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Abstract: A rolling bearing vibration signal fault feature enhancement method based on adaptive
complete ensemble empirical mode decomposition with adaptive noise algorithm (CEEMDAN) and
maximum correlated kurtosis deconvolution (MCKD) is proposed to address the issue that rolling
bearings are prone to noise in the early stage and difficult to extract feature information accurately.
The method uses the CEEMDAN algorithm to reduce the noise of the rolling bearing vibration signal
in the first step; then, the MCKD algorithm is used to deconvolve the signal to enhance the weak
shock components in the signal and improve the SNR. Finally, the envelope spectrum analysis is
performed to extract the feature frequencies. Simulation and experimental results show that the
CEEMDAN-MCKD method can highlight the fault characteristic frequency and multiplier frequency
better than other methods and realize the characteristic enhancement of incipient fault vibration
signals of rolling bearings under constant and variable operating conditions.
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1. Introduction

Bearing is a key part in the normal operation of mechanical equipment, but because of
its very complex operating conditions, it is prone to failure. Since the obtained vibration
signals have a large noise content and a weak fault impact component, it is difficult to
filter and analyze the data to properly realize fault detection, especially when incipient
bearing problems arise [1]. As a result, it is currently difficult to figure out how to effectively
reduce the noise of the collected vibration signal and improve the signal’s weak impact
component [2].

When rolling bearings are damaged by incipient faults, the collected vibration signal is
non-smooth and non-linear. For the signal in this condition, scholars have proposed many
noise reduction methods. Qin et al. [3] achieved incipient fault diagnosis of rolling bearing
acoustic signals by an improved empirical wavelet transform method. Yuan et al. [4] suc-
cessfully implemented bearing incipient fault detection using ensemble noise-reconstructed
empirical mode decomposition (ENEMD). Shen et al. [5] used a combination of empirical
mode deposition (EMD) and long short-term memory (LSTM) to achieve aircraft hydraulic
fault diagnosis in a complex noise environment. Damine et al. [6] combined the improved
ensemble empirical mode decomposition (EEMD) with enhanced deconvolution and suc-
cessfully removed the noise from the early bearing fault signals. To perform the early
defect detection of rolling bearings, Zheng et al. [7] improved parameters for fast ensemble
empirical mode decomposition and the Maximum Autocorrelation Impulse Harmonic to
Noise Deconvolution method. Lin [8] used variational modal decomposition in bearing
fault diagnosis and successfully extracted the high-dimensional data features from it. Tor-
res et al. [9] proposed complete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN); CEEMDAN can not only effectively suppress the modal mixing phe-
nomenon brought by EMD methods, but also solve the problems of large computation and
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poor decomposition integrity of EEMD, and this algorithm has been widely used in recent
years. Bie et al. [10] used CEEMDAN for noise reduction of the signal and combined it with
a particle swarm optimization-support vector machine to achieve fault diagnosis of rolling
bearings. Liu et al. [11] used a combination of CEEMDAN and fuzzy entropy to achieve
the extraction of fault features for the problem that the wind turbine bearing signal is weak
and the fault information is not easily extracted.

