, the two proposed models show considerable perfor-
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mance improvements, specifically up to 75%, 90%, 90%, and 85% on the four metrics.
Compared to WhONet, although there was only a slight improvement in the model’s
performance in the four metrics on the V-Vtb8 and V-Vtb11 data subsets, the performances
on the max, mean, and standard deviation metrics were improved dramatically by 75%,
67%, 84%, and 78%, respectively, on the V-Vtb13 data subset.

Table 8. Test results for the wet road scenario.

IO-VNB Dataset Performance Metrics

Model Error (m)

CRSE

LSTM WhONet Transformer-NDC Transformer-DC

V-Vtb8

max 0.48 0.19 0.14 0.14
min 0.23 0.08 0.07 0.07

µ 0.33 0.14 0.10 0.09
σ 0.04 0.02 0.01 0.01

V-Vtb11

max 0.37 0.14 0.12 0.13
min 0.24 0.05 0.05 0.05

µ 0.31 0.11 0.09 0.09
σ 0.03 0.02 0.02 0.02

V-Vtb13

max 2.33 2.33 0.59 0.58
min 0.20 0.06 0.02 0.02

µ 1.24 0.75 0.12 0.12
σ 0.73 0.49 0.11 0.11
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Quick Changes in Vehicle’s Acceleration

Table 9 and Figure 6 demonstrate the test results for the driving condition with quick
changes in the vehicle’s acceleration. Both Transformer-DC and Transformer-NDC had
almost the same performance on the two data subsets. On the V-Vfb02e dataset, compared
to LSTM, the two proposed models show 57%, 94%, 86%, and 72% improvements on
the four metrics; compared to WhONet, the two proposed models show 55%, 82%, 82%,
and 78% improvements on the four metrics. On the V-Vta12 dataset, compared to LSTM,
the two proposed models show 54%, 92%, 83%, and 64% improvements on the four
metrics; compared to WhONet, the two proposed models show 54%, 64%, 74%, and
59% improvements on the four metrics. In summary, the proposed models significantly
improved the reliability, highest possible accuracy, average accuracy, and stability compared
to LSTM and WhONet in this driving condition.

Table 9. Test results for the driving condition with quick changes in vehicle acceleration.

IO-VNB Dataset Performance Metrics

Model Error (m)

CRSE

LSTM WhONet Transformer-NDC Transformer-DC

V-Vfb02e

max 2.95 2.82 1.27 1.28
min 0.54 0.17 0.03 0.03

µ 1.43 1.14 0.20 0.20
σ 0.65 0.81 0.18 0.18

V-Vta12

max 2.30 2.27 1.05 1.05
min 0.65 0.14 0.05 0.05

µ 1.37 0.89 0.23 0.23
σ 0.55 0.49 0.20 0.20
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Roundabout

Table 10 and Figure 7 list the test results in the roundabout scenario. Both Transformer-
DC and Transformer-NDC had approximately the same performance on the two data
subsets. The proposed models outperform LSTM. Specifically, the models can enhance the
performance by up to 77%, 92%, 91%, and 81% on all four metrics. Compared to WhONet,
the proposed models show up to 35%, 79%, 83%, and 73% improvements on all four
metrics. In summary, the proposed models significantly improved the reliability, highest
possible accuracy, average accuracy, and stability compared to LSTM and WhONet in this
driving condition.
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Table 10. Test results for the roundabout scenario.

IO-VNB Dataset Performance Metrics

Model Error (m)

CRSE

LSTM WhONet Transformer-NDC Transformer-DC

V-Vta11

max 7.88 7.35 4.76 4.77
min 0.24 0.11 0.04 0.03

µ 2.42 1.75 0.31 0.30
σ 2.78 2.66 0.73 0.73

V-Vfb02d

max 1.55 0.49 0.36 0.48
min 0.37 0.14 0.03 0.03

µ 1.04 0.30 0.09 0.09
σ 0.37 0.09 0.07 0.09
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Hard Brake

Test results for the hard brake driving condition are displayed in Table 11 and Figure 8.
The results show that Transformer-DC and Transformer-NDC exhibited almost identical
performance on the two data subsets. The four metrics of the proposed models are reduced
by up to 96%, 93%, 97%, and 95%, respectively, compared to LSTM. Compared to WhONet,
the two proposed models show up to 84%, 95%, 92%, and 77% improvements in the four
metrics. It is thus proven that the accuracy, stability, and reliability of the transformer-
based model are significantly improved compared with LSTM and WhONet under this
challenging driving condition.

Table 11. Test results for the hard brake driving condition.

