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Abstract: In the evolving landscape of portfolio management (PM), the fusion of advanced machine
learning techniques with traditional financial methodologies has opened new avenues for innovation.
Our study introduces a cutting-edge model combining deep reinforcement learning (DRL) with a non-
stationary transformer architecture. This model is designed to decode complex patterns in financial
time-series data, enhancing portfolio management strategies with deeper insights and robustness. It
effectively tackles the challenges of data heterogeneity and market uncertainty, key obstacles in PM.
Our approach integrates key macroeconomic indicators and targeted news sentiment analysis into its
framework, capturing a comprehensive picture of market dynamics. This amalgamation of varied
data types addresses the multifaceted nature of financial markets, enhancing the model’s ability to
navigate the complexities of asset management. Rigorous testing demonstrates the model’s efficacy,
highlighting the benefits of blending diverse data sources and sophisticated algorithmic approaches
in mastering the nuances of PM.

Keywords: portfolio management (PM); deep reinforcement learning (DRL); non-stationary
transformer; sequential processing; data heterogeneity; market uncertainty; diverse knowledge
integration; multimodal learning

1. Introduction

Portfolio management (PM) is a multifaceted domain where investors strive to opti-
mise financial asset returns to achieve long-term goals. It can be differentiated into passive
or active management, whereby each branch adopts unique strategies that fulfil these
objectives. Active PM [1,2], characterised by dynamic trading to secure higher profits,
contrasts with the conservative nature of passive PM, which aims to mirror market indices
for steady, long-term gains. Prevailing practices in active PM often rely on predefined
trends, which increasingly fall short against the complexities of volatile financial markets.
This limitation has catalysed a shift toward incorporating advanced machine learning and
artificial intelligence technologies [3,4]. Reinforcement learning (RL), renowned for its
dynamic adaptability to market changes, has been applied in various PM models, such as
iCNN [5], EIIE [6], SARL [7], AlphaStock [8], and GPM [9]. These models utilise historical
asset prices and external information such as financial news, extracting features to guide
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portfolio rebalancing and decision-making. However, PM still grapples with challenges that
include the extraction of non-stationary temporal sequential features, integrating macro-
and microeconomic knowledge, and diversifying portfolios to minimise risk exposure.

To tackle these challenges, our study introduces a unique algorithmic approach
that combines a non-stationary transformer with deep reinforcement learning algorithms
(NSTD). This innovative approach is designed to reconstitute non-stationary features post-
stationary processing of time-series data, merge multimodal information from diverse
sources, and enrich portfolio diversity to mitigate concentration risks. The proposed model
integrates macroeconomic indicators and sentiment scores from financial news into the
non-stationary transformer framework, enhancing its ability to navigate the complexities
of PM with data heterogeneity and environmental uncertainty. The model’s enhanced
performance, validated through rigorous experimentation, demonstrates the efficacy of
combining diverse knowledge sources for PM.

This paper is structured as follows: Section 2 reviews related work in PM, focusing on
the evolution of active and passive strategies and the role of machine learning in this do-
main. Section 3 elaborates on our methodology, detailing the integration of macroeconomic
features and sentiment scores from news data into the non-stationary transformer and its
synergy with DRL. Sections 4 and 5 present our experimental setup and findings, offering
a comparative analysis of the NSTD model against traditional and modern deep-learning
financial strategies. Finally, Section 6 concludes the paper, summarising our key findings
and suggesting avenues for future research in PM.

2. Related Work

Portfolio management (PM) is primarily divided into passive and active strategies.
The passive approach focuses on replicating the performance of specific indices. This
approach is exemplified in studies such as [10], which explore integrating environmental,
social, and governance (ESG) factors into passive portfolio strategies. Additionally, [11]
discusses dynamic asset allocation strategies for passive management to achieve bench-
mark tracking objectives, whereas [12] emphasises the evaluation methodologies crucial
for aligning passive portfolios with their target indices. This contrasts with the work on
active portfolio management, which seeks maximal profit independent of any specific
index. Traditional active PM strategies, as categorised by [13], include equal fund allo-
cation, follow-the-winner, follow-the-loser, and pattern-matching approaches. However,
these strategies need more adaptability to accommodate real-world financial markets’
unpredictable dynamics.

