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Abstract: This paper presents a new filter to remove impulse noise in digital color images. The filter
is adaptive in the sense that it uses a detection stage to only correct noisy pixels. Detecting noisy
pixels is performed by a binary classification model generated via genetic programming, a paradigm
of evolutionary computing based on natural biological selection. The classification model training
considers three impulse noise models in color images: salt and pepper, uniform, and correlated. This
is the first filter generated by genetic programming exploiting the correlation among the color image
channels. The correction stage consists of a vector median filter version that modifies color channel
values if some are noisy. An experimental study was performed to compare the proposed filter with
others in the state-of-the-art related to color image denoising. Their performance was measured
objectively through the image quality metrics PSNR, MAE, SSIM, and FSIM. Experimental findings
reveal substantial variability among filters based on noise model and image characteristics. The
findings also indicate that, on average, the proposed filter consistently exhibited top-tier performance
values for the three impulse noise models, surpassed only by a filter employing a deep learning-based
approach. Unlike deep learning filters, which are black boxes with internal workings invisible to the
user, the proposed filter has a high interpretability with a performance close to an equilibrium point
for all images and noise models used in the experiment.

Keywords: digital image processing; color image denoising; genetic programming; impulse noise;
adaptive filters

1. Introduction

Recently, the notion of color has played a relevant role in a large number of com-
puter vision applications. Color information provides features that are invariant to scale,
translation, and rotation changes, which are suitable for image segmentation [1], image
classification [2,3], or image retrieval [4,5]. One of the most critical tasks in computer vision
applications is image denoising, which involves recovering an image from a degraded
noisy version. Various types of noise can affect digital color images, particularly impulse
noise [6].

Impulse noise in digital images is a random variation in the intensity of pixels caused
by short-duration pulses of high energy. This type of noise can significantly degrade the
quality of images and poses various challenges in real-world applications. For example, the
impulse noise in dashboard camera footage under low-light conditions [7] can lead to the
misinterpretation of videos, making it challenging to accurately identify vehicles involved
in incidents. Additionally, impulse noise is a kind of ordinary noise in medical imaging
(X-rays, MRIs, and CT scans) [8] that can result in the misinterpretation or disappearance
of critical details important in diagnosis.

Impulse noise commonly occurs during the acquisition or transmission of an image
caused by imperfections on the device lens, malfunctioning camera photosensors, the aging
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of the storage material, errors during the compression process, and the electronic instability
of the image signal [9]. Addressing impulse noise in real-world applications often involves
the use of various image processing techniques to restore the integrity of images. Impulse
noise affects color digital images in such a way that the perturbed pixels differ significantly
from their local neighborhood in the image domain.

Nature-inspired optimization algorithms have been widely applied in the image
processing literature to address various challenges, including optimizing image quality
evaluation [10], feature selection [11], and image reconstruction [12]. Of particular note is
genetic programming [13], an evolutionary computing technique based on the principle of
natural selection, which offers a flexible and adaptive methodology for addressing image
processing problems. Like other evolutionary algorithms, the main idea is to transform
a population of individuals (programs) by applying natural genetic operations such as
reproduction, mutation, and selection [14]. The adaptability and robustness of genetic
programming make it well suited for addressing the challenges associated with impulse
noise removal, particularly for color digital images.

Outline and Contribution

This paper proposes a novel adaptive filter to remove impulse noise in color images.
The contribution of this work is twofold. First, this is the first filter to remove noise in
color images by exploiting the correlation among the image channels through the genetic
programming paradigm. The filter consists of a two-stage solution comprising detection
and correction processes. The detection stage decomposes the input color image into its red-
green-blue channels; then, it uses a binary classification model to identify which channel
values for each image pixel are perturbed by noise. The correction stage modifies each
pixel identified as noisy according to its perturbed channels and neighborhood. Second,
the detection stage of the proposed filter is an interpretable model that performs very well
under different conditions by considering three impulse noise models: salt and pepper,
uniform, and correlated. Experimental results show that the filter is the second closest to
an equilibrium point in terms of the performance balance, outperformed only by a filter
using a black-box deep learning-based approach.

The remainder of this paper is organized as follows. Section 2 presents the related
works on color image denoising methods for impulse noise. Section 3 introduces some
preliminary concepts for the problem of color image denoising. Section 4 describes the
proposed adaptive filter and the evolutionary process used for its training. Section 5 shows
the experimental results obtained from a comparison of the proposed filter with other
methods for filtering. Finally, Section 6 presents some concluding remarks.

2. Related Works

A large number of filters for impulse noise removal from color images have been
proposed in the literature, e.g., [15]. Two types of filters, robust and adaptive, stand out in
scenarios where images are degraded by complex noise patterns or variations in lighting
and contrast. Robust filters deal with noisy pixels as a violation of the spatial coherence
of the image intensities. The most well-known robust filter is the vector median filter
(VMF) [16], a non-linear method that is still a reference in the field. The VMF orders
the color input vectors based on their relative magnitude differences in a predefined
sliding window. However, robust filters apply a correction procedure to every image
pixel, even if the pixels are not noisy. Therefore, filtered images commonly present too
much smoothing and extensive blurring [9]. Other methods exploit the sparsity of the
image in some transform domains, formulating noise removal as an optimization problem.
For example, the generalized synthesis and analysis prior algorithm (GSAPA) proposed
in [17] uses the split-Bregman technique to break down the optimization problem with
multiple regularization parameters into relatively easy-to-solve subproblems. In [18], an
extension of the mean-shift technique was introduced to effectively reduce Gaussian and
impulsive noise in color digital images; utilizing a novel similarity measure between pixels
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and a patch at the block’s center, the technique demonstrates efficiency in restoring heavily
disturbed images.