The kurtosis can detect anomalous information in the signal and also filter the signal
to maximize its impact in the signal [12]. Wiggins [13] proposed a crag-based minimum
entropy deconvolution method, which uses the entropy minimization criterion to optimize
the FIR filter parameters so that the entropy of the filtered signal is minimized and the
fault shock characteristics in the signal are enhanced. Scholars have made use of the al-
gorithm in fault diagnosis and have demonstrated that minimum entropy deconvolution
(MED) has good results in noise reduction and highlighted the shock components in the
signal. Li et al. [14] used wavelet packet and coordinate transform for fault feature en-
hancement of rolling bearings. Qiao et al. [15] used improved empirical wavelets and MED
to process weak fault signals to achieve bearing fault diagnosis. Ha et al. [16] combined
time-synchronous averaging (TSA) with MED to remove noise for fault feature extraction
of gearboxes. However, scholars found that the algorithm still has shortcomings [17], the
shock component in the rolling bearing signal is periodic, and the MED algorithm can
usually deconvolve only a single pulse feature and is prone to trigger modulation phenom-
ena [18]. Mcdonald [19] et al. proposed the maximum correlation kurtosis deconvolution
method to solve that problem. This method preprocesses the non-integer fault cycles in
accordance with the a priori knowledge of the fault cycles and extracts the shock pulses
that occur at each rotation of the rotating machinery fault signal. MCKD has been a popular
tool for diagnosing problems with gears, bearings, and other rotating machinery parts in
recent years. The reliability of the suggested method was experimentally confirmed by
Cui et al. [20], who employed MCKD to improve the reconstructed signal in order to tackle
the problem of a weak rolling bearing signal. However, the filter length, shift number,
and deconvolution period are easily able to alter the enhancing effect of MCKD. Thus, the
literature [21] employed particle swarm optimization (PSO) to optimize the filter length
and the fault period in MCKD in order to achieve the extraction of faint-bearing fault
features against a noisy environment. How to remove noise from the redundant signal to
highlight the fault characteristics is the key to achieving bearing fault diagnosis because the
vibration signal has the characteristics of low amplitude, weak shock component, and the
amplitude may change significantly in a short period of time when an incipient fault occurs
in rolling bearings. Fault feature enhancement methods can filter out the noise in the signal
by means of filtering, decomposition reconstruction, deconvolution, etc., highlighting the
weak shock components in the signal and extracting the fault features in the signal. Despite
the fact that the MCKD algorithm can reveal continuous impulses hidden by loud noise,
it is challenging to meet the requirements for fault feature extraction. As a result, the
signal can be processed by combining the CEEMDAN and MCKD algorithms, first using
CEEMDAN to reduce noise in the contained signal and then using the MCKD algorithm to
enhance features, which can obtain more failure shock components, increase SNR, decrease
noise interference, and extract fault features.

According to the analysis above, the issue is that it is difficult to extract the tiny
defect features of rolling bearings, enhance the components of mild shock, and lessen
the impact of noise on fault detection. This paper proposes a strategy for improving
incipient fault features based on CEEMDAN-MCKD. Prior to reconstructing the fault
signal using the intrinsic mode function (IMF) components chosen based on kurtosis and
correlation coefficient selection criteria, the rolling bearing vibration signal is first initially
noise reduced using the CEEMDAN algorithm. Afterward, the MCKD algorithm is used to
enhance the weak shock components in the reconstructed signal and find the envelope to
extract the fault feature frequency to realize feature extraction.
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2. Theoretical Basis
2.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

CEEMDAN adds a finite amount of adaptive white noise to the signal at each stage
to suppress the mode mixing phenomenon when the signal is decomposed by EMD. At
the same time, the CEEMDAN algorithm also has the advantages of low reconstruction
error and high decomposition efficiency. The detailed algorithm steps of CEEMDAN are as
follows:

Step 1: Let the time series signal of the rolling bearing be x(t), be the added white noise
sequence vi(t), γ0 is the standard deviation of the white noise series, and i = 1, 2, . . . , N
is the number of trials, and let Xi(t) be the signal after adding white noise. Then, the
construction signal is as follows:

Xi(t) = x(t) + γ0vi(t) (1)

Step 2: The signal Xi(t) is decomposed by EMD and the set of IMF components
obtained from the decomposition is averaged to obtain IMF1.

IMF1(t) =
1
N

N

∑
i=1

IMFi
1(t) (2)

Step 3: Calculate the first residual component:

r1(t) = x(t)− IMF1(t) (3)

Step 4: By adding white noise vi(t) to r1(t), i tests are carried out and ri
1(t) = x(t) +

γ1vi(t) is decomposed in each test until it is decomposed into first-order components, and
IMF2 is obtained by calculation:

IMF2(t) =
1
N

N

∑
i=1

E1

{
r1(t) + γ1E1

[
vi(t)

]}
(4)

where Ej(·) is the jth order component generated by the EMD method.
Step 5: Calculate the second residual component:

r2(t) = r1(t)− IMF2(t) (5)

Step 6: Repeat the above steps until the condition of EMD cannot be satisfied, then
terminate the decomposition. At this point, k components are obtained and the final
residual component is denoted as R(t), and the signal x(t) can be written as:

x(t) =
k

∑
k=1

IMFk + R(t) (6)

