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Abstract: Osteoporosis is a common problem in orthopedic medicine, and it has become an important
medical issue in orthopedics as Taiwan is gradually becoming an aging society. In the diagnosis
of osteoporosis, the bone mineral density (BMD) derived from dual-energy X-ray absorptiometry
(DXA) is the main criterion for orthopedic diagnosis of osteoporosis, but due to the high cost of
this equipment and the lower penetration rate of the equipment compared to the X-ray images, the
problem of osteoporosis has not been effectively solved for many people who suffer from osteoporosis.
At present, in clinical diagnosis, doctors are not yet able to accurately interpret X-ray images for
osteoporosis manually and must rely on the data obtained from DXA. In recent years, with the
continuous development of artificial intelligence, especially in the fields of machine learning and
deep learning, significant progress has been made in image recognition. Therefore, it is worthwhile
to revisit the question of whether it is possible to use a convolutional neural network model to read a
hip X-ray image and then predict the patient’s BMD. In this study, we proposed a hip X-ray image
segmentation model and a hip X-ray image recognition classification model. First, we used the U-Net
model as a framework to segment the femoral neck, greater trochanter, Ward’s triangle, and the total
hip in the hip X-ray images. We then performed image matting and data augmentation. Finally, we
constructed a predictive model for osteoporosis using deep learning algorithms. In the segmentation
experiments, we used intersection over union (IoU) as the evaluation metric for image segmentation,
and both the U-Net model and the U-Net++ model achieved segmentation results greater than or
equal to 0.5. In the classification experiments, using the T-score as the classification basis, the total
hip using the DenseNet121 model has the highest accuracy of 74%.

Keywords: osteoporosis; bone mineral density; X-ray imaging; machine learning; deep learning

1. Introduction

Osteoporosis is one of the most common issues in orthopedic medicine today. Peo-
ple have been facing the challenges of osteoporosis due to the natural process of aging.
According to the International Osteoporosis Foundation (IOF), both men and women
over the age of 50 have a significant risk of developing osteoporosis, with approximately
one-fifth of men and one-third of women falling into this category [1]. The risk of osteo-
porosis dramatically increases in women after menopause. It is estimated that there are
approximately 200 million women worldwide who are affected by osteoporosis. As our
country is gradually transitioning into an aging society, the percentage of people afflicted
by osteoporosis is steadily on the rise. Consequently, effective prevention and treatment of
osteoporosis have become vital concerns in the field of orthopedic medicine [2]. In the early
stages of osteoporosis, there are no obvious symptoms, but fractures may occur because
of minor injuries [3]. In severe cases, fractures may occur not only in the hip but also in
the spine, wrist, arm, and knee. Ultrasound [4], peripheral bone densitometry, etc., are the
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main instruments used by orthopedic surgeons to diagnose osteoporosis. However, the
image of the hip formed by these methods is more difficult for the orthopedic surgeon to
read with his/her own eyes and requires the use of more sophisticated instruments, such
as dual-energy X-ray absorptiometry (DXA) [5]. The bone mineral density (BMD) of the
hip is calculated and compared to the T-score of a younger, healthier person to diagnose
osteoporosis [6]. Currently, in the clinical diagnosis of the orthopedic hip, physicians base
their diagnosis of osteoporosis on a DXA report of the femoral neck in the hip and the total
hip. BMD from DXA is the main criterion for diagnosing osteoporosis. In Taiwan, because
DXA is expensive and limited in number, the popularity of the equipment is far less than
that of X-ray imaging, and only high-grade hospitals or nursing homes are equipped with
this equipment, while in some remote areas or villages, it is not convenient to use this
resource. In some remote areas or rural areas, it is not convenient to use this resource, and
cheaper equipment such as ultrasound and peripheral densitometry is mostly used for
diagnosis, resulting in a less accurate and less efficient diagnosis of symptoms.

Currently, physicians are unable to manually read X-ray images for osteoporosis
in clinical diagnosis. Early diagnosis of osteoporosis is important for the prevention
of osteoporotic fractures, and in recent years, artificial intelligence has been gradually
introduced into medical diagnosis [7]. As machine learning and deep learning methods
have made significant advances in image recognition, it is worthwhile to revisit the question
of whether or not it is possible to use convolutional neural networks (CNNs) to read a hip
X-ray image and further predict a patient’s BMD status, and the answer may be affirmative.
While traditional machine learning methods can be effective, they rely on manual feature
extraction, sequential training of the model, and output of the results. With the great leap in
hardware computing power of graphics processing units (GPUs), deep learning can directly
input data into the model, and the neural networks will extract the features by themselves
when they train the model and then output the results. Compared with machine learning,
deep learning omits the part about manual feature extraction. When the amount of data
is relatively large, deep learning can extract more features, and the output results will be
better than traditional machine learning.

In this study, we collected data from 134 orthopedic patients, most of whom were
menopausal women and elderly men. The data collected were patients’ left or right hip
X-ray images and DXA diagnostic data, of which the DXA diagnostic reports were femoral
neck, greater trochanter, Ward’s triangle, and total hip BMD and T-score. We used image
segmentation, image matting, data augmentation, and DXA reports to classify the BMD
and T-score values of the hip X-ray images and designed the experiments using a deep
learning algorithm model to predict the BMD and T-score of the hip. A deep learning
algorithm model was used to design an experiment to predict whether the femoral neck,
greater trochanter, Ward’s triangle, and overall hip findings on hip X-ray images constitute
osteoporosis and to establish a risk classification model of osteoporosis to assist orthopedic
surgeons in diagnosis, hoping to reduce the surgeon’s time spent in diagnosis.