On the other hand, adaptive filters assume that only some image pixels are perturbed
by noise. These filters adapt to various image characteristics and noise statistics using
different approaches. One of these approaches is the fuzzy peer-group concept, which
associates a set of neighboring pixels whose distance to a central pixel does not exceed a
threshold founded on fuzzy logic (see, for example, [19]). Under this approach, the fuzzy
modified peer-group filter (FMPGF) [20] stands out due to its efficiency. Other approaches
use fuzzy logic tools to measure magnitude differences, providing an adaptive framework
to distinguish between noise and data. For example, the adaptive fuzzy filter proposed
in [21] uses a noise-detection mechanism to select a small portion of input image pixels and
convolves them with a set of weighted kernels to create a layer of convolved feature vectors.
The feature vectors are then fed into a fuzzy inference system, where fuzzy membership
degrees and a reduced set of fuzzy rules play a crucial role in categorizing pixels as either
noise-free, associated with edges, or noisy. Another fuzzy inference rule-based filter for
impulse noise is the noise adaptive fuzzy switching median (NAFSM) filter [22]. The
NAFSM filter uses two-stage processing specialized for salt-and-pepper noise detection
and removal, preserving strong edges through spatial averaging. A recent contribution in a
similar vein is the adaptive fuzzy filter based on histogram estimation (AFHE) [23]. The
AFHE filter dynamically adjusts the window size based on local noise densities using fuzzy-
based criteria. Additionally, it incorporates an iterative procedure based on the Gaussian
mean for further processing. Another recent development presented in [24] introduces
a spatio-temporal filter designed to eliminate impulse noise from videos through the
application of fuzzy logic. The distinctive feature of this filter is its ability to leverage both
spatial and temporal correlations and color components in a sequential process, allowing it
to effectively handle high impulse noise levels, even up to 70%. Other adaptive approaches
are based on more straightforward decisions, such as the decision-based algorithm for
the removal of impulse noise (DBAIN) [25]. The DBAIN filter processes a noisy image by
first detecting salt-and-pepper noise (as its major decision) and then replacing the noisy
pixel values with the median of their neighboring pixels. Some comprehensive studies of
adaptive filters for impulse noise removal from color images are presented in [15,26].

Machine learning-based techniques have also been applied to remove impulse noise
from color images. For example, a support vector machine (SVM)-based filtering technique
was proposed in [27]. Later, fuzzy c-means (FCM) clustering combined with a fuzzy-
support vector machine (FSVM) was introduced in [28]. Additionally, multiple neuro-
fuzzy filters were trained with an artificial bee colony algorithm and combined with
a decision tree algorithm in [29] to denoise corrupted images. Also, neural network-
based denoising methods are another popular approach. For instance, a convolutional
neural network-based denoising method mainly composed of a sparse block, a feature
enhancement block, an attention block, and a reconstruction block was described in [30].
Also, a convolutional autoencoder-based feature map domain was combined with low-
rank models to improve denoising quality in [31]. Recently, a novel denoising network
called DeQCANet was introduced in [32] for removing color random-valued impulse
noise. This work implements a quaternion convolutional neural network, incorporating
a novel quaternion map construction strategy to enhance color features across channels.
The proposed denoising technique exhibits competitive performance compared to other
well-established methods for denoising color images. Another recent development is the
impulse detection convolutional neural network (IDCNN) introduced in [33], which utilizes
a switching filtering technique consisting of a deep neural network architecture to detect
noisy pixels, followed by a restoration stage of these pixels through the fast adaptive mean
filter. In [34], a neural network architecture was introduced to recognize images affected
by random-valued impulse noise, comprising a preprocessing stage and incorporating
a pixel distortion detector, a cleaning mechanism, and a neural network complex for
image recognition. An overview of deep learning techniques on image denoising can be
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found in [35]. While convolutional neural networks and deep learning-based approaches
excel in performance, they are complex and opaque. Their intricate architectures and
complex hierarchical representations in these techniques make it challenging to decipher
the exact decision-making process, limiting the transparency and understanding of how the
denoising outcomes are achieved. Achieving transparency is crucial for various reasons,
especially in applications where interpretability is essential for user trust, accountability,
and ethical considerations.

Alternative filtering techniques tackle the challenge of image denoising through an
evolutionary computing approach. For instance, in [36], Toledo et al. introduced a de-
noising method employing a genetic algorithm. In their method, an input noisy image is
represented as an individual, and the individuals of the initial population are represented
as mutated versions of the image. The evolutionary process applied to the population
allows for the continuous refinement and adaptation of the original noisy individual until
an enhanced image is found. In a similar vein, in [37], we addressed image denoising by
merging output images of robust and adaptive filters to integrate them as an evolving
population for a genetic algorithm. Genetic algorithms, in this context, are frequently em-
ployed to fine-tune specific filter parameters, essentially framing them as an optimization
task. On the other hand, genetic programming has emerged as a highly promising field
for the creation of adaptive filters aimed at noise reduction; however, no filters use genetic
programming to remove impulse noise from color digital images. Nevertheless, there are
a few works that have addressed impulse noise removal for grayscale images, the most
relevant being [38–40].

Petrovic and Crnojevic [38] used genetic programming to produce two binary classifi-
cation models for identifying noisy pixels in grayscale images following a cascade approach.
While the first model identifies the majority of noisy pixels located within homogeneous
regions of the image, the second is trained to specialize in identifying complex cases of noisy
pixels (e.g., those with amplitudes close to their local neighborhood). The classification
models were trained using test images contaminated with a mixture of two impulse noise
models: salt and pepper and uniform. Once the noisy pixels are detected, they are corrected
using a conventional α-trimmed mean method as part of a two-stage filter. On the other
hand, Majid et al. [39] used genetic programming to estimate the optimal value of every
noisy pixel in a grayscale image. The estimation combines the useful information of local
clean pixels within a small neighborhood with arithmetic operators. In their approach, Ma-
jid et al. used the directional derivative to detect pixels perturbed by salt-and-pepper and
uniform noise. Their filter was tested using standard images perturbed with a noise density
from 10 to 90%. Their experimental results showed that, compared to other approaches,
their filter can restore noisy images while preserving edges and fine details, especially in
the presence of high impulse noise density. Khmag et al. [40] presented a filter based on a
two-step switching scheme to remove both salt-and-pepper and additive white Gaussian
noises. Their filter uses a patch-based approach, which decomposes a noisy image into a
group of patches and then applies a clustering process to gather all patches with the same
features and textures. They use genetic programming to generate an adaptive local filter to
denoise each singular class of patches with different textural forms. The restoration process
of these filters is performed by applying second-generation wavelet thresholding to the
clustered patches. Other applications of genetic programming in image processing can be
found in [41]. It is important to emphasize that although many of the techniques developed
for monochrome images can be directly applied to color image denoising, the independent
processing of color image channels is commonly inappropriate, leading to the generation
of strong artifacts. To address this challenge, developing methodologies that effectively
exploit the inherent correlation among color channels becomes imperative, ensuring more
accurate and artifact-free denoising results in the realm of color image processing.
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3. Preliminaries: Color Image Denoising

Let I be an image with red-green-blue (RGB) color space with values from 0 to 255.
The image I is represented by a two-dimensional matrix consisting of N pixels. Each color
pixel x⃗i is a three-dimensional vector, with one dimension for each color primary or channel,
where i = 1 . . . N indicates the pixel location on the image domain.