2.2. Maximum Correlated Kurtosis Deconvolution

The MCKD method relies on selecting a FIR filter and using correlation kurtosis as
the evaluation measure to maximize the kurtosis value of the filtered signal and highlight
the periodic shocks obscured by noise. The signal yn correlation kurtosis is expressed
as follows:

CKM(T) =

N
∑

n=1
(

M
∏

m=0
yn−mT)

2

(
N
∑

n=1
y2

n)
M+1 (7)

where M is the number of shifts, m ∈ [0, M], T is the period of the shock signal, N is the
number of samples of the input signal. If the effect of noise on the acquired vibration signal
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is ignored, MCKD is essentially the recovery of the actual signal xn to yn through a filter,
namely:

y = f ∗ x =
L

∑
k=1

fkxn−k+1 (8)

where L is the length of the filter, xn is the original signal, T is the transpose.
The objective function of MCKD is as follows:

max f CKM(T) = max f

N
∑

n=1
(

M
∏

m=0
yn−mT)

2

(
N
∑

n=1
y2

n)
M+1 (9)

To find the optimal filter to maximize the correlation kurtosis value, the solution
equation is as follows:

d
d fk

CKM(T) = 0, k = 1, 2, · · · L (10)

The filtering coefficients f are obtained as:

f =
‖ y2 ‖

2 ‖ β ‖2

(
X0XT

0

)−1 M

∑
m=0

(XmTαm) (11)

β =


y1y1−T · · · y1−MT
y2y2−T · · · y2−MT

...
yNyN−T · · · yN−MT

 (12)

αm =


y−1

1−mT
(
y2

1y2
1−T · · · y2

1−MT
)

y−1
2−mT

(
y2

2y2
2−T · · · y2

2−MT
)

...
y−1

N−mT
(
y2

Ny2
N−T · · · y2

N−MT
)

 (13)

Xr =


x1−r x2−r · · · xN−r

0 x1−r · · · xN−1−r
...

...
...

...
0 0 · · · xN−L−r+1


L×N

; r = [0, T, · · ·, mT] (14)

With the above description, the iterative solving process of the filter system f is
as follows:

1. Initialization parameters deconvolution period T, filter length L and shift number
M, error convergence accuracy ε, the maximum number of iterations M1, and filter
coefficients f = [0, 0, · · · , 1,−1 · · · , 0, 0]T ;

2. Calculate XT , X0, and
(
X0XT

0
)−1 of the signal xn;

3. Calculate the filtered signal y;
4. Calculate αm and β from y;
5. According to Equation (11), calculate the new filter coefficients f ;
6. Compare the correlation kurtosis difference 4CKM(T) before and after signal filtering.

If 4CKM(T) is less than threshold ε, the iteration stops; otherwise, return to step (3)
to continue the cycle.

3. Based on CEEMDAN-MCKD Bearing Fault Feature Enhancement Method

This work proposes a vibration signal rolling bearing failure feature augmentation
approach based on CEEMDAN and MCKD, which can successfully reduce noise inter-
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ference and enhance SNR. The length L, deconvolution period T, and shift number M of
the parametric filter have a direct impact on the enhancing effect of MCKD. L and M are
optimized by the PSO method for the parameters while T is computed using the bearing
parameters. Figure 1 shows the flow diagram of the CEEMDAN-MCKD method, and the
specific flow is as follows:

1. Initial noise reduction of the original signal using the CEEMDAN method.
2. The optimal IMF component is selected based on kurtosis-correlation coefficient

selection criterion, and the fault signal is reconstructed.
3. Determining the optimization range of parameters L and M and performing parameter

optimization for the MCKD algorithm.
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The envelope spectral peak factor [22], a dimensionless indicator, is taken into account
when using the particle swarm algorithm for the optimization search to take into account
both the period and the intensity of the shock component of the signal, whereas the kurtosis
is sensitive to the shock signal. As a result, the fitness function is the multiple of the
envelope spectral peak factor and the kurtosis.

