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Abstract: Network topology construction plays an important role in the application of large-scale
unmanned aerial vehicle (UAV) swarm. Current researches usually perform the topology construction
in terms of criteria of nodes energy consumption, transmission delay and network throughput, etc.
However, another important criterion, the stability of swarm network topology, which is much critical
for dynamic scenarios, has not been fully considered. In this paper, a novel topology construction
method for UAV swarm network based on the criterion of topology duration is proposed. Specially,
the topology construction of swarm network is formulated as an optimization problem of maximizing
the topology duration while satisfying the constraints of certain network throughput, end-to-end
delay, and nodes energy consumption. Then, a novel Group Trend Similarity based double-head
Clustering method(GTSC) is employed to solve this problem, in which group similarity of movement,
intra- and inter-cluster distance, node forwarding delay, and energy strategy are comprehensively
taken into account. The proposed method is effective when used to perform the network topology
construction for UAV swarm, which is verified by the simulation results. Furthermore, in comparison
with representative algorithms, the proposed GTSC method exhibits better performance on topology
duration, network throughput, end-to-end delay and energy consumption balance especially in a
large-scale swarm scenarios.

Keywords: UAV swarm; network topology construction; topology duration; double-head clustering;
energy consumption balance

1. Introduction

The high-speed development of distributed collaborative techniques represented by
multi-node joint detection, high dynamic networking, distributed cooperative control and
intelligent decision making, has promoted the application of unmanned aerial vehicle
(UAV) evolved from early single or small-scale to large-scale swarm, namely, UAV swarm
system. A UAV swarm is the combination of not only the multiple UAV platforms, but also
the discrete functionality of distributed notes. Multiple discrete UAVs are organized and
coordinated in a distributed and collaborative operation with the goal of accomplishing the
same task [1]. With outstanding advantages of distributed multifunctional fusion, rapid
dynamic reconfiguration, strong survivability and expansion, and high task effectiveness,
UAV swarm systems has been extensively applied in various field [2–10] .

In the UAV swarm system, a large number of UAVs are interconnected to each other by
establishing UAV-to-UAV wireless link, which integratedly forms a UAV swarm network.
In fact, the swarm network is the foundation of collaboration between UAV nodes, and its
performance directly affects the effectiveness of information interaction, joint computation,
cooperative control and other aspects of the system [11–13].
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One of the most important designs for swarm network is the construction of network
topology, which can be described as the connection state between UAV nodes constructed
based on wireless links. Many researches on the construction methods of swarm network
topology have been proposed. Generally, according to different construction criteria, we
can classify the construction methods of network topology of swarm system into three
categories: (i) under the criterion of topology construction speed [14–16]: the first cate-
gory is the methods aiming at topology construction speed, which mainly focuses on the
low complexity and fast convergence of algorithms, but considers less about the system
performance after construction; (ii) under the criterion of energy consumption [17–21]:
based on the consideration that UAV swarm is sensitive to energy consumption, the second
category takes node energy consumption as the optimization target in the step of topol-
ogy construction; (iii) under the criterion of network performance [22–24]: the network
topology is essentially constructed to serve the network interaction of UAV nodes, so the
third category of methods perform the topology construction in terms of the network
performance (network throughput, delay, etc.) under the constructed topology.

However, another important criterion, i.e., the stability of swarm network topology,
has not been fully considered. Due to the variability of task objectives and its own dynamic
attributes of a swarm system [25], the relative position or motion relationships of UAV nodes
change frequently, which results in dynamically changed swarm network topology [24].
This will lead to high frequency maintenance or reconfiguration of network topology. While
frequent maintenance or reconfiguration will increase the network overheads and energy
consumption of swarm system, the interruption of network topology will cause a sharp
decrease in the efficiency of collaborative tasks. Besides, an unstable network topology
will generate isolated offline nodes, which will bring extra difficulty to the flight control of
UAV swarm.

Therefore, a reliable swarm network topology has a vital influence on the performance
of the swarm network and even the operation of whole swarm system. It is worth men-
tioning that the network topology stability is considered in reference [17–21]. To be more
precise, most of researches considered enhancing topology stability from the view of reduc-
ing the energy consumption of nodes (improving the node survival time). These literatures
perform the construction of UAV network topology by employing clustering scheme, in
which the topology stability is usually used as an evaluation index after the topology con-
struction, rather than an optimization objective for the topology construction. In addition,
the topology stability, network throughput, end-to-end delay and energy consumption
have not been comprehensively considered in the process of topology construction.