IO-VNB Dataset Performance Metrics

Model Error (m)

CRSE

LSTM WhONet Transformer-NDC Transformer-DC

V-Vw16b

max 2.93 0.88 0.36 0.36
min 0.10 0.10 0.01 0.01

µ 1.49 0.36 0.06 0.06
σ 0.95 0.22 0.05 0.05

V-Vw17

max 3.51 0.87 0.14 0.15
min 0.41 0.61 0.03 0.03

µ 2.13 0.78 0.06 0.06
σ 0.01 0.01 0.03 0.03
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In summary, the proposed model has higher accuracy, stability, and reliability under
various challenging driving conditions where it is difficult to measure odometry signals
accurately compared with LSTM and WhONet. Meanwhile, the Transformer models
with and without the driving condition characteristics can obtain approximately the same
performance under these challenging driving conditions by adjusting the parameters.

5.1.2. Tests in Longer GNSS Outage Driving Conditions

Since WhONet has better performance than LSTM, as shown in Tables 6–11, in this
section, the proposed model was compared further with WhONet to evaluate their per-
formance over four longer-term GNSS outages of 30 s, 60 s, 120 s, and 180 s using the
corresponding data subsets in Table 4, and the evaluation results are shown in Tables 12–15.

30 s GNSS Outage

Test results on the 30 s GNSS outage driving condition are displayed in Table 12
and Figure 9. The results show that Transformer-NDC demonstrated significantly better
performance than the WhONet model. Specifically, the errors on the four metrics were
reduced by up to 50%, 81%, 66%, and 60%, respectively, demonstrating that the Transformer
model has higher accuracy and better stability and reliability than the WhONet model in
this driving condition. In addition, the performance of Transformer-DC on the max metric
is improved compared to Transformer-NDC, which proves that considering the driving
condition characteristics boosts the model’s reliability.

Table 12. Results under the 30 s GNSS outage driving condition.

IO-VNB Dataset Performance Metrics

Model Error (m)

CRSE

WhONet Transformer-NDC Transformer-DC

V-Vtb3

max 1.35 1.35 0.93
min 0.11 0.05 0.04

µ 0.67 0.25 0.24
σ 0.20 0.17 0.14

V-Vfb02a

max 8.57 4.31 3.65
min 0.28 0.07 0.08

µ 1.01 0.34 0.34
σ 0.83 0.33 0.44

V-Vfb02b

max 1.70 1.31 1.27
min 0.37 0.07 0.06

µ 1.04 0.36 0.35
σ 0.30 0.22 0.22
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60 s GNSS Outage

Table 13 and Figure 10 illustrate the test results under the 60 s GNSS outage driving
condition. It can be seen that compared with the WhONet model, Transformer-NDC
improved the performance enormously. Specifically, the errors were reduced on the four
metrics greatly by up to 25%, 82%, 66%, and 42% on the V-Vfb02a and V-Vfb02b data subsets;
on the V-Vtb3 data subset, although the errors on the max and µ metrics were slightly
increased, the mean error was decreased tremendously by 62%. Additionally, Transformer-
DC improved the performance on the four metrics by up to 32%, 82%, 67%, and 23% on the
three datasets compared with the WhONet model, and it reduced the maximum error by
up to 33% compared to Transformer-NDC. In summary, the proposed models have higher
accuracy and better stability and reliability in error prediction compared to WhONet, and
considering the driving condition characteristics can enhance the model’s reliability.

Table 13. Results under the 60 s GNSS outage driving condition.

IO-VNB Dataset Performance Metrics

Model Error (m)

CRSE

WhONet Transformer-NDC Transformer-DC

V-Vtb3

max 2.29 2.54 1.71
min 0.29 0.16 0.12

µ 1.31 0.50 0.47
σ 0.25 0.34 0.27

V-Vfb02a

max 9.62 7.24 6.55
min 0.87 0.19 0.19

µ 2.02 0.68 0.68
σ 1.11 0.64 0.86

V-Vfb02b

max 2.94 2.41 2.40
min 1.10 0.20 0.20

µ 2.08 0.71 0.69
σ 0.48 0.38 0.38
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Figure 10. Test results under the 60 s GNSS outage driving condition. (a) V-Vtb3; (b) V-Vfb02a;
(c) V-Vfb02b.

120 s GNSS Outage

The test results under the 120 s GNSS outage driving condition are listed in Table 14
and Figure 11. Compared with the WhONet model, except for the slight increment on the
σ metric on the V-Vtb3 data subset, both Transformer models improved the performance
on the four metrics. Specifically, Transformer-NDC reduced the errors on the four metrics
by up to 50%, 81%, 67%, and 35%, respectively, and the Transformer-DC reduced the
errors on the four metrics by up to 50%, 84%, 71%, and 35%, respectively, proving that
the proposed models have higher accuracy and better stability and reliability compared
with the WhONet model in this driving condition. In addition, the values on the four
metrics of Transformer-DC are reduced compared to Transformer-NDC, demonstrating that
considering the driving condition characteristics improves the model’s accuracy, stability,
and reliability.