The evolving financial landscape and increasing data availability have highlighted the
limitations of traditional PM methods. This realisation has spurred a transition towards
advanced machine learning technologies. The emergence of DRL, combining deep learning
(DL) and reinforcement learning (RL) [14–16], represents a significant advancement in
addressing PM’s inherent challenges. DRL synergises the representational capabilities
of DL with RL’s strategic decision-making, which is ideal for the volatile finance sector.
Early explorations showcased neural networks’ potential in predicting market behaviour
(e.g., [4,17]). The subsequent integration of RL, as seen in [5,18], enhanced decision-
making capabilities in PM models. Furthermore, the time-series nature of financial data
has led to the adoption of transformer mechanisms, as illustrated by [19], to unravel
temporal information. This approach has been refined in subsequent studies that aim
to reduce the computational complexity of self-attention mechanisms (such as [20,21]).
Further advancements, including Autoformer [22] and Pyraformer [23], have significantly
contributed to robust time-series analysis and forecasting.

The non-stationary transformer framework, introduced in [24], tackles the challenge
of non-stationarity in time-series data, a critical limitation of conventional Transformers.
The framework, integrating series stationarisation and de-stationary attention modules,
is specifically designed to enhance the handling of non-stationary data. This unique
module optimises the processing by dynamically adjusting its focus, enabling the trans-
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former to adapt more effectively to varying data patterns, thereby enhancing transformer
performance across diverse forecasting scenarios. This novel approach aligns well with
reinforcement learning algorithms, offering enhanced capabilities for PM. The framework’s
ability to adapt to non-stationary data makes it particularly relevant to the challenges and
complexities encountered in passive and active PM.

3. Methodology

This study enhances portfolio management by integrating DRL with macroeconomic
modelling, utilising insights from macroeconomic factors and sentiment analysis from news
data. The proposed method employs a non-stationary transformer, as shown in Figure 1,
further augmented by a model-free, off-policy actor-critic algorithm - the deep deterministic
policy gradient (DDPG) algorithm [25]. In this framework, “X_data” represents the historical
stock data, “X_news” denotes the sentiment-analysed news information, and “X_macro”
signifies macroeconomic indicators, such as GDP, CPI, and unemployment rates. These
diverse data streams are concatenated and normalised before input into the transformer.
Within the transformer, “Q”, “K”, and “V” denote the transformed “queries”, “keys”,
and “values”, respectively, in the self-attention mechanism. These components are critical
for adapting the model to the non-stationarity in financial time series by recalibrating
attention in response to the dynamic changes in the data. The actor and critic modules in
the DDPG framework use the transformer’s output to make decisions about asset allocation,
optimising the portfolio performance.

Figure 1. NSTD (non-stationary transformer with deep reinforcement Learning) framework.

3.1. Incorporating Macroeconomic Analysis through Composite Indicators
3.1.1. Theoretical Framework for Financial Metrics in Macroeconomics

The interconnection between macroeconomic conditions and financial markets plays a
crucial role in shaping investment strategies. Macroeconomic analysis, as a tool, reflects
the broader economic states and influences market trajectories, thus informing financial
decision-making in an augmented DRL environment [26,27]. This symbiosis between eco-
nomic indicators and market dynamics forms the theoretical basis for integrating macroe-
conomic insights into financial metrics.

3.1.2. Data Collection and Preprocessing

The selection of macroeconomic data from 2012 to 2016 was intentional, catering to the
study’s aim to analyse market behaviour under various economic backdrops. This period
was marked by significant global events affecting market stability, such as the European
debt crisis stabilisation efforts and the U.S. Federal Reserve’s tapering of quantitative easing,
which offer a rich context for assessing the robustness of the proposed model. Monthly
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GDP data from BBKI, together with CPI and Unemployment Rate data from the FRED
database, were incorporated due to their comprehensive reflection of economic health and
their influence on market movements.