In this paper, we focus on the method of network topology construction for UAV
swarm based on the criterion of topology stability, while fully consider the system per-
formance of UAV swarm. Generally, topology stability can be represented by topology
duration, which refers to the time interval from the establishment of the topology to its
reestablishment. On the other hand, clustering is an important method widely used in
network topology construction, which has two critical steps, i.e, clustering and cluster head
election. In this paper, clustering method is employed and an innovative design is made
for the above steps by jointly considering the characteristics of the swarm system and the
operation mechanism of the clustering network. The main innovations and contributions
of this paper are as follows:

(1) A novel model of network topology construction for UAV swarm systems is
proposed, in which the topology construction is formulated as a problem of maximizing
the topology duration while satisfying the constraints of specific network throughput,
end-to-end delay and nodes energy consumption of the system.

(2) A novel group trend similarity based double-head clustering method (GTSC) is
proposed to solve the optimization problem. The proposed method takes full account of
the current state and movement trends of the swarm system. In the process of clustering,
based on the group mobility trend similarity of the swarm system, clusters are formed with
nodes in close proximity and with similar mobility trend in order to maximize the topology
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duration. In the process of cluster head election, we take full account of mobility similarity,
energy consumption strategies, and communication performance related factors including
distance between nodes and inter-cluster hops.

(3) In the simulations, we employed algorithms with fast convergence speed Minimum
Spanning Tree (MST) and K-means, representative swarm intelligence algorithm Particle
Swarm Optimization (PSO) that is capable of achieving approximate optimal solution, a
newest algorithm Improved Weighted and Location-based Clustering (IWLC) where factors
of residual energy ratio, adaptive node degree, relative mobility and average distance
are considered, and a state-of-the-art double cluster heads based algorithm DCM with
load-balancing to perform the performance comparisons. The proposed GTSC method is
more superior to the above algorithms in the performance of topology duration, network
throughput, end-to-end delay and energy consumption balance.

The rest of the paper is organized as follows: Section 2 discusses work related to
topology construction methods for UAV swarms. In Section 3, we model the UAV swarm
system and formulate the problem of network topology construction. The proposed
topology construction method GTSC is described in detail in Section 4. Section 5 gives
simulation results and performance evaluations, and Section 6 concludes the paper.

2. Related Works

According to various optimization objective, typical topology construction algorithms
are shown in Table 1.

Table 1. Typical topology construction algorithms.

Optimization Objective Representative Algorithm Advantages

convergence speed lowest ID clustering [14]
K-means clustering [15,16]

Low algorithm complexity and
fast conversion speed

energy consumption

EALC [17]
SIC [18]
BIC [19]

IWLC [20]
CSBWOA [21]

Energy-efficient oriented: reduce
energy consumption of key

nodes and consequently improve
the network performance

network performance
DOCG [22]

CDSTC-JO [23]
DCM [24]

Directly adopted the network
performance as

optimization object

Lowest ID method [14] is a typical low-complexity algorithm that can be used to
rapidly construct the swarm topology. In Lowest ID method, ID numbers are randomly
assigned to all network nodes and several nodes with the lowest ID number are selected
as the cluster head. The cluster members are ascribed to the nearest cluster according to
the relative distance. However, the dynamic characteristics and the network performance
after topology construction are not considered, which results in unsuitable for UAV swarm
system with high dynamics and high network performance requirements.

K-means algorithm is also a low complexity method used in network topology con-
struction. The algorithm consists of two main steps: firstly, network nodes are divided into
K clusters by a determined K value; secondly, all nodes are ascribed into the nearest cluster.
Reference [15] uses K-means algorithm for fast construction of swarm network topology,
and simulation results show that its construction speed is superior to the group intelligent
algorithms such as Ant Colony Optimization (ACO) and Particle Swarm Optimization
(PSO). Evidently, the choice of K value is a key step for the K-means algorithm. In [16],
a Mobile and Location-aware Stable Clustering (MLSC) algorithm is proposed, which
employs the K-means algorithm for initial topology construction. The value of K is settled
by the coverage probability of nodes, while the ascription of cluster member is determined
by relative distance. In general, since the K-means algorithm requires a pre-set K value, the
K-means algorithm has limitations for application in dynamic scenario.
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As an important performance indicator of UAV swarm, the energy consumption is
usually needs to be considered in the system design [26,27]. In the topology construction of
UAV swarm, a common approach is adopted the energy consumption of UAV nodes as
the optimization object. It is worth mentioning that reducing the energy consumption of
certain nodes, such as cluster head nodes, also consequently leads to some performance
gains of systems.

An Energy Aware Link-based Clustering (EALC) method is proposed for the topology
construction of swarm system based on the optimization of node energy consumption [17].
On the one hand, a reasonable transmit power is designed to reduce energy consumption
of nodes according to the link conditions; on the other hand, the node residual energy
combined with relative distance and nodes’ degree are considered in the step of cluster
heads selection. Since the nodes with higher residual energy are adopted as the cluster
heads, this method consequently improves the stability of the network. Simulation result
has shown that the method has better performance on energy consumption and network
stability in comparison with the Binary Particle Swarm Optimization (BPSO) and K-means-
based schemes.