Table 14. Results under the 120 s GNSS outage driving condition.

IO-VNB Dataset Performance Metrics

Model Error (m)

CRSE

WhONet Transformer-NDC Transformer-DC

V-Vtb3

max 4.01 3.64 2.80
min 1.75 0.34 0.30

µ 2.62 0.99 0.95
σ 0.19 0.61 0.49

V-Vfb02a

max 11.75 7.56 7.30
min 2.05 0.49 0.38

µ 4.07 1.35 1.19
σ 1.41 1.16 1.08

V-Vfb02b

max 5.76 2.88 2.86
min 2.52 0.48 0.41

µ 4.15 1.42 1.38
σ 0.88 0.57 0.57
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180 s GNSS Outage

Table 15 and Figure 12 show the test results under the 180 s GNSS outage driving
condition. Compared with WhONet, Transformer-NDC improved the performance on
the max, min, and µ metrics by up to 51%, 79%, and 66%, respectively, exhibiting that the
Transformer model has higher accuracy and better reliability than the WhONet model in
this driving condition. By considering the driving condition characteristics, Transformer-
DC reduced the error on the four metrics on the V-Vtb3 and V-Vfb02a data subsets and the
error on the max and µ metrics on the V-Vfb02b data subset, which proves that considering
the driving condition characteristics improves the model’s accuracy, stability, and reliability.

Table 15. Results under the 180 s GNSS outage driving condition.

IO-VNB Dataset Performance Metrics

Model Error (m)

CRSE

WhONet Transformer-NDC Transformer-DC

V-Vtb3

max 4.97 4.31 3.83
min 2.81 0.64 0.51

µ 3.93 1.44 1.39
σ 0.21 0.77 0.66

V-Vfb02a

max 13.02 9.90 8.54
min 3.67 0.76 0.64

µ 6.08 2.03 1.80
σ 1.55 1.68 1.62

V-Vfb02b

max 8.09 3.99 3.68
min 4.04 0.83 0.89

µ 6.23 2.13 2.06
σ 0.77 0.72 0.73
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In conclusion, the proposed Transformer models can accurately predict odometry
errors under different longer GNSS outage driving conditions and have higher accuracy,
stability, and reliability than the WhONet model. Additionally, Transformer-DC, which con-
siders the driving condition characteristics, can better adapt to different driving conditions
than Transformer-NDC, and this improves the model’s overall performance.

From the tests in Section 5.1, it can seen that whether considering the driving condition
characteristics or not, the proposed Transformer model can predict odometry errors with
higher accuracy, stability, and reliability than LSTM and WhONet under various driving
conditions including challenging and longer GNSS outage driving conditions, which may
cause the wheel odometry output to become unpredictable and to accumulate errors. The
results showcase the superiority of the model and its great potential in terms of improving
positioning performance. Although the Transformer models with and without the driving
condition characteristics can perform roughly equally well under challenging driving
conditions, the Transformer model’s overall performance can be improved under longer
GNSS outage driving conditions by considering the driving condition characteristics. It can
be inferred that considering the driving condition characteristics can improve the reliability
and stability of long-term prediction by enhancing the adaptability to various driving
conditions, while this is not so evident in short-term prediction.

5.2. Tests on the Experimental Vehicle

In this section, Transformer-NDC is taken as an example, and the model’s general-
ization capability and improved dead reckoning performance based on wheel odometry
combined with the model was verified on the experimental vehicle, which is shown in
Figure 13. RTK equipment was loaded on the vehicle to provide centimeter-level-accuracy
GPS coordinates that can be used as true values to verify the localization accuracy.
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Figure 13. Experimental vehicle.

To verify the generalization capability of the model, the model trained on the public
dataset was directly applied to this experimental vehicle. The experiment was conducted in
a region of Changchun, and the model’s performance on the real vehicle data was compared
with that on the V-Vta8 dataset under similar driving conditions, as is shown in Table 16.
It can be seen that the corresponding maximum and mean metrics of CRSE increase after
the model transfers, but not much, and there is a slight decrease in the minimum and
standard deviation, so the model still has good model prediction function after the model
is transferred.

Table 16. Error comparison of the experimental vehicle and the corresponding data subset.