3.1. Impulse Noise Models

There are three impulse noise models used for color images in the contemporary
literature [42]. These models differ according to the noise correlation of the image channels
and how the noise affects the pixels. Let xq

i be a random variable whose output represents
a value corrupted by noise in the q-th channel of pixel x⃗i. Then, xq

i behaves according to
the following models:

(a) Salt-and-pepper noise. The value of xq
i can only be 0 or 255 with the same probability.

(b) Uniform impulse noise. The value of xq
i is chosen independently and uniformly at

random from the range [0, 255].
(c) Correlated impulse noise. The value of xq

i is any number uniformly distributed
between 0 and 255 for all q ∈ {1, 2, 3}.

Let p be the probability of the appearance of noise in any pixel x⃗i. Then, the amount
of noise (or noise density) is distributed randomly over approximately p × 100% pixels of
the image.

3.2. Image Quality Metrics

In this work, the following metrics are used to objectively measure the quality of
the output images after the filtering process: the peak signal-to-noise ratio (PSNR), mean
absolute error (MAE), structural similarity index measure (SSIM), and feature similarity
index measure (FSIM). These metrics provide quantitative values of how close or far a
filtered image IF is from its original reference image IO.

The PSNR and MAE are the most widely used and straightforward full-reference
quality metrics. The advantages of these metrics are that they are simple to calculate, trans-
parent in physical meaning, and independent of visual conditions. The PSNR measures
the effectiveness of a filter in removing noise, whereas the MAE evaluates the performance
of a filter in preserving the details of an image. The PSNR measure is defined via the
mean-square error (MSE) as follows:

PSNR = 20 log10

(
255√
MSE

)
, (1)

MSE =
1

3N

N

∑
i=1

3

∑
q=1

(IO(xq
i )− IF(xq

i ))
2. (2)

The MAE measure is expressed in the following form:

MAE =
1

3N

N

∑
i=1

3

∑
q=1

∣∣∣IO(xq
i )− IF(xq

i )
∣∣∣. (3)

Note that a high PSNR value means a higher amount of noise removed from the image.
Conversely, a low MAE value means fewer lost details in the image. The computational
complexity of these two metrics is O(N) for any color image I.

On the other hand, the SSIM and FSIM are metrics that compute the similarity between
restored and original images based on human visual perception. The SSIM compares local
patterns of pixel intensities normalized for luminance and contrast, whereas the FSIM
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makes the comparison based on two low-level features: phase congruency and gradient
magnitude. The SSIM is defined as

SSIM(IO, IF) =
2µIO µIF + C1

µ2
IO
+ µ2

IF
+ C1

·
2σIO σIF + C2

σ2
IO
+ σ2

IF
+ C2

·
σIO IF + C3

σIO σIF + C3
, (4)

where the first term signifies the luminance comparison function, assessing the proximity
of the mean luminance in both images (µIO and µIF ). The second term represents the
contrast comparison function, gauging the similarity in contrast between the two images,
as measured by their standard deviations (σIO and σIF ). The third term indicates the
structure comparison function, quantifying the correlation coefficient between the images
IO and IF. The positive constants C1, C2, and C3 are introduced to prevent division by zero.

On the other hand, the FSIM is defined as

FSIM(IO, IF) =
1
N ∑

x,y
F(IO(x, y), IF(x, y)), (5)

where F(IO(x, y), IF(x, y)) is a function that measures the similarity between the corre-
sponding pixel values (x, y) in the two images. This function typically takes into account
the luminance, contrast, and structure comparisons. The formulation and mathematical
details of the SSIM and FSIM can be found in [43] and [44], respectively. Unlike the PSNR
and MAE metrics, the SSIM and FSIM are normalized between 0 and 1, with 1 being the
best possible result. However, the SSIM and FSIM have a higher computational complexity
compared to the PSNR and MAE.

4. Methodology

The proposed adaptive filter consists of two main stages for color image denoising:
detection and correction. The detection stage takes a color image IN perturbed by impulse
noise as input. In this stage, the color image is split into R, G, and B channels to separately
evaluate each pixel in a binary classification model. For each channel, the model produces
a binary mask representing the set of pixels classified as noisy.

The correction stage uses a version of a vector median filter applied only to the
identified noisy pixels. The correction process of any pixel x⃗i consists of modifying one or
more of its RGB channel values according to the pixel intensity values of its neighbors. In
this context, the set of neighboring pixels of x⃗i, denoted as N (x⃗i), represents a 3 × 3 square
window centered on x⃗i in the spatial domain of the image. Modifying the pixel value of x⃗i
requires computing the sum of the absolute differences of the pixel intensities between x⃗i
and its neighborhood. These differences among pixel intensities around x⃗i are denoted as
dN (x⃗i)

i such that

dN (x⃗i)
i = ∑

∀x⃗j∈N (x⃗i)

||⃗xi − x⃗j||1. (6)

Let D(x⃗i) be the set of the pixel intensity differences between every pair of pixels
considering x⃗i and its neighborhood, i.e., D(x⃗i) = {dN (x⃗i)

j |∀x⃗j ∈ N (x⃗i)}. Then, a noisy
pixel x⃗i is replaced (in one or more of its channels) with the element with the minimum
values from D(x⃗i). If only one channel of pixel x⃗i is identified as noisy (and the other two
are not), only the perturbed value of this channel is replaced. On the other hand, if at least
two channels are noisy in x⃗i, then the pixel is replaced entirely. Since building the set D(x⃗i)
requires O(1) time given a fixed 3 × 3 window, the correction of the noisy pixels takes
O(N) time to complete. After the correction process, a new color image IF is generated.
Figure 1 illustrates the two stages of the adaptive filter.
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Figure 1. The sequence of the adaptive filter’s stages: the detection stage takes as input a noised
image IN , splitting it into its color channels, and then it uses a classification model to detect noisy
pixels; the correction stage uses a vector median filter to repair only the detected noisy pixels.