Ec =
max(X(z))√
∑
z

X(z)2 /Z
(15)

where Ec is the envelope spectrum peak factor, signal envelope spectrum amplitude se-
quence for X(z)(z = 1, 2, · · · , Z); for the envelope spectrum in the [ fr′ , ξ fi′ ] frequency, the
range of the amplitude is X(z), the value of fr′ is greater than the rotation frequency of the
shaft where the faulty bearing is located, fi′ value should be greater than the maximum
fault frequency within the bearing drive system, ξ value of 4~8.
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The expression for kurtosis is shown as follows:

K =

1
N

N
∑

n=1
x(n)4

X4
rms

(16)

Xrms =

√√√√ 1
N

N

∑
n=1

x(n)2 (17)

where K is kurtosis value, x(n) is vibration signal, N is sampling number, and Xrms is root
mean square value of signal x(n).

Combining the kurtosis and envelope spectral peak factors, the fitness function is
defined as the product of the two:

KE = K× Ec (18)

KE is selected as the fitness function of PSO algorithm optimization, which can not
only consider the existence of the impact component in the signal, but also consider the
periodicity and intensity of the impact component in the signal so that more accurate
optimization results can be obtained. Before the optimization search, the ranges of L and M
are determined to be [50, 700] and [1, 7], respectively, and the deconvolution period T can
be calculated according to the equation T = fs/ f f ault. The feature frequencies of the failure
features of the inner and outer rings of the bearings are calculated as shown in Equations
(19) and (20). The optimal combination of the influencing parameters is determined by
using PSO for MCKD on the reconstructed signal.

f f ault =
r

60
× 0.5× n

(
1 +

(
d
D

)
cos α

)
(19)

f f ault =
r

60
× 0.5× n

(
1−

(
d
D

)
cos α

)
(20)

where n is the number of rolling elements, D is the bearing diameter, d is the rolling element
diameter, r is the speed of the bearing, and α is the contact angle.

4. Deconvolution of the reconstructed signal by bringing the optimal parameters L,
M, and T into the MCKD algorithm to weaken the effect of noise on the signal and
enhance the impact characteristics.

5. To achieve the feature extraction of the bearing, envelope processing is implemented
on the enhanced signal.

4. Simulation Signal Analysis

To verify the ability of the CEEMDAN-MCKD method to enhance the shock com-
ponent of the signal and to enhance the feature frequencies of tiny fault signals that are
submerged in noise, the bearing is considered as a single-degree-of-freedom linear time-
invariant system [23]. The simulation signal expression is as follows:{

x(t) = A exp(−2ξπt) sin(2π fn
√

1− ξt)
y(t) = x(t) + n(t)

(21)

where intrinsic frequency fn = 100 Hz, damping factor ξ = 0.1, amplitude A = 1, Gaussian
white noise n(t) is −13 dB, sampling frequency 2000 Hz, sampling points are 2000.

Figure 2 displays the time domain graphs of the simulated signal with and without
noise injection. The envelope spectrum of the synthesized signal is shown in Figure 3
without any noise reduction processing, and one can observe from Figure 3 that when
no processing is applied to the signal, it is challenging to identify the feature frequencies.
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CEEMDAN-MCKD is used to process the noise added simulated signal, and the results of
the envelope analysis are displayed in Figure 4. As can be observed in Figure 4, the fault fea-
ture frequency and the impact of the multiplier frequency are clear and the side frequencies
are also effectively suppressed, demonstrating the effectiveness of the CEEMDAN-MCKD
approach for the enhancement of bearing fault features.
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5. Test Verification

The feature enhancement method suggested in this work was used for the vibration
signal characterization of rolling bearing inner rings with incipient flaws to assess the
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efficiency of the suggested approach. The experiments used two sets of bearing accelerated
life data sets: XJTU-SY [24] and laboratory self-tested bearing accelerated life test data.