The research question of this study is divided into two parts. The first part is that
in image segmentation, the segmentation results of four areas (femoral neck, greater
trochanter, Ward’s triangle, and total hip) on X-ray images may affect the subsequent image
classification results and whether the segmentation model can correctly and efficiently
segment the contours of the four areas for subsequent image classification experiments to
be conducted. The second part is in the depth learning method: what are the prediction
results of different models, and which model builds the best prediction of osteoporosis and
can more accurately predict the BMD of patients? In addition to exploring the correlation
between the interpretation of hip X-ray images and BMD and the experimental accuracy of
the depth model, we also analyzed two more areas of the hip, namely the greater trochanter
and the Ward’s triangle, to provide physicians with more aspects to diagnose and analyze
the patients. The study will be carried out using CNN and supervised learning methods.
This study will also use CNNs and supervise learning to mark the femoral neck, greater
trochanter, Ward’s triangle, and whole hip as the data input of the whole experiment, and
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then the results of the experiment will be further explored, hoping to provide some help
for the medical diagnosis of osteoporosis.

2. Related Works
2.1. Osteoporosis

Osteoporosis is a silent disease that may not cause pain before fractures occur, but as a
person ages, their bone mass continually decreases in the body. Osteoporosis reduces the
body’s bone mineral density (BMD) and causes fragility of the bones in the hip, spine, and
wrist. It also leads to fractures and other complications (e.g., intervertebral compression
fracture, hip and wrist joint fracture, etc.), which is a disease of bone metabolism [8].
Bone is a self-renewing, active tissue. In the process of maintaining bone health, the body
continuously breaks down old bone and replaces it with new bone tissue. During childhood
and adolescence, new bone formation occurs rapidly, resulting in larger BMD values, which
reach their peak around the age of 20. In the following 7 to 10 years, the rate of new
bone production is about the same as the rate of decomposition of old bone, and the adult
skeleton reaches complete renewal [9]. However, when people reach about 40 years old,
the rate of bone mineral increase slows down. At this point, the rate of decomposition of
bone is greater than the rate of new bone production, and the shell of the bone becomes
thinner, making it more fragile.

In bone density examination, DXA calculates BMD as a direct reference indicator, and
the lower the value of BMD, the more likely you are to get osteoporosis. Another commonly
used indicator is the T-score, which is regarded as an extension of the BMD calculation as
a basis for assessing the presence or absence of osteoporosis. The T-score is calculated by
dividing the difference between the BMD calculated by a specialized instrument such as
DXA and the expected young normal (YN) by the standard deviation (SD) of the BMD in
young people [10]. The T-score’s formula is defined as the following Equation (1):

T-Score = (BMD − YN)/SD (1)

According to the standard definition of the World Health Organization [11], a T-score
greater than −1 indicates normal bone mass, less than or equal to −1 or greater than
−2.5 indicates low bone mass, and less than or equal to −2.5 indicates osteoporosis. As
humans age, bone loss is inevitable, so when the age gradually increases, the two numerical
indicators of bone density and T-score will be lower than those of young people. In the
clinical diagnosis of osteoporosis in the hip, the diagnosis of osteoporosis is based on a
DXA report of the femoral neck and the total hip.

2.2. Machine Learning and Deep Learning in Orthopedics
2.2.1. Osteoporosis Detection

In recent years, the rise of artificial intelligence has become more common in the
medical industry, with machine learning and deep learning as the main applications. In
2016, a study was proposed by S.K. Hong et al. that primarily utilized machine learning and
deep learning to assist orthopedic surgeons in determining the presence of osteoporosis.
The study involved collecting DXA diagnosis results from men aged 50 and above as well
as postmenopausal women. The focus of the study was on the femoral neck in hip X-ray
images. Unlike our study, which solely utilized hip X-ray images as the dataset, their
study incorporated various covariates (e.g., height, age, etc.) as part of the dataset. Under
this prerequisite, it is easier to predict better results. They employed an artificial neural
network (ANN) to perform binary classification of osteoporosis based on T-scores. The
results were promising when evaluating men aged 50 and above and postmenopausal
women. In this study, the accuracy for men reached 85.8%, with a sensitivity of 81.6% and a
specificity of 90.0%. For women, the accuracy was 86.2%, with a sensitivity of 84.7% and a
specificity of 87.7% [12]. In addition, Support Vector Machine (SVM) outperforms Logistic
Regression (LR) in predicting osteoporosis risk and surpassed some traditional clinical
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decision tools, such as the Osteoporosis Self-Assessment Tool (OST), Osteoporosis Risk
Assessment Instrument (ORAI), Simple Calculated Osteoporosis Risk Estimation (SCORE),
and Osteoporosis Index of Risk (OSIRIS). In 2013, T.K. Yoo et al. achieved a predictive
accuracy of 77%, sensitivity of 78%, and specificity of 76% by collecting medical records of
postmenopausal women [13].

In addition to DXA, in 2021, J.W. Adams et al. proposed the application of neural net-
works for screening application analysis in osteoporosis [14], which utilizes low-frequency
radiofrequency data passing through the wrist and uses a multilayer perceptron (MLP)
to do the analysis, and in 2020, B. Zhang et al. proposed to train a CNN model based on
lumbar spine X-ray images to read osteoporosis and bone loss [15], which are also of great
help for orthopedic applications. In 2020, N. Yamamoto et al. used ResNet, GoogLeNet,
and EfficientNet to classify hip X-ray images for osteoporosis [16]. They employed a T-score
for binary classification and focused solely on hip X-ray images, achieving the highest
accuracy of 84% in the experiments conducted with GoogLeNet and EfficientNet B3. The
difference from our study is that in their dataset of 1131 hip X-ray images, 708 were from
patients with confirmed hip fractures. Patients with hip fractures typically have lower
bone density, which is a key indicator of osteoporosis. Therefore, the ability to distinguish
between those with and without osteoporosis was more pronounced in cases of confirmed
hip fractures. The difficulty is how to predict the correct bone density in normal hip X-ray
images. In the same study of determining whether hip X-ray images are osteoporosis, the
experimental model proposed by R. Jang et al. in 2021 was dichotomized by T-score, and
the experimental model mainly uses a deep neural network (DNN) developed based on
VGG16 architecture, with an optimal accuracy of 81%, sensitivity of 91%, and specificity
of 69% [17]. However, in this past study, only hip X-ray imaging data were included in
postmenopausal women clinically at high risk for osteoporotic fractures. Furthermore, the
data set is limited to women. It does not cover male hip X-rays, where bone density is more
difficult to predict.