4.1. Genetic Programming Design

We use genetic programming to generate the binary classification model for detecting
noisy pixels in a color image. In a typical machine learning workflow, the training stage
involves using a dataset to produce the classification model, whereas only a single image is
required in the proposed evolutionary approach. This approach leverages the versatility
and adaptability of the genetic programming design, allowing it to effectively learn and
adapt to complex noise patterns using only a single training instance. This training image I
has a noised version IN perturbed by the impulse noise models described in Section 3.1.

In this context, an individual is a classification model used to evaluate any pixel x⃗i
of an image I to decide whether x⃗i is noisy. An individual is represented by a parse tree
structure with O(m) nodes selected from a set of primitives consisting of functions and
terminals. The internal nodes of the tree consist of a set of functions F = {add(x,y),
sub(x,y), mul(x,y), mydiv(x,y), mysigmoid(x)}. Four elements of the set of functions
denote the basic arithmetic operations of addition, subtraction, multiplication, and division.
In particular, the division operator mydiv(x,y) is protected in the sense that it does not
signal “division by zero”. The sigmoid function mysigmoid(x) = 1

1+e−x guarantees that
the results range between 0 and 1.

Additionally, the leaves of the tree consist of a set of terminals T = {pc_dist, mu_dist,
median_dist, sd_dist, pxc} that apply statistics operations to the set of neighboring pixels
N (x⃗i) of pixel x⃗i in image I. Given a fixed 3 × 3 window size, the computations of these
statistics take O(1) time. Table 1 describes the set of terminals. It should be noted that the
selection of the set of primitives (functions and terminals) was mainly carried out through
some preliminary experimental tests.

Table 1. Description of the set of terminal primitives T representing the different features of neigh-
boring pixels.

Primitive Description

pc_dist The differences among pixel intensities around x⃗i, i.e., dN (x⃗i)
i .

mu_dist Average of the set D(x⃗i).
median_dist Median of the set D(x⃗i).
sd_dist Standard deviation of the set D(x⃗i).
pxc The RGB values of pixel x⃗i.
[−1 . . . 1] Random values within the range of −1 to 1.

On the other hand, an individual’s fitness represents its ability to correctly detect noisy
pixels in an image. For this aim, an image IO is perturbed using the three impulse noise
models, each with a density of 10%, as described in Section 3.1. The produced noisy image
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IN is used as input for each individual of the initial population. Each individual of the
population independently evaluates each pixel x⃗i of IN to decide whether x⃗i is perturbed by
noise. Evaluating any pixel requires O(m) time for any individual; therefore, the detection
process requires O(mN) time to complete. The output generated by each individual is a
binary mask indicating which pixels are identified as noisy in IN . This binary mask is used
in the correction stage to produce the filtered image IF, which is compared to IO via the
image quality metrics PSNR and MAE described in Section 3.2. The results of these metrics
are used to compute the individual’s fitness in the detection stage. It is worth noting that
only these two metrics were chosen due to their low computational complexity. Figure 2
illustrates this procedure.

An individual of 
the population

IN

vs

IFIO

Correct the 
identified 
noisy pixels

PSNR
MAE

fitness

Figure 2. The fitness computation process for an individual IF of the population by comparing IF to
an original reference image IO.

4.2. The Proposed Evolutionary Algorithm

As part of the evolutionary process (also called training), the population of individuals
produces offspring through crossover and mutation operators. The offspring have their
fitness evaluated and compete for a place in the next generation. This process iterates
until a certain number of generations is reached. This evolutionary process is described in
Algorithm 1.

Algorithm 1: The evolutionary process of the detection stage
Input: A color image IN perturbed by impulse noise.
Output: A classification model trained to identify the noisy pixels of IN .
1: (Initialization) Generates a set of µ individuals from the initial population.
2: (Evaluation) Evaluates the fitness of each individual of the initial population.
3: repeat

4: (Selection of parents) Builds a group of λ = Pcµ individuals based on their
fitness.

5: (Crossover) Recombines the pairs of selected parents to generate a set of λ
offspring.

6: (Mutation) Mutates the offspring with a probability of Pm through the
correction of the image.

7: (Evaluation) Evaluates the fitness of each individual of the λ offspring.
8: (Survivor selection) Builds a new generation of µ individuals using
deterministic fitness-based replacement.

until it completes τ generations;
9: return the fittest individual of the last generation.

Line 1 of Algorithm 1 generates an initial population of µ random individuals. To
generate this population, we use the simplest and most popular full method to produce
complete random trees. Each tree is generated recursively by randomly selecting primitives
from the sets of functions and terminals. Primitives from the set of functions F are selected
as the internal nodes of the tree, whereas those from the set of terminals T are selected as the
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leaves. The maximum depth of each of the initial trees is constrained to three. Considering
random trees of size O(m), the initial population generation requires O(µm) time.

Lines 2 and 7 of Algorithm 1 perform the fitness evaluation of each individual of the
population. The quality metrics MAE and PSNR, described in Section 3.2, are used for this
aim. These metrics compare a filtered image IF, produced by the detection and correction
stages according to each individual, with its noiseless version IO (see Figure 2). The MAE
indicates a better filter performance with a lower value, and the PSNR does the same with
a higher value. Then, maximizing fitness is equivalent to maximizing the ratio between the
MAE and PSNR. The fitness evaluation for all the µ individuals of the population takes
O(µmN) time. Note that the SSIM and FSIM are not considered in the fitness evaluation
due to their higher computational complexity.

Line 4 of Algorithm 1 performs a random selection of pairs of individuals with
replacement until it generates a group of λ = Pcµ individuals, where Pc denotes the
crossover ratio. The tournament selection is used to randomly select three individuals
from the population and then select the fittest two. Implementing the tournament selection
requires O(µ) time.

Line 5 of Algorithm 1 recombines pairs of individuals from the group selected by
Line 4. A one-point crossover is used, where a random vertex is chosen within two copies
of parent individuals, and then they exchange the subtrees rooted at the selected vertices
between them. Recombining the entire population requires O(µ) time.