5.1. Equipment and Data

A. XJTU-SY Bearing Data

The test platform of XJTU-SY is shown in Figure 5, which is composed of an AC motor,
hydraulic loading system, test bearings, etc. The test rolling bearing model is LDK UER204
and the specific bearing parameters, as shown in Table 1. During the data acquisition, the
motor speed of condition 3 was set at 2400 r/min, the bearing was subjected to a radial
force of 10 kN, the sampling frequency Fs was 25.6 kHz, and the number of sampling points
was 5120. It can be known from the literature [24] that bearing 3_1 is an outer ring failure
and bearing 3_4 is an inner ring failure, and the inner and outer ring failure of the bearing
is shown in Figure 6. Therefore, these two data are used to verify the effectiveness of the
proposed method.
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Table 1. Bearing parameters.

Bearing Mean Diameter Ball Diameter Number of Balls Contact Angle

34.55 mm 7.92 mm 8 0◦

B. Bearing Data Collected in the Laboratory

The multistage centrifuge fault diagnosis equipment used in the second experiment
served as the data acquisition unit, as shown in Figure 7. A heavy-duty turntable, bearings,
a gearbox, a shaft, a variable speed drive motor, and a speed regulator make up the
apparatus. The bearing model used is NTN NU205E, the value of d is 25 mm, the value
of D is 52 mm, and the contact angle is 60◦. The vibration signal’s sample frequency was
set to Fs = 5120 Hz, the sampling period was 0.2 s, the speed was 600 r/min, and the
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bearing used in the experiment contained 8 rolling bodies. Theoretically, 49.6 Hz is the
feature frequency of bearing inner ring failure under operating conditions, according to
the calculation.
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5.2. Experimental Study under Constant Operating Conditions

The method of this paper is used for rolling bearing fault feature enhancement and
extraction. Firstly, the incipient fault data of bearing 3_4 in XJTU-SY was analyzed and a
noise of −13 dB was added to the signal to highlight the feature enhancement capability of
the proposed method in the strong noise background. The bearing inner ring’s time domain
diagram during a fault is shown in Figure 8 and the inner ring fault signal’s spectrum
without noise addition is shown in Figure 9. The vibration signal has more high-frequency
interference noise, as shown in the spectrum. Figure 10 presents the results of the signal’s
envelope analysis and illustrates the difficulties in precisely locating the bearing defect
characteristic frequency.
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CEEMDAN was used to break down the fault signal and 13 components were acquired,
with the decomposition results displayed in Figure 11. This improves the SNR and increases
the difference of fault characteristics.
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Figure 11. Time domain diagram of CEEMDAN signal decomposition components.

To select the modal components that contain the information on the inner ring fault
features, the influence of noise is further reduced, and the impact components are enhanced.
The correlation coefficient and kurtosis values of each IMF component are displayed in
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Table 2 after combining the kurtosis and correlation coefficient criteria to choose the IMF
components to reconstruct the signal. The correlation coefficient’s standard deviation
serves as the threshold value, while 3 serves as the threshold value for kurtosis. This allows
for the effect of keeping the fault information in the signal and effectively reducing the
noise by taking into account both the impact features of each component and the correlation
between each component and the original signal simultaneously in time.

Table 2. Kurtosis and correlation coefficient of each IMF component of the signal.

IMF Component Kurtosis Correlation Coefficient

IMF1 2.0957 0.7370
IMF2 3.6166 0.4661
IMF3 3.4088 0.4249
IMF4 3.1486 0.3420
IMF5 3.2082 0.2770
IMF6 4.5772 0.2068
IMF7 2.7392 0.1573
IMF8 3.4486 0.0816
IMF9 2.5464 0.0719

IMF10 2.8642 0.0612
IMF11 2.1216 0.0261
IMF12 2.6415 0.0253
IMF13 2.8042 0.0274

The IMF2, IMF3, IMF4, IMF5, and IMF6, which also meet the value of kurtosis greater
than 3 and the value of correlation coefficient greater than 0.1632, were selected to recon-
struct the signals. The time domain diagrams of the reconstructed signals and the results of
the envelope analysis are shown in Figures 12 and 13. From Figure 12, it can be seen that
the shock component in the signal is significantly increased, which indicates that the noise
in the signal can be effectively removed by using the CEEMDAN method.
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Comparing Figures 10 and 13, it is found that the noise is better suppressed in the
envelope of the reconstructed signal, but the fault feature frequency, as well as the multiplier
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frequency, are still masked. As a result, the signal is feature-enhanced using the method
presented in this work. Firstly, the feature frequency of the bearing failure under this
condition is calculated as 196.6 Hz according to the formula (19), then T, and then the
particle swarm algorithm is used to perform a parameter search for the filter L and shift
number M in MCKD. The initial parameters of the particle swarm parameter optimization
method are set, the number of particle swarms is 30, the maximum number of iterations
is 30, the inertia weight is 1, the acceleration factor is 2, the search range of L is [50, 700],
and the M search range is [1, 7]. After optimization, the optimal set of parameters is
L = 700 and M = 4. Combined with the parameters T, the optimal set of parameters is
formed and inputted into the MCKD algorithm to enhance the signal and then perform
envelope analysis.