2.2.2. Fracture Detection

Often, with osteoporosis at the same time, there are compression fractures, and patients
with severe osteoporosis do not need much movement to cause a spinal compression bone
fracture. The same as osteoporosis, spinal compression fractures can also use deep learning
to make predictions. In 2018, F. Cabitza et al. proposed a literature review of spinal bone
image segmentation and osteoarthritis fracture prediction [18], focusing on the literature
on the application of machine learning and deep learning methods in medicine and biology
in the past ten years, among which the most widely used in medical imaging are machine
learning SVM and deep learning. The use of deep learning has been increasing year by
year, and it has become the bulk trend. The proportion of evaluation indexes used in the
model is also summarized, and the results show that the accuracy rate accounts for 45%
of the indexes that most experiments will evaluate, and the sensitivity and specificity of
the model evaluation indexes account for 25%, which is more common in medical and
biological research.

In 2020, W. Abbas et al. used Faster R-CNN to detect and classify fractures in lower leg
X-rays [19], collecting X-ray images of lower leg fractures from 50 patients. The Faster R-
CNN model achieved 94% accuracy, sensitivity, and specificity of 96% and 90%, respectively.
In addition, Y. Yamada et al.’s study used deep learning to determine whether a hip fracture
was a fracture based on X-ray images of the anteroposterior and lateral hip positions [20],
and the accuracy of hip fracture classification was 98% after model training, which was
better than the 95% of the orthopedic surgeon’s interpretation. In addition to the spine
and hip, J. Olczak et al. used machine learning to make predictions on X-rays of the wrist
and ankle [21], and VGG16 had a good effect in determining fracture with an accuracy of
83%. S.W. Chung et al. labeled normal shoulder X-ray images and four abnormal proximal
humerus fracture types and then used image enhancement and CNN model training to
predict whether a fracture occurred [22]. The accuracy of determining a normal shoulder
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and proximal humerus fracture was 96%, the sensitivity was 99%, and the specificity was
97%, which was higher than the accuracy of an orthopedic surgeon’s diagnosis.

2.3. Image Segmentation

In medical imaging, both high- and low-level features of medical images are very
important, but the traditional image segmentation method takes more time to filter out the
unnecessary noise of medical images. Therefore, this study uses U-Net with simple image
semantics and an advanced extended U-Net++ architecture to produce a good effect on
the medical images through feature splicing, so that overfitting is not easy to form. U-Net
model architecture was proposed by O. Ronneberger et al. in 2015 [23]. The left half of the
U-Net model architecture is the Encoder, which is part of feature extraction. It consists of a
series of subsampling modules composed of convolution layers (ReLU) with 3 × 3 kernels
and 2 × 2 max-pooling layers, which reduce dimensionality and increase the number of
channels. Subsampling performs image information restoration, and upsampling performs
image pixel recovery, and then the extracted features are passed down the line. The right
half of the model structure is the Decoder, which is part of upsampling. Upsampling has
a 2 × 2 convolution kernel and Skip Connection for feature fusion, and finally, a 1 × 1
convolution layer is used to output the result. The model architecture of U-Net++ was
proposed by Z. Zhou et al. in 2018 [24]. The difference between U-Net++ and U-Net
architecture is that the jump connection is mainly redesigned in U-Net++, which is used
to fill the semantic difference between Encoder and Decoder feature mapping, improve
feature fusion in Decoder, and make semantic feature mapping easier to optimize. In
addition, dense jump connection paths are added to improve the performance of image
segmentation. The U-Net++ architecture also adds more depth supervisors to prune the
model to adjust the model complexity and changes some loss functions, combining cross
entropy and dice coefficient, to increase the performance of the model.

2.4. Deep Learning Neural Network Models
2.4.1. Convolutional Neural Networks (CNNs)

In 2012, A. Krizhevsky et al. proposed the classical CNN model [25]. CNN is the pro-
cess of obtaining various useful convolution kernels through the neural network learning
method of backpropagation, which is mainly divided into three parts: (1) the convolution
layer, (2) the pooling layer, and (3) the fully connected layer. The CNN model has an
additional convolution layer and a pooling layer compared to traditional deep learning
networks. The convolution layer and the pooling layer are for feature extraction, while
the fully connected layer is for classification. The convolution layer is used to reduce the
dimensionality of the image and convolves the image with a feature detector. The pooling
layer is used to replace a certain area of the image with a value to reduce the size of the
image, block the feature image to reduce the feature map dimension, retain important
features, and obtain the pooled image, which also includes avoiding overfitting. There
are three main approaches: max pooling, mean pooling, and stochastic pooling. The most
common is max pooling. Each neuron in the full connection layer is connected to the neuron
in the upper layer, and each connection has a different weight value. The full connection
layer will integrate all the useful information from the previous results and then flatten the
neural network. Flatten to the neural network, which is responsible for producing the final
classification result in the softmax activation function.

2.4.2. VGGNet

VGGNet was published in 2014 by K. Simonyan et al. from the Visual Geometry Group
of the University of Oxford [26]. Its architecture is simple; the number of weights is very
large, and it contains convolutional kernel weights and fully connected layer weights. The
number of channels from VGGNet is large, and the number of channels in the first layer is
64. Each layer will be doubled later; the maximum number of channels reaches 512; the
number of channels increases, which means that more information can be extracted; and
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many convolution kernels are used. The size is 3 × 3. VGGNet contributes to deepening the
model by using smaller stacks of convolutional kernels, and by deepening the network of
the model, it can be improved in terms of the ability of the model to be simulated. VGGNet
has the advantage of a simpler structure. All networks use the same size of convolutional
kernel (3 × 3) and the largest pooling layer (2 × 2). The disadvantage is that VGGNet has
many parameters, which take up a large amount of memory space. The common ones are
VGG16 and VGG19. The VGG16 model used in this study consists of 13 convolutional
layers, three fully connected layers, five pool layers, and softmax output layers.