In [18], the authors propose an energy-efficient Swarm Intelligent Clustering (SIC)
algorithm. Firstly, it assigns the nodes with nearest neighbor distances into the same
cluster to reduce the energy consumption of nodes during data transmission; then, the PSO
algorithm is employed in the selection of cluster heads, in which the average distance and
the residual energy of nodes are considered.

The Hybrid Gray Wolf Optimization (HGWO) algorithm is proposed in [19]. In the
step of clustering, the optimal number of cluster heads is designed to reduce the energy
consumption during data transmission. In the step of cluster head selection, node residual
energy, nodes’ degree, and relative distance are also jointly considered.

Reference [21] proposes a Binary Whale Optimization (BWOA) algorithm to select
optimal cluster heads by jointly considering node residual energy, intra-cluster node
distance, inter-cluster node distance and the cluster size balance. The scheme of cluster size
balance is used for achieving a balance number of cluster member for different clusters,
which will consequently balance the energy consumption and data transmission for all
cluster head nodes.

An energy-efficient Improved Weighted and Location-based Clustering (IWLC) al-
gorithm is proposed in [20], in which not only the node residual energy, nodes’ degree,
relative distance, but also, the relative motion between nodes is considered in the step of
cluster head selection. It will be more valuable to takes into account the mobility of swarm
throughout the whole topology construction process.

Although the reduction of energy consumption would indirectly improve some spe-
cific network performance, many researchers have proposed topology construction algo-
rithms that takes network performance as the optimization objective.

Reference [22] adopts the intra-cluster communication delay as the criterion for the
topology construction. The authors optimized the intra-cluster communication delay by
restricting the cluster diameter and number of cluster members. Moreover, under the
restriction of the cluster diameter and number of cluster members, a Coalition Game
Theory (CGT) based method is employed to select the nodes with similar mobility as the
members of cluster.

A Connected Dominating Set (CDS) based method has been proposed in [23], where
maximizing the network throughput is adopted as the optimization objective in the topol-
ogy construction process. First of all, the authors find the global transmission power while
guaranteeing bi-connectivity of the network. Secondly, the Minimum Spanning Tree (MST)
is constructed by using the page rank algorithm (PRA). Finally, in order to maximize the
network throughput, the nodes position is adjusted by employing the PSO algorithm.

In [24], the authors proposed a novel clustering method with double cluster heads
for the topology construction of swarm, in which the Political Optimizer (PO) algorithm
is employed in the selection of double cluster heads. The PO-based method achieved a
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traffic balance with double cluster heads mechanism by splitting the network load between
two cluster heads based on Shannon entropy function. Simulation results show that the
load-balance mechanism can achieve desirable end to-end performance when associated
with standard routing protocols.

3. System Model
3.1. Network Topology of UAV Swarm

Consider a UAV swarm consisted of N nodes distributed in a 3D Euclidean space,
as shown in Figure 1, in which the pink circles indicate the UAV nodes. Let ui(t) =
[xi, yi, zi], i = 1, 2, . . . , N denotes the position of the i-th UAV in the 3D space. U(t) =

[u1(t), u2(t), u3(t), . . . , uN(t)]
T ∈ RN×3 indicates the UAV nodes position matrix. The

Euclidean distance between the i-th node to the j-th node at moment t is denoted as
dij(t), where

dij(t) =
∥∥ui(t)− uj(t)

∥∥
=
√(

xi − xj
)2

+
(
yi − yj

)2
+
(
zi − zj

)2
(1)

Z

Y
X

UAV Node

Connect edge of UAV  Nodes

dij

i

j

Figure 1. An example of UAV swarm deployment.

Then the distance matrix between UAV nodes is presented as

D(t) =
[
dij(t)

]
N∗N ∈ RN×N (2)

The connect ability indicator matrix can be defined as E(t) =
[
eij(t)

]
N∗N ∈ RN×N, where

eij =

{
1 dij ≤ R
0 otherwise

(3)

That is to say, the i-th and the j-th UAV nodes are capable of establishing communica-
tion link if their distance satisfies the communication distance requirement, i.e., dij ≤ R, in
which R is the maximum communication range of the UAV. The universal set of network
topology of the UAV swarm can be expressed as a time-dependent function of G(t), where
G(t) = (U(t), E(t)). The universal set is determined by node positions matrix U(t) and
connect-ability indicator matrix E(t). The topology construction step is essentially to find a
Gd(t) ∈ G(t) that guarantees any two UAV nodes in the system reachable through one-hop
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or multi-hop link. For instant, based on the UAV swarm deployed in Figure 1, a schematic
diagram of the universal set G(t) and typical topology Gd(t) are shown in Figure 2.