The time domain signal plot after enhancement is shown in Figure 14, where it can
be observed that the fault pulse characteristics have been greatly improved while the
majority of the noise has been eliminated. The envelope of the signal after enhancement
is shown in Figure 15; it is clear that the pulse characteristics at frequencies of 199.96 Hz,
349.92 Hz, 589.88 Hz, 789.8 Hz, and 984.80 Hz are noticeable. These results almost exactly
match the 196.6 Hz fault feature frequency computed theoretically and the multiplier
frequency, demonstrating the applicability of the approach for the diagnosis of incipient
bearing problems.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 22 
 

The time domain signal plot after enhancement is shown in Figure 14, where it can 

be observed that the fault pulse characteristics have been greatly improved while the ma-

jority of the noise has been eliminated. The envelope of the signal after enhancement is 

shown in Figure 15; it is clear that the pulse characteristics at frequencies of 199.96 Hz, 

349.92 Hz, 589.88 Hz, 789.8 Hz, and 984.80 Hz are noticeable. These results almost exactly 

match the 196.6 Hz fault feature frequency computed theoretically and the multiplier fre-

quency, demonstrating the applicability of the approach for the diagnosis of incipient 

bearing problems. 

 

Figure 14. The signal after MCKD enhancement. 

 

199.96
394.92

589.88
789.8

984.80

 

Figure 15. Envelope spectrum of CEEMDAN-MCKD processed signal. 

To prove the necessity of combining the CEEMDAN algorithm and the PSO opti-

mized MCKD algorithm, the fault signal is not preprocessed with CEEMDAN, and the 

simulated signal is analyzed based on the PSO optimized MCKD, setting the L and T seek-

ing ranges to [50, 700] and [1, 7]. The envelope analysis is used after the MCKD feature 

enhancement, and the analysis results are shown in Figure 16. 

 

Figure 14. The signal after MCKD enhancement.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 22 
 

The time domain signal plot after enhancement is shown in Figure 14, where it can 

be observed that the fault pulse characteristics have been greatly improved while the ma-

jority of the noise has been eliminated. The envelope of the signal after enhancement is 

shown in Figure 15; it is clear that the pulse characteristics at frequencies of 199.96 Hz, 

349.92 Hz, 589.88 Hz, 789.8 Hz, and 984.80 Hz are noticeable. These results almost exactly 

match the 196.6 Hz fault feature frequency computed theoretically and the multiplier fre-

quency, demonstrating the applicability of the approach for the diagnosis of incipient 

bearing problems. 

 

Figure 14. The signal after MCKD enhancement. 

 

199.96
394.92

589.88
789.8

984.80

 

Figure 15. Envelope spectrum of CEEMDAN-MCKD processed signal. 

To prove the necessity of combining the CEEMDAN algorithm and the PSO opti-

mized MCKD algorithm, the fault signal is not preprocessed with CEEMDAN, and the 

simulated signal is analyzed based on the PSO optimized MCKD, setting the L and T seek-

ing ranges to [50, 700] and [1, 7]. The envelope analysis is used after the MCKD feature 

enhancement, and the analysis results are shown in Figure 16. 

 

Figure 15. Envelope spectrum of CEEMDAN-MCKD processed signal.

To prove the necessity of combining the CEEMDAN algorithm and the PSO optimized
MCKD algorithm, the fault signal is not preprocessed with CEEMDAN, and the simulated
signal is analyzed based on the PSO optimized MCKD, setting the L and T seeking ranges
to [50, 700] and [1, 7]. The envelope analysis is used after the MCKD feature enhancement,
and the analysis results are shown in Figure 16.
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Figure 16. Envelope spectrum of direct PSO-MCKD processing.