2.4.3. ResNet

In 2015, ResNet [27] was proposed by K. He et al. Greatly solved the vanishing
gradient problem of deep networks, and it was pointed out in the paper that the result of
a 20-layer network would not be worse than that of a 56-layer network, and there would
be a degradation problem as the network layer gets deeper. The introduction of residual
learning (RL) can maintain accuracy and speed even when the network layer is deepened,
while the softmax layer is composed of the gradient-log-normalizer (GLN) function, which
contains the classification rate distribution. The architecture of ResNet can adjust the depth
and width of the model by adjusting the number of channels in the block and the stacking
of the blocks, which makes the model easier to optimize, and its invention has solved the
degradation problem of deep neural networks. The common ones are ResNet50, ResNet101,
and ResNet152. ResNet50 is used in this study.

2.4.4. DenseNet

The architecture of DenseNet was proposed by G. Huang et al. in 2018 [28], and
gradients disappear as the network gets deeper. The basic idea is the same as ResNet:
DenseNet does not use a very deep or wide network to obtain image recognition effects,
but by increasing the fluidity of features and reducing the complexity of the network, the
gradient can be obtained from the loss function in each layer of the network, which solves
the problem of gradient disappearance. Compared with ResNet’s splicing of feature maps,
DenseNet has the role of summation, connecting the front network layer with the follow-
ing network layer and reusing network features. DenseNet is a more simplified model
with a lower parameter calculation cost than ResNet. Common ones are DenseNet121,
DenseNet169, and DenseNet201. DenseNet121 was used in this study.

3. Research Methods
3.1. Research Framework

The research framework and process of this study are shown in Figure 1, which is
divided into four parts: (1) dataset, (2) data preprocessing, (3) image categorization, and
(4) result comparison. After obtaining the dataset from the hospital, data preprocessing
(including image labeling, image segmentation, image matting, and data augmentation)
was performed, and then three different convolutional neural network models were used
to categorize the X-ray images of the four parts of the hip, and the classified X-ray images
of the hip were divided into three different datasets for the test. The first one is the original
X-ray images to verify whether the model training with the original dataset will result
in underfitting and poor generalization due to the low complexity of the model and the
small number of features in the images. The second type is the X-ray image after data
augmentation, which aims to verify whether the data augmentation can effectively improve
the overall results and enhance the generalization ability of the model. The third is based
on the results of the classification experiments with the best performance in the T-score
and BMD classifications of the first two types of data and adding the image segmentation
method to verify whether the overall results can be improved. Finally, the results of the
segmentation model experiment, the classification model experiment with or without data
augmentation, and the classification model experiment with or without image segmentation
were compared.
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3.2. Datasets

The source of X-ray images for this study were patients in a regional hospital in
Taiwan from September 2020 to September 2021, a period of A total of 134 left or right hip
radiographs and DXA diagnoses were collected from 134 patients, mostly elderly men and
postmenopausal women, in a retrospective study to collect a dataset that was reviewed
by the Institutional Review Board for Research Ethics Programs and Studies (IRB). A total
of 139 left and right hip radiographs were collected, and for the DXA images, each DXA
image had a diagnostic interval distribution of BMD and T-score values for the femoral
neck, greater trochanter, Ward’s triangle, and total hip, but because the DXA models were
divided into two types, one model only displays bone density and T-score data for the
femoral neck and total hip and lacks data for the greater trochanter and Ward’s triangle.
Further screening of the DXA reports showed 139 data for the femoral neck and total hip
and 72 data for the greater trochanter and Ward’s triangle, with an 8:2 ratio of training set
to test set data for each part, resulting in 111 training data for the femoral neck and total hip
and 57 training data for the greater trochanter and Ward’s triangle. In this study, before the
image segmentation experiment, the collected X-ray images were used to mark the contour
for each of the four parts for subsequent image segmentation experiments.

3.3. Data Preprocess
3.3.1. Image Labeling

In this study, X-ray images of each of the four areas of the patient’s hip (femoral neck,
greater trochanter, Ward’s triangle, and total hip) were separated and manually labeled
using Labelme, an open-source tool that can be used for labeling [29]. The four parts of the
hip were then framed as shown in Figure 2 below, and the labeled image data were batch
converted into binary png files, which were used as inputs for the supervised learning
training of U-Net, U-Net++, and image categorization in the image segmentation process.

3.3.2. Image Segmentation

In this study, four parts of the image labeled X-ray images were used in image seg-
mentation by feeding them into U-Net and U-Net++ models for training, and the bit depth
of the four parts of the image was converted from the original 24 bits to 8 bits before the
model training. The reason for choosing to use U-Net and U-Net++ is that their model
structure is simpler, they do not need to spend a lot of time filtering out the remaining noise
in the medical images, and they are less likely to form overfits for a small number of image
datasets. The binary segmentation prediction results obtained after training the models of
U-Net and U-Net++ are shown in Figure 3 below.
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3.3.3. Image Matting

Based on the four parts of the image segmentation of the binary image and the
original X-ray image together, the original X-ray image only retains the part of the image
segmentation as shown in Figure 4; the other non-part of the contour of the background is
removed, and the image is de-behind in the hope that it can enhance the accuracy of the
classification of the depth of the learning process, and then the image classification will be
segmented images and not segmented images will be compared.
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3.3.4. Data Augmentation

In this study, the X-ray image data were insufficient for image classification experi-
ments. Training the model with the original dataset could lead to issues such as model
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underfitting and poor generalization due to the low complexity of the model and the limited
image features. Therefore, the dataset consisting of X-ray images from four different body
areas was augmented by applying transformations like rotation (e.g., Figure 5), shifting
(e.g., Figure 6), and random scaling (e.g., Figure 7). Importantly, these augmentations
were performed without altering the bone contour morphology, background, or color. The
purpose of data augmentation was to aid in the training of deep learning models [30].
Additionally, data augmentation serves to address underfitting problems in classification
experiments and can potentially enhance experimental accuracy if overfitting issues arise
in the future [31]. Table 1 presents a comparison of data volume before and after data
augmentation.
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Table 1. Comparison of data volume before and after data expansion.