Line 6 of Algorithm 1 implements the uniform mutation operator to introduce diversity
in the population. This operator takes as input an individual with probability Pm, and
then it randomly selects a vertex of the tree to replace it with a new random subtree. Each
subtree is generated using the full method in O(m) time. Thus, uniform mutation applied
to the Pmλ offspring takes O(µm) time.

Line 8 of Algorithm 1 generates a new population through the union of the µ in-
dividuals from the last population and their λ offspring. A fitness-based replacement
(implemented with a sorting algorithm) is used, guaranteeing the survival of the fittest
individuals. The execution time of this step is O(µ log µ).

Finally, Algorithm 1 iterates Lines 4–8 until they complete τ generations. Then, the
algorithm returns the fittest individual of the last generation (Line 9). The overall execution
time of Algorithm 1 is O(τµ(mN + log µ)).

5. Experimental Results

Experiments were conducted to evaluate the performance of the proposed adaptive
filter. The filter was implemented using scikit-image 0.18.3, a Python module that includes
a collection of algorithms designed for image processing. Additionally, the evolutionary
process (described in Algorithm 1) and its variation operations were implemented using
DEAP 1.2.2, an open source evolutionary computation framework. The experiments were
carried out on a 3.6 GHz Intel Core i7 (Mac) with four cores, 8 GB of RAM, and OS X 11.5.2.

5.1. Determination of Parameters

The classification model’s training process was performed using a 24-bit color version
of the popular image of Lena. This training image, denoted as IN in Section 4, was
simultaneously contaminated by the three impulse noise models with a total density of
30%, i.e., 10% for each of the models described in Section 3.1. Combining the impulse noise
models into a single image provides insights into the algorithm’s ability to handle various
noise types and densities by evaluating the proposed method’s robustness, generalization
capabilities, and potential practical utility in image processing applications.

On the other hand, Table 2 shows the evolutionary settings used by the genetic
program during the training process. These settings were estimated via experimentation
and validation. A set of preliminary trials was conducted to find the best parameters of
Algorithm 1 by considering the tradeoff between time and efficiency; however, similar
to other evolutionary techniques, this approach has the limitations expressed in the NFL
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(no free lunch) by considering that there is no single set of evolutionary settings that will
perform optimally on all possible color digital images.

Table 2. Configuration settings of the proposed genetic programming algorithm related to its behavior
and performance during the training process.

Parameter Value

Population size, µ 100
Crossover rate, Pc 0.9
Mutation rate, Pm 0.1
Parent selection Tournament (k = 3)
Survivor selection Fitness-based (µ + λ)
Completion criteria When the algorithm reaches τ = 100 generations

After model training, a set of trees (representing the individuals of the last generation)
was produced. Each of these trees comprises the set of primitives (functions and terminals)
described in Section 4.1. The tree identified as the fittest individual is available in a PDF,
which can be downloaded from https://bitbucket.org/dfajardod/impulse_noise_gpfilter/
src/ (accessed on 20 October 2023).

5.2. Benchmarks

Thirty benchmarking color images were used as test images for the proposed adaptive
filter (GP). Each of these images was perturbed by the three impulse noise models with
four different densities (5%, 10%, 15%, and 20%), i.e., a total of 360 test color images.
These noise densities were selected to ensure a more equitable comparison among the
different comparison filters. This decision stems from the recognition that certain filters
have been specifically designed for higher noise densities, whereas others may perform
more effectively in scenarios with lower noise levels. By evaluating the filters across an
intersecting range of noise densities, we aim to conduct a comprehensive and balanced
assessment. In this vein, the comparison of filters encompassed a diversity of robust and
adaptive filters, some of which are widely used in digital image processing, whereas others
use advanced adaptive methods. Filters using fuzzy logic tools to provide adaptiveness to
local features were used, such as the fuzzy metric peer-group filter (FMPGF) and the noise
adaptive fuzzy switching median (NASFM). Additionally, the decision-based algorithm
for removing impulse noise (DBAIN) was also used, a filter designed for highly corrupted
color images. Given their performance, the vector median filter (VMF) and the generalized
synthesis and analysis prior algorithm (GSAPA) were also considered. Finally, a deep
learning approach, the impulse detection convolutional neural network (IDCNN), was also
used. The performance metrics used to compare the quality of the resulting images of these
filters were the MAE, PSNR, SSIM, and FSIM (described in Section 3.2).

5.3. Performance of the Detection Stage

Experiments were conducted to measure the performance of the binary classification
model implemented in the detection stage of the proposed GP filter. To this end, prior
information about noisy pixel locations was stored by comparing the 360 test noisy images
with their noiseless original counterparts. Later, the detection stage of the proposed GP
was applied by classifying pixels as noisy or not noisy. Finally, a comparison of the model
predictions with the stored prior information enabled the generation of a confusion matrix
containing true positive (tp), true negative (tn), false positive (fp), and false negative (fn)
predictions. The performance metrics applied to these predictions were the following:
accuracy, precision, recall, specificity, and F1 score.

Accuracy (Acc.) indicates the extent to which the predictions about the condition of
the pixels differed from the real conditions, i.e., Acc = (tp + tn)/(tp + tn + fp + fn). Precision
(Prec.) indicates how well the classifier performed concerning each pixel’s noisy or noiseless
status, computed by tp/(tp + fp). On the other hand, recall (or sensitivity) is the percentage

https://bitbucket.org/dfajardod/impulse_noise_gpfilter/src/
https://bitbucket.org/dfajardod/impulse_noise_gpfilter/src/


Appl. Sci. 2024, 14, 126 11 of 22

of noisy pixels that were correctly identified, calculated by tp/(tp + fn). Similarly, regarding
the noiseless pixels, specificity (Spec.) is calculated by tn/(tn + fp). Finally, the F1 score
represents the harmonic mean of precision and recall, i.e., F1 = (Prec·Recall)/(Prec + Recall).

Table 3 shows the average results of the performance metrics regarding the proposed
binary classification model. As can be observed, in general, the model increased the
accuracy, precision, and F1 score according to the increase in the image’s noise density,
whereas the sensibility and specificity decreased in this respect. Note that the model is
highly efficient in detecting noisy rather than noiseless pixels. Finally, although the model
achieved a better balance between precision and recall in terms of salt-and-pepper noise,
better accuracy was obtained in terms of uniform and correlated noise.