As can be seen in Figure 16, the shock component is enhanced when the fault features
in the signal are enhanced using only the PSO-MKCD method, but there is more interference
in the envelope, and it is more difficult to observe the fault feature frequencies from the
envelope where the periodic trend exists. There is also more interference near the peak
194.96 Hz and 394.92 Hz. This demonstrates that the noise may be mistaken for the impact
component to increase the signal by the MCKD method, lowering the accuracy of feature
extraction. The results of the envelope analysis of the fault signal processed by CEEMDAN-
MED are shown in Figure 17. From the figure, it can be seen that the two spectral peaks
closest to the theoretical value of 196.6 Hz of the inner ring fault frequency are 189.96 Hz
and 209.96 Hz, which are far from 196.6 Hz. As a result, the results of the envelope analysis
cannot be used to determine whether the bearing’s inner ring is defective. In contrast, the
method of CEEMDAN-MCKD is more effective in extracting features for incipient faults in
the inner ring.
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With regard to the second set of data, Figure 18a demonstrates that the shock com-
ponent in the signal exhibits periodicity and that noise of −7 dB is added to the signal.
Figure 18b displays the temporal domain diagram of the signal following the addition of
the noise. Applying this technique to the signal results in an improvement, as shown in
Figure 18c, and when compared to Figure 18a, the signal’s shock component has undergone
a considerable enhancement. The envelope spectrum before and after the enhancement
is acquired to further confirm the enhancement effect. The actual fault signal envelope
appears in Figure 19a, although, while having a more prominent feature frequency in the
envelope, there is a significant disparity between it and the fault feature frequency, making
it challenging to directly extract the fault features. The envelope spectrum after enhance-
ment is shown in Figure 19b, from which the rolling bearing’s fault feature frequency
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and multiplier frequency can be seen. The prominent frequency is 50 Hz, which is nearly
identical to the inner ring fault feature frequency of 49.6 Hz under this working condition,
indicating that the method has good effects in the feature enhancement.
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The aforementioned experimental investigation demonstrates the viability and effi-
ciency of the CEEMDAN-MCKD method, which is helpful for accurately extracting the
fault features.

5.3. Experimental Study under Variable Working Conditions

Considering that the operation of the bearing is not constant, there will be some
unpredictable working conditions; the load change of the system input and the change of
speed and other factors with the system change of power input and load will change the
operating conditions of the bearing. The vibration signals collected under variable working
conditions are more complex. To enhance the features and realize the feature extraction for
the incipient faults of rolling bearings under different rotational speeds, the fault signals of
two different working conditions in XJTU-SY, namely, working condition 1 and working
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condition 3, are selected to construct a fault signal of the outer ring of the bearing under
variable working conditions. The data set in working condition 1 is Bearing1_1 and the
data set in working condition 3 is Bearing3_1. The rotational speed of the rolling bearing in
working condition 1 is 2100 r/min and the radial force is 12 kN, the rotational frequency
of the rolling bearing is 35 Hz, and the theoretical value of the fault feature frequency is
107.94 Hz. The rotational frequency of the rolling bearing in working condition 3 is 40 Hz
and the fault feature frequency of the outer ring is 123.94 Hz. The time domain diagram
of the fault signal under the corresponding working condition is shown in Figure 20, in
which 0.1 s data is intercepted under each working condition, and the sampling frequency
is 25,600 Hz.
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Figure 20. Time domain waveform of outer ring failure under different working conditions: (a) time
domain diagram of outer ring failure under working condition 1; (b) time domain diagram of outer
ring failure under working condition 3.