Performance Metrics
Model Error (m)

CRSE
V-Vta8 Experimental Vehicle

max 1.02 1.46
min 0.05 0.02

µ 0.33 0.60
σ 0.21 0.20

The vehicle driving route during the experiment is shown in Figure 14, and the RTK-
GPS coordinates, the positioning coordinates obtained by dead reckoning alone, and the
positioning coordinates obtained by dead reckoning combined with the odometry error
prediction model were recorded. It can be seen from the enlarged parts in the figure that
the green curve and the blue curve overlap approximately in most cases, which is due to
the fact that the vehicle driving along the lane is the most dominant driving behavior, and
the odometry output error mainly affects the longitudinal positioning error of the vehicle,
which cannot be directly reflected in this figure.
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Figure 15 compares the error of the original dead reckoning with the error of the dead
reckoning after compensation using the error prediction model proposed in this paper. In
Figure 15b,c, the error after compensation using the error prediction model is significantly
lower compared to the original dead reckoning, and in Figure 5a, although the error of
the original dead reckoning is relatively lower than the error after combining with the
prediction model compensation between the first 1000 points and the 4500th to 5000th
points, which is caused by the deep learning-based model’s uncertainty, both are small and
less than 0.5 m, and the error after combining with the prediction model compensation is
lower than the original dead reckoning at other points most of the time. It is thus proven
that the proposed error prediction model can effectively compensate for the output error of
the wheel odometry in the x and y directions and overall, thus improving the accuracy of
the dead reckoning and the performance of the positioning system.
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Table 17 compares the performance indexes of the original dead reckoning error and
the error after error compensation with the model. It can be seen that the maximum value
of the positioning error is significantly reduced, and the mean and standard deviation of
the error are also reduced after the error is compensated for by the error prediction model,
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indicating that the proposed error prediction model can effectively predict the odometry
error and improve the reliability, stability, and accuracy of odometry positioning.

Table 17. Comparison between original dead reckoning and dead reckoning with Transformer model.

Performance Metrics (m) Dead Reckoning Dead Reckoning with Transformer Model

max 4.01 2.99
min 0.06 0

µ 1.58 1.34
σ 0.84 0.74

In summary, the model performance when transferring the model trained on the
public dataset to the real vehicle application declined compared to the performance on the
dataset, but it is still effective at predicting the odometry error and improving the accuracy
and stability of localization. Predictably, if the model is trained using the data collected
from the real vehicle and then applied to the real vehicle, the accuracy will be higher,
but the workload simultaneously increases. This experiment validates the generalization
capability of the model and provides a basis for the application and generalization of the
model to multiple vehicle types.

6. Conclusions

In this study, a Transformer-based wheel odometry error prediction model is estab-
lished to accurately predict the accumulated and changing travel distance errors during
vehicle driving so as to improve the positioning performance of wheel odometry. The study
and its findings can be summarized as follows:

1. Two different Transformer error prediction models are designed. Both models contain
four-wheel wheel speed as the input. One considers the driving condition features,
which contain multiple features describing different road types, road conditions, and
driving operations, as the input, and the other does not.

2. The performance of the proposed model is evaluated and compared with LSTM
and WhONet under challenging driving conditions and longer-term GNSS outage
driving conditions. The results demonstrate that the proposed model has higher
accuracy, stability, and reliability under various challenging driving conditions and
longer-term GNSS outage driving conditions. Specifically, the model performs up to
96%, 94%, 97%, and 95% better than LSTM and up to 84%, 95%, 92%, and 78% better
than WhONet on the max, min, mean, and standard deviation metrics under various
challenging conditions. In addition, Transformer-NDC performs up to 51%, 84%, 71%,
and 60% better than WhONet on the max, min, mean, and standard deviation met-
rics under longer-term GNSS outage driving conditions. Although the Transformer
models with and without the driving condition characteristics achieve approximately
the same performance under challenging driving conditions, Transformer-DC, which
considers the driving condition characteristics, can better adapt to driving conditions
with longer-term GNSS outage than Transformer-NDC and improve the model’s
overall performance.

3. Tests on an experimental vehicle are conducted to verify the model’s generalization
capability and the improved dead reckoning positioning performance by combining
the model. In particular, a model trained on a public dataset is directly applied to the
experimental vehicle, and the model’s performance on the experimental vehicle is
compared with that on a data subset with the similar driving condition. The results
show that although the model’s performance declines slightly, the mean and standard
deviation of the model’s errors are only 0.6 m and 0.2 m, which demonstrates that the
model is still effective at predicting the odometry error and improving the accuracy
and stability of localization.
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This study explored the possibility of applying the Transformer model to wheel odom-
etry, providing a new solution for the application of deep learning to localization. Although
the test on the experimental vehicle validated the model’s generalization capability and
provides a basis for the application and generalization of the model to multiple vehicle
types, in future work, more study is needed to further develop and explore related tech-
niques to enhance the generalization of the Transformer model to multiple vehicle types and
to improve the model accuracy after transferring so that the efficiency of model utilization
can be improved, in addition, the related techniques to improve the performance of the
Transformer model and the use of other deep-learning models to localization can be studied.
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