Z

Y
X

Z

Y
X

(a) (b)

Figure 2. A schematic diagram for the universal set G(t) and typical topology Gd(t).(a) The universal
set of network topology G(t); (b) a typical Gd(t) based on topology design.

3.2. Problem Formulation

In this paper, the object is to find an optimal Gd(t) ∈ G(t) that maximize the topology
duration of the swarm network. Meanwhile, for a UAV swarm system, end-to-end trans-
mission delay, network throughput, and energy consumption have to be comprehensively
considered. Therefore, the problem of network construction for a UAV swarm can be
preliminarily formulated as

arg max T(Gd(t)) (4)

s.t. Gd(t) ∈ G(t) (5)

σij ≤ σth, i 6= j and i, j ∈ [1, N] (6)

M ≥ Mth (7)

Ec
i ≤ Ec

th, i ∈ [1, N] (8)

In the object function of Equation (4), T(·) denotes the topology duration operator.
Equation (5) indicates that the optimal Gd(t) is a subset of G(t). Equations (6)–(8), respec-
tively, ensure that the performance of end-to-end transmission delay, network throughput,
and energy consumption must meet the requirements of the system. σij is the end-to-end
delay between node i and node j, M is network overall throughput, and Ec

i is the energy
consumption for data transmission of node i, while σth, Mth and Ec

th are corresponding per-
formance thresholds that should be satisfied when obtaining the optimal network topology.
In practice, the values of σth, Mth and Ec

th must determined according to specific scenario
and system requirements.

For this model, it is not an easy task to directly find the optimal solution, especially
with the increase of nodes number N. Thus, we need to reformulate it according to the
characteristics of UAV swarm systems, which are analyzed as follows.

Firstly, lower end-to-end delay leads to an enhancement of network interaction ef-
ficiency, collaborative tasks performance and the swarm operation security [28–30]. In
general, the end-to-end delay for a UAV swarm network is mainly consisted of wireless
transmission delay, multi-hop forwarding delay and signal processing delay. Among
them, the multi-hop forwarding delay is the critical factor that severely affects the overall
end-to-end delay, and it is closely related to the design of network topology construc-
tion. Therefore, the end-to-end delay can be constrained by the number of forwarding
hops for data transmission between any two nodes in the UAV swarm network, which is
represented as

hopij ≤ hopmax (9)
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where hopij is the number of hops between node i and j, while hopmax is maximum number
of hops allowed on the swarm network.

Secondly, under a particular physical-layer design, the throughput performance of
swarm network is mainly depends on the relative distance between nodes and the number
of forwarding hops in the link. Relative distance affects the adaptive modulation and
coding strategy between communication nodes [31–33], while forwarding hops has an
important influence on the bit transmission rate of links [34,35]. Since the number of
forwarding hops have been constrained in Equation (9), here we focus on the condition of
relative distance. Thus, the condition of Equation (7) can be converted to average distance
constraint between nodes, which is presented as

dij ≤ dth (10)

where dij is the average distance between nodes in the constructed network topology and
dth is the threshold.

Thirdly, the node energy consumption is one of the key factors in the design, which
has an important influence on the performance of swarm system. The remaining energy
ratio of a node is defined as the ratio of its residual energy to initial energy after a period of
operation, which can be expressed as [20]

αi =
E0

i − Ec
i

E0
i

= 1− Ec
i

/
E0

i (11)

where E0
i and Ec

i are, respectively, the initial energy and the amount of energy consumption
of node i in a period of operation. Then, the condition of Equation (8) can be converted as

αi ≤ αth (12)

where αth is the thresholds of remaining energy ratio.
Based on the analysis above, the optimization problem can be reformulated as

arg max T(Gd(t)) (13)

s.t. Gd(t) ∈ G(t) (14)

hopij ≤ hopmax (15)

dij ≤ dth (16)

αi ≤ αth (17)

i 6= j (18)

i, j ∈ [1, N] (19)

4. The Proposed GTSC Method

The clustering based topology construction method is well suitable for the UAV swarm
networking applications, especially in the large scale swarm scenarios where the number of
nodes N is large [11]. In this paper, a clustering scheme is employed for solving the model
in Equations (13)–(19). The construction process of swarm topology is divided into three
steps, i.e., clustering, cluster heads selection and topology generation.The flowchart of the
proposed GTSC method is presented in Figure 3.
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Initialization the nodes 

information of the UAV swarm

Clustering Optimization

Begin

Cluster Heads selection 

Optimization

Topology generation

End

Output result of

Topology construction

Figure 3. Flow chart of the proposed GTSC method.