Hip
Dataset Data Augmentation

Methods
Original Images After Data

Augmentation
Total Number

of Images

Femoral Neck
rotation → ±3◦

111
222

777shifting → X-axis ± 5, Y-axis ± 5 444

Greater Trochanter
rotation → ±3◦

57
114

399shifting → X-axis ± 5, Y-axis ± 5 228

Ward’s Triangle rotation → ±3◦
57

114
399shifting → X-axis ± 5, Y-axis ± 5 228

Total Hip rotation → ±3◦
111

222
777shifting → X-axis ± 5, Y-axis ± 5 444

After data expansion through rotation and shifting, each part is expanded by seven
times the amount of data, and after expansion, a random scaling method is added so that
each batch of data is randomly scaled by between −20% and 20% to achieve the effect of
increasing data plurality.

3.4. Experimental Design
3.4.1. Model Evaluation Indicators

Using Intersection over Union (IoU) in object detection for image segmentation [32].
The IoU is calculated by dividing the intersection of two object images by the union, and
when the experimental result is greater than or equal to 0.5, it will be regarded as a valid
image segmentation result, and the IoU is calculated as the following Equation (2):

IoU = (Area of Overlap)/(Area of Union) (2)

In the part of deep learning image classification, the common evaluation method is
accuracy, but in medical and biological research, if we only rely on accuracy, the model
evaluation may not be complete enough. Plus, other evaluation methods can make the
model evaluation more complete. Before explaining the evaluation indexes of the other
models, we will first define the confusion matrix of True Positive (TP), False Positive (FP),
False Negative (FN), and True Negative (TN) to facilitate the calculation, as shown in
Table 2 below.

Table 2. Confusion matrix.

True Condition

Total Population (T) Positive Negative

Predicted condition
Positive True Positive

(TP)
False Positive

(FP)

Negative False Negative
(FN)

True Negative
(TN)

Four cases of confusion matrices

True Positive (TP) Positive diagnosis with real symptoms.

False Positive (FP) Positive diagnosis, but no symptoms.

False Negative (FN) The diagnosis is negative, but symptoms
are present.

True Negative (TN) The diagnosis was negative and symptom-free.

This study belongs to medical image classification, and there are four model evaluation
indexes derived using a confusion matrix, which are accuracy, sensitivity, specificity, and
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F1-score. Each of the model evaluation indexes is defined in Table 3, and the relevant
formulas are as follows in Equations (3)–(6):

Accuracy = (TP + TN)/(TP + FP + FN + TN) (3)

Sensitivity = TP/(TP + FN) (4)

Specificity = TN/(TN + FP) (5)

F1-score = 2TP/(2TP + FP + FN) (6)

Table 3. Definition of model evaluation indicators.

Evaluation Indicators Description

Accuracy Percentage of correctly diagnosed positive and negative patients in all cases.

Sensitivity Known as the True Positive Rate (TPR), the proportion of patients who are positive who are
diagnosed as positive indicates the detection rate of symptoms.

Specificity Known as the True Negative Rate (TNR), the proportion of patients with a negative diagnosis
who are negative indicates the detection rate of asymptomatic patients.

F1-score The F1-score is used to comprehensively assess the performance of a model.

3.4.2. Osteoporosis Classification Index

There are two common diagnostic indexes for the diagnosis of osteoporosis: one
is the BMD calculated by DXA, and the other is the T-score, which is regarded as an
extension of the calculation of BMD. The T-score serves as a more representative criterion for
osteoporosis diagnosis. Therefore, we used these two indexes as the classification indexes
for the subsequent in-depth learning experiments. Bone density was categorized into
normal bone mineral and abnormal bone mineral according to the DXA diagnostic images
corresponding to the patient’s age, and T-score was categorized into not suffering from
osteoporosis (T-score > −2.5) and suffering from osteoporosis (T-score ≤ −2.5) according
to the DXA diagnostic images, as shown in Table 4 below.

Table 4. Classification basis of the experimental T-score in this study.

T-Score Value Degree of Osteoporosis

T-score > −2.5 not suffering from osteoporosis

T-score ≤ −2.5 suffering from osteoporosis

3.4.3. Deep Learning Model Training

In this study, the model training was divided into two parts: image segmentation and
image classification. Image segmentation was performed using radiographic images of
the femoral neck, greater trochanter, Ward’s triangle, and total hip. The labeled images of
the four areas were input into the U-Net and U-Net++ models for training, and the results
of the two model experiments were compared after binary segmentation of the images
was generated by U-Net and U-Net++. Regarding the U-Net and U-Net++ models, we
utilized the Adam optimizer, cross entropy loss function, batch size set to 2, and learning
rate = 0.00001. For image classification, the X-ray images of the four parts of the body
were divided into two categories according to the above-mentioned bone density and
T-score indexes, and the experiments were conducted to compare the segmented and non-
segmented images, and then VGG16, ResNet50, and DenseNet121, which are the innovative
pre-trained models of deep learning, were used for the image classification experiments
in this study after fine-tuning the models. Mreover, VGG16, ResNet50, and DenseNet121,
which are innovative deep learning pre-trained models in recent years, were fine-tuned
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to be used as the image classification experiments in this study. In this study, we used the
Adam optimizer, cross-entropy loss function, batch size set to 16, and a lower learning
rate of 0.000001 in the image classification experiments. All these parameter settings were
determined as the optimal parameters through multiple rounds of testing. Additionally,
we added a dropout layer and a dense layer to the model structure. The purpose of the
dropout layer is to avoid the over-simulation problem in the subsequent experiments, and
the dense layer is used as the output layer to generate various types of probability values
with the softmax function.

3.4.4. K-Fold Cross-Validation

K-fold cross-validation is a widely used model evaluation method in the field of
machine learning. Its primary purpose is to mitigate biases introduced by specific data
splits. The process involves dividing the dataset into K subsets. Subsequently, K rounds of
evaluation are conducted, where, in each round, one of the subsets serves as the validation
set, while the remaining subsets are used for training. This process is repeated until each
subset has had the opportunity to be the validation set. Finally, the average of the evaluation
results from all rounds is computed as the ultimate evaluation metric. For this study, K was
set to 10, and K-fold cross-validation was employed as the model evaluation technique.