Table 3. Average performance of the binary classification model applied to the test images perturbed
by salt-and-pepper, uniform, or correlated noise.

p = 0.05 p = 0.10 p = 0.15 p = 0.20

Sa
lt

an
d

pe
pp

er

Acc. 0.7558 0.7462 0.7696 0.7906
Prec. 0.3668 0.5107 0.6192 0.6963

Recall 0.9981 0.9939 0.9853 0.9702
Spec. 0.7191 0.6635 0.6495 0.6412

F1 0.5306 0.6697 0.7570 0.8086

U
ni

fo
rm

Acc. 0.8217 0.7852 0.7776 0.7826
Prec. 0.3559 0.4647 0.5479 0.6163

Recall 0.9829 0.9796 0.9740 0.9667
Spec. 0.8053 0.7427 0.7081 0.6890

F1 0.5175 0.6271 0.6991 0.7514

C
or

re
la

te
d Acc. 0.8676 0.8428 0.8354 0.8409

Prec. 0.3009 0.4139 0.4994 0.5773
Recall 0.9948 0.9934 0.9909 0.9873
Spec. 0.8611 0.8266 0.8088 0.8054

F1 0.4515 0.5738 0.6547 0.7209

Since the correction stage of the proposed GP filter consists of a modified version of
the VMF (see Section 4), the average performance comparisons shown in the following
section allow us to determine the influence of the detection stage on the efficiency of the
GP filter.

5.4. Performance of the Proposed Filter

Tables 4 and 5 show the average results of the quality metrics obtained after filtering
the test images to remove each of the impulse noise models: salt and pepper, uniform, and
correlated. Table 4 presents the average values of the MAE and PSNR, whereas Table 5
shows those corresponding to the SSIM and FSIM.

As observed in Tables 4 and 5, in general, the proposed GP filter ranked second in
average values across all quality metrics (MAE, PSNR, SSIM, and FSIM) for the uniform
and correlated noise models, closely following the IDCNN filter. This suggests that the
GP filter performed well overall compared to the other filters, particularly in conjunction
with these noise models. Regarding salt-and-pepper noise, the DBAIN filter excelled across
all quality metrics, closely paralleled by the NAFSM and IDCNN filters. This behavior
was due to their specialization in detecting and removing this noise model. However, the
competitiveness of the NAFSM and DBAIN filters declined for the uniform and correlated
noise. Furthermore, the difference in magnitude of their average values for these noise
models was significant, becoming more pronounced as the noise became more prevalent,
showcasing a specialization that might not generalize well to other noise types. The IDCNN
filter, based on a deep learning model, exhibited robustness to variations in the scale, orien-
tation, and lighting conditions of color images, demonstrating its adaptability to different
image textures and noise models. VMF, on the other hand, notably produced images with
lower-quality values. This is because it did not differentiate between pixels based on their
noise levels or the type of noise they exhibited, resulting in excessive blurring in images



Appl. Sci. 2024, 14, 126 12 of 22

with large contrasting regions. Finally, the proposed GP filter generally outperformed the
GSAPA and FMPGF filters across all noise models, demonstrating competitive performance
across different noise models and ranking consistently well compared to other filters.

Table 4. Performance comparison of the average MAE and PSNR values of the filters applied to the
test images perturbed by salt-and-pepper, uniform, and correlated noise. The best, second-best, and
third-best values are indicated in purple, teal, and brown, respectively.

Filter
p = 0.05 p = 0.10 p = 0.15 p = 0.20

MAE PSNR MAE PSNR MAE PSNR MAE PSNR

Sa
lt

an
d

pe
pp

er IDCNN [33] 0.7903 38.1716 1.4747 34.4618 2.4699 29.4046 4.9519 23.0100
GP 1.0939 35.0095 1.5978 31.5771 2.5213 27.6317 4.1993 23.6414

DBAIN [25] 0.4772 38.4290 0.7630 36.0019 1.1004 34.0328 1.5002 32.3204
NAFSM [22] 0.6070 36.1685 0.9462 34.2428 1.2883 32.9280 1.6345 31.8994
GSAPA [17] 2.6156 31.7966 2.9833 31.0663 3.5351 30.1346 4.2661 29.2487
FMPGF [20] 2.2195 28.8003 3.8605 24.0488 6.5878 20.4174 10.4068 17.8075

VMF [16] 3.1961 30.5483 3.8062 27.4112 5.1515 23.2530 8.0343 19.2650

U
ni

fo
rm

IDCNN [33] 0.7684 38.3377 1.3842 35.3368 2.0003 33.3050 2.7118 31.1671
GP 1.0140 34.4532 1.3874 32.1703 1.9043 30.1309 2.6113 28.2127

DBAIN [25] 4.8939 20.3859 9.1438 17.5642 13.3550 15.8917 17.5735 14.6853
NAFSM [22] 4.8221 20.4132 9.2765 17.5368 13.6620 15.8390 18.0242 14.6200
GSAPA [17] 2.6536 31.7040 2.9988 31.0339 3.4723 30.2954 4.2545 29.2325
FMPGF [20] 2.2267 29.4335 3.2508 27.5745 4.3313 26.0814 5.5097 24.7540

VMF [16] 3.1275 31.6515 3.4545 30.3364 3.8811 28.9711 4.4963 27.3815

C
or

re
la

te
d

IDCNN [33] 0.3695 42.2402 0.6119 39.4709 0.8544 37.7503 1.0627 36.6582
GP 0.9586 34.9322 1.2799 32.9630 1.7195 30.9907 2.3007 29.0910

DBAIN [25] 4.8995 20.3836 9.1560 17.5635 13.3640 15.8837 17.6076 14.6789
NAFSM [22] 4.8599 20.3924 9.2837 17.5376 13.6712 15.8314 18.0630 14.6114
GSAPA [17] 2.6684 31.6861 3.0830 30.9442 3.7525 29.8858 4.7601 28.4749
FMPGF [20] 1.5161 31.8201 1.8178 31.0714 2.1347 30.3423 2.4708 29.6420

VMF [16] 3.1635 31.5580 3.4802 30.3551 3.8537 29.1292 4.3345 27.7417

Table 5. Performance comparison of the average SSIM and FSIM values of the filters applied to the
test images perturbed by salt-and-pepper, uniform, and correlated noise. The best, second-best, and
third-best values are indicated in purple, teal, and brown, respectively.