4.1. Optimal Clustering Algorithm

In order to maximum the topology duration of a UAV swarm network, both current
status and dynamic trend of the swarm need to be considered. In the step of clustering, we
need to simultaneously take the initial position and group similarity of movement trend
into account. That is to say, the topology duration can be prolonged only when nodes with
adjacent physical locations and similar mobility are assigned to the same cluster.

Here, we define a Similarity Map (SIMMAP) for evaluation of both instantaneous and
dynamic relation between UAV nodes. Let ∆vij be the velocity difference between node i
and j, respectively. Then we have

∆vij =
∥∥vi − vj

∥∥
2 (20)

where vi and vj are the velocity vectors of node i and j, respectively.
Let sim− pij be the position similarity factor, sim− vij be the mobility similarity factor.

Both similarity factors should satisfy following conditions: (i) when dij = 0 and ∆vij = 0,
sim− pij = 1 and sim− vij = 1; (ii) when dij → +∞ and ∆vij → +∞, sim− pij = 0 and
sim− vij = 0; (iii) sim− pij and sim− vij should be monotone decreasing functions of dij and
∆vij, respectively. Choose the exponential function of e to fit sim− pij and sim− vij, then

sim− pij =

{
1 dij ≤ R

e−k(dij−R) dij > R
(21)

and

sim− vij = e
−
(

∆vij(t)
β

)2

(22)
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where k and β are similarity sensitivity factors. The similarity of node i and j (combining
instantaneous and dynamic relation) is then calculated by weighted summation of sim− pij
and sim− vij as

SIMMAPij = ω1 ∗ sim− pij + ω2 ∗ sim v−ij (23)

where ω1 and ω2 are experience factors, and ω1 + ω2 = 1. In fact, the similarity of any two
nodes can be obtained based on this equation.

After the evaluation of similarity of swarm nodes, we employ Agglomerative Nesting
(AGNES) algorithm to achieve UAV swarm clustering. AGNES algorithm is a down-top
hierarchical clustering algorithm with low-complexity [36,37]. In UAV swarm scenario, the
AGNES algorithm is performed under the following three steps: (i) treat each UAV node
as an initial cluster; (ii) keep merging two clusters according to the SIMMAP, where the
similarity among nodes is used as the evaluation value for merging clusters; (iii) terminate
iteration when pre-defined condition is satisfied.

The Optimal Clustering Algorithm is presented in Algorithm 1.

Algorithm 1 The Optimal Clustering Algorithm

Input: U = [u1, u2, u3, . . . , uN ]
T , V = {v1, v2, v3, . . . , vN}

Output: Cluster set {Cluster1, Cluster2, . . . , ClusterK}
1: for i = 1 to N, N is the number of UAV nodes do
2: for j = 1 to N, j 6= i do
3: calculate SIMMAPij
4: end for
5: end for
6: while (the number of nodes of any one clusters less than 5) do
7: if the cluster a has a minimum average distance value with cluster b then
8: merge cluster a and b into a same cluster
9: end if

10: end while
11: return {Cluster1, Cluster2, . . . , ClusterK}

4.2. Optimal Cluster Head Selection Algorithm

In this paper, in order to obtain a good performance on the stability and energy balance,
we employ a double cluster head scheme. In clustering based method, since the cluster
head is the hub of data interaction between nodes of intra- and inter-cluster, it always
plays an important role for enhancing the system performance. Here, we develop the
optimal cluster head selection algorithm by jointly considering key factors that will affect
the performance of the UAV swarm, which includes (i) intra-cluster distance f Intra: the
average intra-cluster distance directly affects the overall energy consumption of the cluster;
(ii) residual energy fE: the residual energy determines whether a node is capable of being
as a high energy consuming node for a long time; (iii) inter-cluster distance f Inter: the
average inter-cluster distance simultaneously has a influence on the energy consumption of
cluster heads and the backbone network throughput; (iv) inter-cluster relative mobility fM:
the trend approximation of inter-cluster relative mobility reflects the connection stability
between cluster heads; (v) inter-cluster forwarding hops fHOP: the inter-cluster forwarding
hops is the most critical factor affecting inter-cluster end-to-end data transmission delay.