4. Experimental Results
4.1. Image Segmentation Results

By building U-Net and U-Net++ models for each of the four parts of the image seg-
mentation experiments, the IoU is used as a metric for model evaluation, and the following
Table 5 shows the experimental results of U-Net and U-Net++ for image segmentation.

Table 5. Results of image segmentation experiments.

Assessment Indicators IoU

Model U-Net U-Net++

Femoral Neck 0.50 0.50

Greater Trochanter 0.78 0.85

Ward’s Triangle 0.54 0.54

Total Hip 0.50 0.50

The training of U-Net and U-Net++ models produced the model-predicted images of
four parts, the original manually labeled X-ray images by IoU computation, and the results
produced after the model training. The U-Net++ results of the greater trochanter were
better than those of U-Net, and the results of other parts were about the same. The results
of segmentation in U-Net++ were used in the present study for the subsequent experiments
on image matting and image categorization.

4.2. Image Classification Results

After image segmentation and matting, the segmented and non-segmented X-ray
images were dichotomized according to the BMD and T-score as an indicator of osteo-
porosis, and the pre-trained models of VGG16, ResNet50, and DenseNet121, which are
innovative deep learning models in recent years, were used to conduct the experiments.
The pre-trained deep learning models VGG16, ResNet50, and DenseNet121 were used to
perform the experiment.

4.2.1. Categorization Results Using the Original Dataset

Using the T-score as an indicator, Table 6 shows the experimental results of image
categorization. The pre-trained model using VGG16 performed the best in the total hip
classification test results with an accuracy of 0.69, sensitivity of 0.72, and specificity of
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0.66, while the pre-trained model using DenseNet121 performed the worst in the total
hip classification test results with an accuracy of only 0.50. It is worth noting that the
pre-trained model using VGG16 had a sensitivity of only 0.23 for the greater trochanter
and a specificity of only 0.16 for the Ward’s triangle. This suggests that there may be issues
related to data imbalance or model overfitting in these two areas of the dataset, leading to
such results. Overall, except for VGG16, which achieves a better fit in the four parts of the
classification training, most other models have underfitting problems in the four parts of
the classification results.

Table 6. Experimental results of image classification by parts (original dataset with T-score).

Femoral Neck

Indicators Sensitivity Specificity F1-Score Accuracy

Training Testing Training Testing Training Testing Training Testing

VGG16 0.89 0.58 0.94 0.59 0.91 0.57 0.92 0.59

ResNet50 0.49 0.52 0.56 0.57 0.46 0.49 0.52 0.55

DenseNet121 0.80 0.42 0.93 0.65 0.86 0.46 0.88 0.55

Greater Trochanter

VGG16 0.96 0.23 0.99 0.90 0.97 0.31 0.99 0.63

ResNet50 0.51 0.53 0.56 0.56 0.44 0.47 0.52 0.55

DenseNet121 0.42 0.33 0.80 0.72 0.48 0.35 0.65 0.57

Ward’s Triangle

VGG16 0.99 0.84 0.94 0.16 0.99 0.74 0.98 0.61

ResNet50 0.72 0.63 0.35 0.34 0.70 0.61 0.61 0.53

DenseNet121 0.76 0.77 0.34 0.32 0.74 0.73 0.63 0.62

Total Hip

VGG16 0.99 0.72 0.99 0.66 0.99 0.68 0.99 0.69

ResNet50 0.42 0.41 0.72 0.67 0.47 0.44 0.58 0.55

DenseNet121 0.51 0.54 0.49 0.46 0.43 0.44 0.50 0.50

Using BMD as an indicator, Table 7 shows each part’s experimental results for image
categorization. The pre-trained model using VGG16 showed the best performance in the
total hip classification test results, with an accuracy of 0.70, sensitivity of 0.54, and specificity
of 0.80, while the pre-trained model using DenseNet121 showed the worst performance
in the greater trochanter classification test results, with an accuracy of only 0.47. The
pre-trained model using VGG16 has a specificity of only 0.1 in the classification test of the
Ward’s triangle, which again suggests that the dataset in this area may have data imbalance
or model overfitting problems. Overall, except for VGG16, which achieves a better fit on
the four parts of the classification, most of the other models have underfitting problems.

Regardless of whether T-score or BMD was used as the index for the classification
of osteoporosis, overall, most of the experiments suffered from underfitting, as well as
possible data imbalance or model overfitting in the greater trochanter and Ward’s triangle,
which required data augmentation and data balancing to improve the accuracy as well as
to increase the generalization ability of the model.
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Table 7. Experimental results of image classification by parts (original dataset with BMD).

Femoral Neck

Indicators Sensitivity Specificity F1-Score Accuracy

Training Testing Training Testing Training Testing Training Testing

VGG16 0.99 0.76 0.96 0.43 0.98 0.73 0.98 0.64

ResNet50 0.65 0.63 0.36 0.42 0.63 0.62 0.55 0.56

DenseNet121 0.67 0.66 0.36 0.34 0.63 0.61 0.57 0.54

Greater Trochanter

VGG16 0.97 0.36 0.99 0.70 0.98 0.42 0.98 0.53

ResNet50 0.46 0.55 0.54 0.53 0.42 0.51 0.50 0.54

DenseNet121 0.45 0.43 0.54 0.52 0.41 0.38 0.50 0.47

Ward’s Triangle

VGG16 0.99 0.91 0.65 0.1 0.92 0.78 0.88 0.65

ResNet50 0.61 0.61 0.46 0.51 0.60 0.62 0.55 0.58

DenseNet121 0.77 0.36 0.21 0.75 0.68 0.40 0.59 0.60

Total Hip

VGG16 0.99 0.54 0.99 0.80 0.99 0.57 0.99 0.70

ResNet50 0.31 0.38 0.97 0.70 0.34 0.39 0.57 0.58

DenseNet121 0.60 0.36 0.87 0.75 0.66 0.40 0.76 0.60

4.2.2. Categorization Results Using Data Augmentation

Using the T-score as an indicator, Table 8 shows the experimental results of image
categorization for each part. The pre-trained model using DenseNet121 has the best
performance on the classification test results of the total hip, with an accuracy of 0.74 and
an F1-score of 0.71, while the pre-trained model using VGG16 has the worst performance
on the classification test results of the Ward’s triangle, with an accuracy of only 0.47.
Overall, most of the experimental results are better than the classification results of the
original dataset, and the problem of model under-simulation has been solved. Although the
sensitivity of the big rumble and the sensitivity of the Ward’s triangle are still low, the lowest
value is 0.40, which is much better than the classification results of the original dataset.