Filter
p = 0.05 p = 0.10 p = 0.15 p = 0.20

SSIM FSIM SSIM FSIM SSIM FSIM SSIM FSIM

Sa
lt

an
d

pe
pp

er IDCNN [33] 0.9902 0.9928 0.9788 0.9846 0.9461 0.9659 0.8297 0.9056
GP 0.9792 0.9872 0.9681 0.9819 0.9365 0.9682 0.8642 0.9360

DBAIN [25] 0.9919 0.9957 0.9875 0.9935 0.9819 0.9905 0.9745 0.9864
NAFSM [22] 0.9888 0.9938 0.9828 0.9908 0.9770 0.9874 0.9712 0.9836
GSAPA [17] 0.9681 0.9710 0.9610 0.9656 0.9476 0.9576 0.9256 0.9485
FMPGF [20] 0.9475 0.9647 0.8679 0.9244 0.7452 0.8589 0.6209 0.7855

VMF [16] 0.9472 0.9680 0.9146 0.9566 0.8162 0.9227 0.6514 0.8505

U
ni

fo
rm

IDCNN [33] 0.9907 0.9930 0.9829 0.9866 0.9729 0.9795 0.9537 0.9693
GP 0.9748 0.9866 0.9609 0.9824 0.9371 0.9753 0.9010 0.9633

DBAIN [25] 0.6042 0.8595 0.4702 0.7747 0.3899 0.7143 0.3318 0.6689
NAFSM [22] 0.6036 0.8591 0.4693 0.7734 0.3888 0.7127 0.3307 0.6674
GSAPA [17] 0.9672 0.9701 0.9602 0.9651 0.9478 0.9581 0.9195 0.9468
FMPGF [20] 0.9305 0.9646 0.8891 0.9464 0.8493 0.9265 0.8108 0.9031

VMF [16] 0.9519 0.9693 0.9413 0.9654 0.9219 0.9587 0.8857 0.9463

C
or

re
la

te
d

IDCNN [33] 0.9951 0.9967 0.9923 0.9943 0.9894 0.9919 0.9868 0.9891
GP 0.9780 0.9864 0.9706 0.9828 0.9563 0.9765 0.9313 0.9665

DBAIN [25] 0.6352 0.8648 0.4885 0.7770 0.4017 0.7107 0.3399 0.6585
NAFSM [22] 0.6348 0.8643 0.4876 0.7757 0.4007 0.7089 0.3386 0.6569
GSAPA [17] 0.9663 0.9692 0.9545 0.9612 0.9278 0.9460 0.8818 0.9218
FMPGF [20] 0.9728 0.9785 0.9680 0.9748 0.9628 0.9707 0.9572 0.9663

VMF [16] 0.9533 0.9683 0.9446 0.9637 0.9313 0.9570 0.9080 0.9463
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The average results presented in Tables 4 and 5 encompass a diverse set of 360 test
color images with different features such as size, shape, color texture, light conditions,
edge characteristics, etc. The complete set of resulting filtered images, along with their
original sizes and denoised versions, is available in the Supplementary Materials. However,
four test images with different distinguishable characteristics were selected for illustrative
purposes to visually analyze the filters’ efficiency: Baboon, Goldhill, Pepper, and Caps.

Figure 3 shows the visual results of some of the comparison filters applied to the
Baboon image, considering the salt-and-pepper, uniform, and correlated noise models from
top to bottom, respectively. Since the Baboon image has more profound and larger textured
areas compared to the other test images, robust filters such as the VMF exhibited lower per-
formance. Because of this, the resulting images of this filter were visually omitted. Among
the filtered images, Figure 3a closely resembles the version of the image before adding
noise. On the other hand, some filtered images show additional artifacts, e.g., Figure 3g.
The ICDNN filter (Figure 3j–l) and the proposed GP filter (Figure 3m–o) excelled in noise
removal while preserving the details of the images across the three different noise models.

(a) (d) (g) (j) (m)

(b) (e) (h) (k) (n)

(c) (f) (i) (l) (o)

Figure 3. Output images of the five best filters considering the Baboon image perturbed by salt-and-
pepper, uniform, and correlated noise, with a noise density of p = 0.20: (a–c) NAFSM; (d–f) DBAIN;
(g–i) FMPGF; (j–l) IDCNN; (m–o) GP.

Figure 4 shows the resulting images produced by some of the comparison filters
applied to the Goldhill image, arranged according to the three noise models from top to
bottom. The Goldhill image has similar color tonalities to the Baboon image but has a few
smooth areas and complex geometric patterns, resulting in significant contrast differences.
For this reason, the filtered images shown here exhibit similar visual behavior to the filtered
Baboon images. As observed in the filtered images, the NAFSM filter performed the best
for salt-and-pepper noise (very close to the version of the image before adding noise).
Although the IDCNN filter (Figure 4j–l) excelled in noise removal while preserving the
details of the images for uniform and correlated noise, the proposed GP (Figure 4m–o) filter
maintained consistent performance across the three different noise models. In general, the
proposed GP filter ranked second for uniform noise and achieved some of the best MAE
values for correlated noise.
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(a) (d) (g) (j) (m)

(b) (e) (h) (k) (n)

(c) (f) (i) (l) (o)

Figure 4. Output images of the five best filters considering the Goldhill image perturbed by salt-and-
pepper, uniform, and correlated noise, with a noise density of p = 0.20: (a–c) NAFSM; (d–f) DBAIN;
(g–i) FMPGF; (j–l) IDCNN; (m–o) GP.

Figures 5 and 6 show the filtered images produced by some of the filters applied to the
images of the Peppers and Caps, respectively, including the VMF (which does not appear
in Figures 3 and 4). Unlike the previous images, in these images, the VMF demonstrates
very competitive results across the three noise models, even producing some of the best
images considering uniform and correlated noise. This is because these images have large,
smooth regions with more contrast information. The VMF, IDCNN, and the proposed GP
filters were generally competitive in these test images for both the uniform and correlated
noise models.