In order to have a comprehensive consideration of above factors, we define the
weighted function for the cluster head candidate nodes as

F(nodei) = µ1 f Intrai + µ2 fEi + µ3 f Interi + µ4 fMi + µ5 fHOPi (24)

where µ1 ,µ2 ,µ3 , µ4, µ5 are weights, and µ1 + µ2 + µ3 + µ4 + µ5 = 1.
Furthermore, in consider of convergence speed, we divide the cluster head selection

algorithm into two phases, i.e., rough selection and fine selection. In the phase of rough
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selection, we select several cluster head candidates within each cluster based on the intra-
cluster distance factor f Intra, which is calculated as

f Intrai =
1

Nc−1

Nc

∑
j=1,j 6=i

dij (25)

where Nc is the number of nodes in the cluster.
Then we select several nodes with minimum f Intra to form the cluster head candidates

set in each cluster. Such rough selection ensures that the position of cluster head candidates
is at the center of the cluster, which will shorten the distance between cluster head and
cluster members.

In the phase of fine selection, the weighted function of the cluster head candidate
nodes can be simplified as

F(nodei) = µ2 fEi + µ3 f Interi + µ4 fMi + µ5 fHOPi (26)

Then we select two nodes with maximum value of F(nodei) as the final double cluster
heads within each cluster. The factors of fEi , f Interi , fMi , fHOPi are analyzed as follows.

In UAV swarm network, the cluster head is responsible for both data transmission
among intra-cluster nodes and data forwarding between inter-cluster nodes. This results
in the energy consumption of cluster heads being much greater than that of the cluster
members. Therefore, the initial residual energy of nodes has to be considered in the cluster
head selection process. The factor of residual energy of candidate nodes is normalized as

fE0
i
=

E0
i

Emax
(27)

where Emax is the maximum energy capacity of the UAV node.
In phase of fine selection, we consider the average distance between cluster heads to

satisfy the network throughput constraint. The inter-cluster distance factor is normalized as

f Interi =

NCH
∑

j=1
dij

NCHdmax
(28)

where NCH is the total number of cluster head candidates in all clusters, dmax is the maxi-
mum euclidean distance between cluster heads.

The mobility relativity between inter-cluster heads can be calculated based on the
velocity similarity sim− vij in Equation (22). The relative mobility factor is normalized as

fMi =

NCH
∑

j=1
sim−vij

NCH

(29)

As mentioned in Section 3.2, we convert the performance constraint of end-to-end
delay into the number of forwarding hops. The factor of inter-cluster forwarding hops can
be normalized as

fHOPi =

NCH
∑

j=1
hop(i, j)

NCH · hopmax
(30)

where hop(i, j) represents the number of forwarding hops between cluster head i and i,
hopmax denotes the maximum hops between cluster heads.

Based on the definition of above factors, the cluster head selection algorithm is pre-
sented in Algorithm 2.
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Algorithm 2 The Optimal Cluster Head Selection Algorithm

Input: Cluster set {Cluster1, Cluster2, . . . , ClusterK}
Output: Cluster head set S =

{
CH1

i , CH2
i , i = 1, 2, . . . , Nc

}
1: for i = 1 to K do
2: for each node j ∈ Clusteri do
3: calculate f Intraj

4: end for
5: select n nodes as cluster head candidates
6: cluster head candidate set SRoughi

=
{

CH1
i , CH2

i , . . . , CHn
i

}
7: end for
8: for i = 1 to K do
9: for each cluster head candidates j ∈ SRoughi

do
10: calculate Fnodej

11: end for
12: select two nodes as double cluster heads
13: construct cluster head set Si =

{
CH1

i , CH2
i
}

14: end for
15: return {S1, S2, . . . , SK}

4.3. Topology Generation

In this step, we need to generate the topology connection based on the previous steps.
First of all, we should accomplish the topology connection for intra-cluster nodes. It can be
seen that from the remaining energy ratio in Equation (11), we should consider the energy
strategy from two aspects: (i) the residual energy, which has been considered in previous
sections; (ii) the energy consumption of nodes. In consideration of energy balancing of
cluster heads, we set an upper limit on the number of cluster members connected to single
cluster head. The cluster head connection number upper limit is set as

Ncon ≤ ∂ ∗ NCluster (31)

where ∂ is the energy balancing parameter, and NCluster is the number of nodes in the cluster.
Based on Equation (31), each cluster member is connected to the nearest cluster head

according to the relative distance. For the connection of inter-cluster nodes, we establish a
inter-cluster backbone topology which connect all of cluster heads under communication
distance constraint, so as to ensure the stability of the swarm. The topology generation
scheme is presented in Algorithm 3.