Using BMD as an indicator, Table 9 shows the experimental results of image catego-
rization for each part. The pre-trained model using VGG16 performed the best in the total
hip classification test with an accuracy of 0.74 and an F1-score of 0.69, while the pre-trained
model using DenseNet121 performed the worst in the femoral neck classification test with
an accuracy of only 0.55. Overall, most of the experimental results were better than the
original dataset, which also solved the problem of model under-simulation. Overall, most
of the experimental results were better than the classification results of the original dataset,
and the problem of model under-simulation was solved. Although the sensitivity value of
the Ward’s triangle is still low (the lowest is 0.49), it is still much better than the classification
result of the original dataset.
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Table 8. Experimental results of image classification by parts (augmentation dataset with T-score).

Femoral Neck

Indicators Sensitivity Specificity F1-Score Accuracy

Training Testing Training Testing Training Testing Training Testing

VGG16 0.98 0.74 0.99 0.61 0.98 0.67 0.98 0.67

ResNet50 0.98 0.61 0.98 0.81 0.98 0.66 0.98 0.72

DenseNet121 0.98 0.64 0.98 0.77 0.98 0.67 0.98 0.71

Greater Trochanter

VGG16 0.99 0.52 0.99 0.83 0.99 0.58 0.99 0.71

ResNet50 0.99 0.43 0.99 0.81 0.99 0.50 0.99 0.66

DenseNet121 0.98 0.50 0.97 0.72 0.98 0.53 0.98 0.63

Ward’s Triangle

VGG16 0.93 0.61 0.94 0.42 0.94 0.64 0.94 0.55

ResNet50 0.99 0.75 0.95 0.40 0.96 0.73 0.96 0.63

DenseNet121 0.97 0.69 0.98 0.50 0.97 0.71 0.97 0.63

Total Hip

VGG16 0.99 0.67 0.99 0.81 0.99 0.70 0.99 0.74

ResNet50 0.98 0.62 0.96 0.75 0.97 0.65 0.97 0.69

DenseNet121 0.98 0.68 0.99 0.80 0.99 0.71 0.99 0.74

Table 9. Experimental results of image classification by parts (augmentation dataset with BMD).

Femoral Neck

Indicators Sensitivity Specificity F1-Score Accuracy

Training Testing Training Testing Training Testing Training Testing

VGG16 0.99 0.77 0.99 0.65 0.99 0.78 0.99 0.73

ResNet50 0.98 0.52 0.98 0.61 0.98 0.59 0.98 0.55

DenseNet121 0.99 0.44 0.99 0.76 0.99 0.55 0.99 0.55

Greater Trochanter

VGG16 0.99 0.64 0.95 0.74 0.97 0.67 0.97 0.69

ResNet50 0.99 0.63 0.99 0.71 0.99 0.65 0.99 0.67

DenseNet121 0.99 0.71 0.97 0.66 0.98 0.70 0.98 0.69

Ward’s Triangle

VGG16 0.96 0.84 0.97 0.49 0.96 0.74 0.96 0.73

ResNet50 0.96 0.72 0.94 0.48 0.95 0.73 0.95 0.64

DenseNet121 0.87 0.47 0.97 0.80 0.92 0.53 0.92 0.67

Total Hip

VGG16 0.99 0.73 0.96 0.75 0.98 0.69 0.98 0.74

ResNet50 0.99 0.57 0.98 0.85 0.98 0.63 0.98 0.74

DenseNet121 0.94 0.47 0.99 0.80 0.96 0.53 0.97 0.67

Regardless of whether T-score or BMD was used as the index for osteoporosis classi-
fication, on the whole, most of the experimental results were improved after using data
augmentation, although there were still lower values for sensitivity and specificity, probably
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because the balance of the original dataset of greater trochanter and Ward’s triangle was
very poor, so even though data augmentation and balancing were carried out, it still could
not compensate for the lower values of sensitivity and specificity, but they were much
improved compared with those before using data augmentation. Next, the best results of
the two osteoporosis classification indexes were added to the image segmentation method
to test whether the overall values could be further improved.

4.2.3. Categorization Results Using Image Segmentation

We used the best performance of each of the two previous classification metrics as the
test for the image segmentation experiment and tested whether the addition of segmen-
tation improved accuracy. Table 10 shows the results of the classification experiments of
the pre-trained model using DenseNet121 on the total hip as a T-score indicator and the
pre-trained model using VGG16 on the total hip as a BMD indicator. In the classification
results after adding image segmentation, no matter whether using T-score or BMD as the
index for osteoporosis classification, overall, the accuracy and F1-score did not improve,
and the accuracy decreased from 74% to about 60%.

Table 10. Experimental results of image categorization of total hip.

Using T-Score as an Indicator

Total Hip

Indicators Sensitivity Specificity F1-score Accuracy

Training Testing Training Testing Training Testing Training Testing

DenseNet121 0.98 0.79 0.97 0.44 0.97 0.65 0.97 0.60

Using BMD as an indicator

VGG16 0.99 0.70 0.96 0.56 0.98 0.59 0.98 0.62

4.3. Discussion of Experiments

In the experiments of image segmentation, based on the modeling of U-Net and U-
Net++, the results of the experiments were taken to the last two decimal places, in which
the results of the femoral neck, Ward’s triangle, and total hip were the same, and the results
of U-Net++ in the region of the greater trochanter were a little bit higher than the results of
U-Net, and the results of all segmentation results were greater than equal to 0.5, so all of
the segmentations can be considered effective image segmentation.