The rolling bearing’s vibration signal, which switches from working condition 1 to
working condition 3 during operation, is built using the time domain waveforms of working
conditions 1 and 3. Figure 21 displays the signal’s time domain waveform. A total of−10 dB
of noise is introduced to the signal in order to improve the impact component of the signal.
The signal’s envelope is analyzed and the results are displayed in Figure 22. According to
Figure 22, the two prominent feature frequencies are 244.90 Hz and 494.08 Hz, which are
the 2-fold and 4-fold frequencies of the outer ring fault feature frequency 123.36 Hz under
working condition 3. However, no additional characteristic frequency information can be
obtained, and the fault feature frequency under working condition 1 is not successfully
obtained, so the signal is enhanced by CEEMDAN-MCKD.
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As shown in Figure 23, the signal is divided into 13 components using CEEMDAN.
Following the resolution of the kurtosis and correlation coefficients for each component,
Table 3 lists the values for the first eight components’ kurtosis and correlation coefficients.
Based on the correlation coefficient 0.171 and kurtosis 3 threshold values, the components
IMF2, IMF3, IMF4, IMF5, and IMF6 are selected for reconstruction. The reconstructed
signals are then obtained and the results of the envelope analysis of the reconstructed
signals are shown in Figure 24. The fault feature frequencies of 124.95 Hz, 244.90 Hz
of the second octave, and 494.08 Hz of the fourth octave under working condition 3 are
highlighted after noise reduction by CEEMDAN decomposition, as can be seen in Figure 24,
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as well as 109.96 Hz, which corresponds to the theoretical value of 107.94 Hz of the outer
ring fault feature frequency under working condition 1. The sole rotational frequency
indicated, though, is under working condition 3. The best impact of L and M are achieved
as 685 and 4, respectively, using the PSO algorithm to identify the optimal parameters L
and M in MCKD in order to extract more fault feature frequencies, as well as rotational
frequencies, under various working conditions. In order to increase the signal’s shock
component, the values of L and M are introduced into the MCKD. The augmented signal
then undergoes envelope analysis and the results are displayed in Figures 25 and 26.
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Table 3. Kurtosis and correlation coefficient of each IMF component.

IMF Component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

Kurtosis 2.028 3.965 3.297 4.681 3.183 3.525 3.314 3.004
Correlation coefficient 0.710 0.445 0.415 0.407 0.371 0.222 0.147 0.085
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From Figure 26, it can be seen that the prominent amplitudes of 129.95 Hz, 249.90 Hz,
374.85 Hz, and 494.8 Hz correspond to the fault feature frequencies 123.36 Hz, 246.72 Hz,
and 370.08 Hz for the second and third octaves and 493.44 Hz for the fourth octave in
working condition 3. The rotational frequencies for operating condition 3 are 41.98 Hz,
144.10 Hz, 239.90 Hz, 279.89 Hz, 359.85 Hz, and 479.8 Hz. The more prominent 104.95 Hz,
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214.91 Hz, and 328.97 Hz in the figure are exactly 107.94 Hz and 2-fold and 3-fold frequen-
cies of the fault feature frequency of the rolling bearing under working condition 1, while
34.98 Hz, 69.97 Hz, and 105.95 Hz, etc., are exactly in line with the 35 Hz and its multiplier
frequency of the rolling bearing under working condition 1.

The comprehensive analysis above shows that CEEMDAN-PSO-MCKD has a good
effect on the feature enhancement of the sudden change of incipient fault signals of bearings
under variable working conditions.

6. Conclusions

To extract the fault information in the weak fault signal effectively and realize the fault
diagnosis, a bearing incipient fault feature enhancement method based on CEEMDAN and
MCKD is proposed, and the main conclusions are as follows:

(1) The fault signal is decomposed using the CEEMDAN algorithm to obtain a set of
IMF components, and the sensitive IMF components are selected according to the
kurtosis-correlation coefficient criterion and the signal is reconstructed, which can
effectively remove the noise from the fault signal.

(2) In comparison to the MED method, the MCKD algorithm may emphasize continuous
shock pulses in rotating equipment. PSO-MCKD then processes the signal to efficiently
improve the signal’s weak shock components after noise reduction.

(3) Envelope analysis is performed on the signal processed by feature enhancement
to realize the extraction of bearing incipient fault features. The bearing inner ring
faults under constant working conditions and the bearing outer ring faults under
varied working conditions are used to demonstrate the method’s usefulness. When
compared to the PSO-MCKD and CEEMDAN-MED approaches, it exhibits better
feasibility and generality.
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