Algorithm 3 The Topology Generation Scheme

Input: Cluster set {Cluster1, Cluster2, . . . , ClusterK} , cluster head set {S1, S2, . . . , SK}
Output: Network topology Gd

1: for i = 1 to K do
2: for each node j ∈ Clusteri do
3: calculate the distance between node j and cluster heads separately
4: if the cluster heads satisfy Ncon ≤ ∂ ∗ NClusteri

then
5: select the closer cluster head to connect
6: else
7: select another cluster head to connect
8: end if
9: end for

10: end for
connect all cluster heads that satisfy communication distance constraint

11: return network topology Gd
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5. Simulation Results

In the simulation, UAV swarm nodes are randomly deployed in 3D space whose size
is positively correlated with the number of nodes. The mobility of nodes is initialized
and updated according to the BOIDs model, which is widely used to describe the group
mobility characteristics of the UAV swarm system [7,38,39].

Simulation parameters are presented in Table 2. To accurately evaluate performance,
each simulation runs 1000 times. The number of UAVs is set from 32 to 512. The maximum
communication range of UAV nodes is set to 80 m. The UAV node speed ranges from
20–30 m/s and the UAV node position update interval is 1s. Noting that, the distance
scale in the simulation are relative and the exact size of the values does not affect the
performance evaluation results. The experience parameter ω1, ω2 in Equation (23) is set
as 0.7, 0.3. The weighted parameters µ2, µ3, µ4, µ5 in Equation (26) is set as 0.35, 0.15,
0.3, 0.2, respectively. The transmission packet size is set to 500–1000 bits. The packets are
concurrently transmitted through randomly selected source and destination nodes, where
the total number of packets is positively correlated with the number of nodes. The energy
consumption of transmitting l bits data package in the free-space model is calculated as

Etx(l, d) = lEelec + lε f sd2 (32)

where Eelec is the energy consumption of transmitting unit bit data, ε f s is the energy
consumption parameter of the power amplifier. In our simulations, we set Eelec = 50nJ/bit,
ε f s = 100pJ/bit/m2.

The energy consumption of receiving l bits data package is:

Ere(l) = lEelec (33)

Then the energy consumption for transmitting l bits data package is as follows:

Ec
i = Etx(l, d) + Ere(l) (34)

Table 2. Simulation parameters.

Parameter Value

Number of UAVs N = 32, 64, 128, 256, 512

UAV transmission range R = 80 m

UAV speed v = 20–30 m/s

UAV position update interval τ = 1 s

Mobility model BOIDs model

Transmitting energy consumption Eelec = 50 nJ/bit

Power amplifier parameter ε f s = 100 pJ/bit/m2

Experience parameter ω1, ω2 = 0.7, 0.3

Weighted parameter µ1, µ2, µ3, µ4 = 0.35, 0.15, 0.3, 0.2

To evaluate and analyze the performance of the proposed GTSC method, the classic
MST [40,41], K-means [15], PSO-based [42,43] and the state of the art IWLC [20], DCM [24]
topology construction methods are employed in the simulations for comparison. MST
method is a representative topology construction method with fast convergence speed,
while K-means is one of the most typical clustering methods for topology construction.
On the other hand, PSO-based method is usually used for performance comparison due
to its ability to intelligently find approximate optimal solution. The topology duration is
also set as the optimization function of PSO method in our simulations. IWLC is a novel
location-based K-means++ clustering algorithm where factors included residual energy
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ratio, adaptive node degree, relative mobility and average distance are considered in clus-
tering process. DCM is a double cluster heads based topology construction method which
utilizes the latest swarm intelligence algorithm, PO algorithm for clustering. Moreover, the
load balancing of the cluster heads is also considered in the DCM method.

5.1. Effectiveness of Proposed Method

Figure 4 shows the swarm network topology constructed based on the novel group
trend similarity based double-head clustering method with N = 32. Figure 4a is the initial
nodes distribution in the 3D space. As shown in Figure 4b, in the constructed topology,
the UAV swarm is divided into three clusters and all nodes are connected through cluster
heads. Figure 4c,d is the network topology after a period of operation. It can be seen
that when the position of swarm nodes constantly changing, the constructed topology is
still able to ensure the connectivity of the network, which proves the effectiveness of the
proposed method.
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Figure 4. The network topology of UAV swarm constructed based on the proposed GTSC method.

5.2. Topology Duration

Figure 5 shows the results of topology duration of the network topology obtained by
the proposed GTSC method, as well as the MST, K-means, PSO-based, IWLC and DCM
methods. As shown, when the number of nodes increases, the topological duration of all
methods decreases. It can also be seen obviously that our proposed topology construc-
tion method can always achieve better topology duration than any other methods. The
topology duration of the proposed GTSC method is nearly twice as the other methods
when the number of nodes reaches 512. This is mostly due to the joint consideration of
the instantaneous and dynamic characteristics of swarm in our proposed method. The
similarity map based clustering method makes the links less likely to disconnect as node
position changes. Moreover, the double cluster heads scheme plays an important role in
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maintaining topological structure and balancing the energy consumption of the double
cluster heads, which results in the DCM method has the closest performance to ours.
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Figure 5. Comparison of topology duration under various methods.