In the experiments on image classification, we divided them into three experiments.
The first experiment was to use the classification results of the original dataset, whether
using T-score or BMD as the index for osteoporosis classification. Most of the experimental
results had the problem of underfitting as well as the problem of data imbalance or model
overfitting in the greater trochanter and Ward’s triangle, so it is necessary to improve the
accuracy and generalization ability of the model through the methods of data augmentation
and data balancing. The second experiment is the classification of results using data
augmentation. Whether using T-score or BMD as the index for osteoporosis classification, on
the whole, most of the experimental results have improved after using data augmentation.
However, there are still lower values of sensitivity and specificity in the big rumble and
Ward’s triangle, probably because the big rumble and Ward’s triangle are poorly balanced
in the original dataset. Thus, even with data augmentation and balancing, it still cannot
make up for the lower values of sensitivity and specificity due to the imbalance of the
data. However, compared to the situation before using the data augmentation, it has
improved quite a lot. The third experiment was to use the results of image segmentation.
We then added the best results of the two osteoporosis classification indexes to the image
segmentation method to test whether it could improve the classification ability of the
model. However, in the classification results after adding the image segmentation, the
overall accuracy of the hip and the F1-score did not improve, and the accuracy dropped
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from the highest of 74% to 60%, regardless of whether the osteoporosis classification indexes
were based on the T-score or the BMD. We hypothesize that the reason may be that the
X-ray images of each part of the hip need the surrounding feature information, and the
use of image cutting cuts out the surrounding feature information, which leads to the poor
performance of the model classification results, so the model without cutting has a higher
classification ability. Looking at the osteoporosis classification index, the experimental
results of BMD and T-score do not differ too much, and the overall classification accuracy of
the hip is higher than that of other parts of the body, which is more in line with the doctor’s
expectation, while the classification accuracy of the Ward’s triangle is lower because of
the serious data imbalance problem in the original dataset. Although the sensitivity and
specificity of the classification results improved after data expansion, more results were still
below 0.50. In the classification results of the three deep learning models, VGG16 performs
better than DenseNet121 and ResNet50, indicating that the classification of hip X-ray
images does not necessarily require using the deeper network structures of DenseNet121
and ResNet50. Using a general VGG16 can help solve this classification problem.

5. Conclusions

Most people are often troubled by osteoporosis as they get older. Since the condition
is not obvious in the early stages, people often ignore that their BMD is decreasing with
age, and it is important to promote the concept of bone protection and early prevention
and treatment. In recent years, convolutional neural networks have been widely used in
different fields of research, and the number of medical image analyses is increasing year
by year, such as in thoracic medicine, dermatology, ophthalmology, orthopedics, dentistry,
etc. Artificial intelligence is expected to be able to promote healthcare in a variety of ways,
not only in the diagnosis of the patient and the development of medicines but also to
become a good assistant to the doctor, providing better and more personalized medical
services so that people can get better healthcare. Through the analysis of hip X-ray images,
this study constructed two sets of deep learning models for automatic segmentation and
classification of X-ray images, which can be used as a reference for osteoporosis assessment
and diagnosis.

In this study’s image segmentation results, using the U-Net and U-Net++ construction
models, the IoU results of the femoral neck, wards triangle, and total hip showed similar
results, and the 0.85 of the U-Net++ in the greater trochanter was better than the 0.78 of the
U-Net, and all the segmented IoU were greater than equal to 0.5, which can be regarded as a
valid segmentation result. In the experiments on image classification, due to the insufficient
amount of raw data, the model complexity is too low and the number of image features is
too small, which indirectly leads to model underfitting. The accuracy of the experiments
can be improved by data augmentation, and the data augmentation and the addition of
the dropout layer in the model are also helpful for the subsequent experiments to prevent
overfitting. Using the T-score as a basis for classification, the model with DenseNet121
and without U-Net++ image segmentation has the highest accuracy of 74% on the total
hip, and the F1-score is 71%. In the deep learning model comparison, most of the VGG16
experimental accuracies are a bit higher than both DenseNet121 and ResNet50, indicating
that instead of using a deeper neural network, the simpler VGG16 model can perform
well in the problem of hip X-ray image classification. In the best experimental results, the
accuracy of total hip classification was 74% for both T-score and BMD. Using the overall
hip image as the basis for osteoporosis was more consistent with the orthopedic surgeon’s
diagnosis of the hip.

The contribution of this study lies in the establishment of an automated X-ray image
segmentation model and an automated model for reading X-ray images of osteoporosis,
hoping to provide some assistance to orthopedic surgeons in the diagnosis of osteoporosis.
Moreover, the cost of DXA is relatively high. As the middle-aged and old-aged population
is increasing year by year, the number of people with osteoporosis is surely increasing year
by year, but DXA is only available in higher-grade hospitals or nursing homes. Patients
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with osteoporosis in remote areas can only rely on ultrasound or other simpler instruments,
which are less accurate than DXA. It is hoped that the automated image segmentation and
classification model developed in this study can be provided to remote hospitals or nursing
homes in the future so that deep learning can be utilized in osteoporosis diagnosis and
treatment.

There are some research limitations in this study. The dataset used and established by
the method proposed in this study is limited. The source of X-ray images for this study
was patients in a regional hospital in Taiwan from September 2020 to September 2021; a
total of 139 left and right hip radiographs were collected. The limited quantity of data
may be attributed to ethical considerations surrounding the collection of medical imaging
data. It is anticipated that, in the future, the ability of the model for classification could
be enhanced by gathering a more extensive dataset. Currently, we rely on pre-established
model architectures for classification. In the future, developing a custom model specifically
tailored for osteoporosis X-ray images could potentially lead to significant advancements
in osteoporosis prediction research.
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