(a) (d) (g) (j)

(b) (e) (h) (k)

Figure 5. Cont.
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(c) (f) (i) (l)

Figure 5. Output images of the five best filters considering the Peppers image perturbed by salt-and-
pepper, uniform, and correlated noise, with a noise density of p = 0.20: (a–c) NAFSM; (d–f) VMF;
(g–i) IDCNN; (j–l) GP.

(a) (d) (g) (j)

(b) (e) (h) (k)

(c) (f) (i) (l)

Figure 6. Output images of the five best filters considering the Caps image perturbed by salt-and-
pepper, uniform, and correlated noise, with a noise density of p = 0.20: (a–c) NAFSM; (d–f) VMF;
(g–i) IDCNN; (j–l) GP.

5.5. Discussion

In this context, overall performance relies on the capacity of a filter to simultaneously
detect and remove any impulse noise model (salt and pepper, uniform, or correlated)
without a preference or specialization. Therefore, the filtering process for each noise model
can be seen as an objective function for a multi-objective problem. Each objective function
depends on the image quality metrics used. Since a lower MAE value means fewer lost
details in the image, searching for the optimum performance considering the MAE can
be seen as a minimization multi-objective problem. Conversely, the cases for the PSNR,
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SSIM, and FSIM all represent maximization multi-objective problems (see Section 3.2).
Figures 7–10 illustrate the extent to which the performance of the comparison filters devi-
ates with respect to a hypothetical optimum, also known as an equilibrium point in the
context of multi-objective optimization [45]. In this work, the equilibrium point represents
the best values obtained simultaneously for each corresponding noise model.

Figure 7 presents a three-dimensional Pareto front for the MAE average values, con-
sidering the complete set of test images with noise densities p = 0.05, 0.10, 0.15, and 0.20.
As can be observed, the MAE average values of the proposed GP filter (indicated by a red
diamond) are among the closest to the equilibrium point for all noise densities, on par
with the IDCNN and GSAPA filters. Given their specialization in salt-and-pepper noise,
the NAFSM and DBAIN move away from the equilibrium point as the noise density level
increases for the other two noise models. The average values of these two filters are located
in a two-dimensional opposite extreme point at p = 0.20. Consistent with the results of
Table 4, the NAFSM and DBAIN are the furthest from the optimum.
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Figure 7. Three-dimensional Pareto front for MAE average values by considering the whole set of
test images with noise densities p = 0.05, 0.10, 0.15, and 0.20.

Similar to the behaviors shown in Figure 7 but oriented in the opposite direction, Figure 8
depicts the three-dimensional Pareto front for the PSNR average values. In this metric, the
IDCNN filter demonstrates the best average values for the maximization multi-objective
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problem, followed by the GP filter, for p = 0.05 and 0.10. However, it is unclear which one of
the average values of the IDCNN, GP, or GSAPA filters is the second closest to equilibrium
for p = 0.15 and 0.20. It is also hard to determine which of the filters yields the furthest
average values from the optimum. Unlike in Figure 7, the DBAIN is in a two-dimensional
extreme point concerning the equilibrium point across all noise densities, followed by the
NAFSM. Similarly to Figure 8, but with normalized values, Figures 9 and 10 present the
three-dimensional Pareto fronts for the SSIM and FSIM average values, respectively.
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Figure 8. Three-dimensional Pareto front for PSNR average values by considering the whole set of
test images with noise densities p = 0.05, 0.10, 0.15, and 0.20.
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Figure 9. Three-dimensional Pareto front for SSIM average values by considering the whole set of
test images with noise densities p = 0.05, 0.10, 0.15, and 0.20.
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Figure 10. Three-dimensional Pareto front for FSIM average values by considering the whole set of
test images with noise densities p = 0.05, 0.10, 0.15, and 0.20.

6. Conclusions and Future Work

This work presents an adaptive filter designed for the removal of three prevalent types
of impulse noise, namely salt and pepper, uniform, and correlated noise, in color digital
images. The proposed filter employs a two-step process, leveraging a binary classification
model to identify noisy pixels within the image, followed by a correction step tailored to
the specific color channels. What sets this proposed filter apart from the majority of filters
utilizing classification models for noise removal is its high level of interpretability. This
interpretability is a result of the evolutionary approach taken during model training—a
process rooted in the principles of the genetic programming paradigm. By evolving the
model through an iterative genetic programming framework, the resulting filter not only
achieves effective noise reduction but also provides insights into the decision-making
process of the classification model. Another distinctive feature of the training is that it only
required a single image purposefully contaminated by the impulse noise models. Using a
unique training image was particularly useful in reducing the computational complexity.

An experimental study was conducted to evaluate the performance of the proposed
adaptive filter. A comparison with other filters was performed via the four image quality
metrics (PSNR, MAE, SSIM, and FSIM). The experimental results show that most com-
parison filters present variability in the values of their quality metrics depending on the
noise model and the image characteristics. In this vein, the proposed filter, called GP in
Tables 4 and 5, consistently obtained good performance values, second only to the ICDNN,
which uses a deep learning-based approach. When measuring efficiency as a minimiz-
ing/maximizing multi-objective problem, as shown in Figures 7–10, the proposed filter is
one of the closest to an equilibrium point across all images and noise models used in the
experiment, on par with the ICDNN and GSAPA filters.

Future work will focus on the integration of alternative machine learning techniques
for the identification and correction of noisy pixels in color digital images. An intriguing
avenue of exploration would be predicting the correlation of color channels to facilitate
improved pixel replacement strategies within the image. This innovative approach holds
promise for further enhancing the robustness and adaptability of the proposed adaptive
filter in diverse real-world scenarios. It would also be interesting to explore how the genetic
programming algorithm can be fine-tuned or adapted according to user preferences and
specific requirements for noise removal in color images. Finally, optimizing the evolu-
tionary settings of the genetic programming algorithm by employing other metaheuristic
algorithms or ensemble approaches is also a topic left for future research.
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MAE Mean absolute error
SSIM Structured similarity index measure
FSIM Feature similarity index measure
NAFSM Noise adaptive fuzzy switching media
DBAIN Decision-based algorithm for the removal of impulse noise
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