5.3. End-to-End Delay

Figure 6 illustrates the comparison of average end-to-end delay when routing packets
based on topology constructed by different methods. As the number of nodes increases,
the end-to-end delay of the proposed GTSC method becomes increasingly better than that
of the other methods. When the number of nodes reaches 512, the end-to-end delay of
the proposed method is less than 0.06 s, while the K-means and PSO methods are over
0.08 s, and the DCM is nearly 0.07 s. It can be assumed that as the number of nodes
continues increasing, the advantages of the proposed method in terms of end-to-end delay
will become more apparent. When the number of nodes is less than 64, the end-to-end
delay of MST, K-means, PSO-based, DCM and the proposed GTSC methods is close to
the same. With small number of nodes, the benefits of the proposed GTSC method for
optimizing the number of forwarding hops cannot be epitomized. As analyzed in the
previous sections, the end-to-end delay in the swarm network is mainly determined by
the number of forwarding hops, the MST method shows disadvantage, especially when
the number of nodes increases. The end-to-end delay of the MST method is almost several
hundred times higher than other methods when the number of nodes reaches 128 or more.

5.4. Total Throughput

The total throughput of the network topology constructed by different methods under
varies number of nodes is provided in Figure 7. As mentioned in Section 3.2, the throughput
of network is mainly influenced by the number of forwarding hops and transmission
distance theoretically. Simulation results as shown in Figure 7 matches the analysis. When
number of nodes reaches 128 or more, the proposed GTSC method can achieve higher total
throughput than any other methods due to the consideration of both distance and number
of forwarding hops, which shows the advantage of the proposed GTSC method. And it can
be assumed that our proposed method will outperform any other methods when number
of nodes continue increasing. When the swarm size is small, for example, when N = 32, the
PSO method has a better performance than the proposed method. This is due to the fact
that the data transmission links constructed by PSO method does not require cluster heads
to relay, which leads to lower forwarding hops. When the number of nodes increasing,
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network topology constructed by PSO method can no longer ensure low forwarding hops,
and therefore results in reduced throughput performance.
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Figure 6. Average end-to-end delay of swarm network constructed based on various methods.
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Figure 7. The total throughput of swarm network constructed based on various methods.

5.5. Residual Energy Distribution

The energy balance of swarm network can be evaluated from the variance of residual
energy of nodes. In this simulation, we compared the energy balance ability of swarm
network constructed based on various methods from the view of the variance of residual
energy of nodes. As shown in Figure 8, the residual energy variance of the proposed GTSC
method performs the best compared with other five methods. Regardless of the number of
nodes, the proposed method can always achieve lower residual energy variance than the
initial residual energy variance. Simulation results indicate that the energy consumption of
the nodes is well balanced when the topology is constructed based on the proposed GTSC
method. The well performance of the DCM method in terms of residual energy distribution
can also demonstrate the advantage of the double cluster heads scheme.
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Figure 8. Energy balance of swarm network constructed based on various methods.

5.6. Convergence Speed

As shown in Figure 9, the increase of number of nodes leads to lower convergence
speed, especially for PSO method and PO-based DCM method. When the number of nodes
increases, the computational complexity of the PSO and DCM methods increases exponen-
tially, such a convergence performance makes the PSO and DCM methods unrealistic in
practical. MST and K-means methods are the most typical and widely used algorithms.
The most important feature of MST and K-means methods is their fast convergence, which
is confirmed by the simulation results, the convergence time barely varies with increasing
nodes. As a result, the K-means++ based IWLC method also achieves good performance in
terms of convergence speed. Meanwhile, the simulation results show that the convergence
time of the proposed GTSC method continues increasing with the number of nodes but
still within acceptable range. The proposed topology construction method will not cause
excessive computational complexity and is of practical interest.
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6. Conclusions

In this paper, we proposed a novel Group Trend Similarity based double-head Cluster-
ing method(GTSC) for UAV swarm network based on the criterion of topology duration. We
first formulated the swarm network topology construction as an optimization problem of
maximizing the topology duration while satisfying the constraints of network throughput,
end-to-end delay and nodes energy consumption. In the solution of optimization model,
we employed a novel group trend similarity based double-head clustering method, in
which key factors affecting network performance are considered comprehensively. The sim-
ulations results verified that our proposed method is effective and of practical significance
when used to perform the topology construction for UAV swarm. The proposed GTSC
method is more superior to the representative algorithms in the performance of topology
duration, network throughput, end-to-end delay and energy consumption balance. The
future work will focus on the distributed solution scheme for our proposed method which
will be applicable to a real swarm scenarios.
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