3.1.3. Impact of Macroeconomic Indicators on Market Movements

This section outlines the effect of key macroeconomic indicators on market dynamics:

• Real GDP: Real GDP, sourced from the Bureau of Economic Analysis (BEA), represents
the total economic output, calculated as GDP = C+G+ I + NX, where C is consumer
spending, G is government expenditures, I is investment, and NX is net exports.

• Consumer Price Index (CPI): Provided by the Bureau of Labor Statistics (BLS), the
CPI reflects changes in the price level of a consumer goods and services market
basket, calculated through a two-stage process involving fundamental indexes for
each item–area combination and aggregate indexes.

• Unemployment Rate: Reported by the BLS, the unemployment rate is based on pro-
jections from an interindustry model and the National Employment Matrix, assuming
full employment conditions.

These indicators, essential in assessing the economy’s health, significantly impact
forecasting market trends. Incorporating macroeconomic indicators into portfolio man-
agement provides a nuanced understanding of market movements, essential for informed
investment decisions. Portfolio managers can align their strategies with economic trends
by analysing indicators such as GDP growth, inflation data, and employment statistics.
This process involves using these indicators as predictive tools for market trajectory, aiding
in risk mitigation and opportunity identification, especially in the context of major stock
indices like the S&P 500.

3.2. Incorporating Sentiment Analysis for Stock Insight from News Data
3.2.1. Framework for Sentiment Analysis

In the realm of stock market analysis, the integration of sentiment analysis has emerged
as a pivotal tool for deriving insights from news articles related to individual stocks.
This methodology utilises a sentiment analysis framework, which assigns a sentiment
score to each news headline. These scores range from −1, denoting a strongly negative
sentiment, to 1, indicating a strongly positive sentiment, with 0 representing a neutral
stance. This quantification of news sentiment is instrumental in evaluating its potential
impact on the microeconomic variables associated with stocks, as highlighted in the works
by Devlin et al. [28] and Yang et al. [29].

3.2.2. Data Collection and Preprocessing

The initial phase of this methodology involves procuring a comprehensive dataset
of stock-related news articles. The Daily Financial News dataset [30], which is comprised
of a substantial collection of news headlines, provides the foundation for the subsequent
sentiment analysis. The preprocessing of this dataset includes a thorough cleansing process
to eliminate inconsistencies, converting date formats into a standardised form, and organ-
ising the data chronologically based on the date and the stock symbol. This meticulous
preprocessing ensures that the dataset is primed for accurate sentiment analysis.

3.2.3. Sentiment Analysis and Lexicon Enhancement

The sentiment analysis uses the VADER (Valence Aware Dictionary and sEntiment
Reasoner) dictionary [31], a tool recognised for its proficiency in analysing texts from social
media and news headlines. Its effectiveness stems from its ability to discern the polarity
and the intensity of emotions conveyed in textual data. To refine the sentiment analysis
further, the lexicon is enhanced by incorporating the 25 most frequently occurring words in
the dataset’s headlines. Each word is assigned a specific sentiment value, calibrated on a
scale from −1 to 1. This augmentation of the lexicon is aimed at bolstering the precision of
the sentiment analysis.
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3.2.4. Sentiment Scoring and Data Structuring

Upon completion of the sentiment analysis, each news headline is ascribed a sentiment
score based on the augmented VADER lexicon. The outcome of this analysis is a structured
dataset, which includes the original news headlines and their corresponding sentiment
scores. This dataset is uniquely formatted to encapsulate the date of the news article,
the sentiment score, and the associated stock symbol. Such a structured arrangement of
data is specifically designed to facilitate its seamless integration into the non-stationary
transformer portfolio management model. Including this sentiment-based information is
anticipated to enhance the model’s ability to make more informed and accurate predictions
regarding stock market trends and behaviours.

3.3. Non-Stationary Transformer with Deep Deterministic Policy Gradient

The advancement in portfolio management techniques has led us to develop the
“Adaptive Transformer” (non-stationary transformer) within the DDPG framework. This in-
novative element is tailored to recognise and adapt to the dynamic statistical characteristics
of financial time-series data, thereby enhancing the model’s predictive accuracy. The archi-
tecture of our “Adaptive Transformer” comprises four key components, each intricately
designed to work in harmony, ensuring the model’s adeptness in navigating the ever-
changing landscape of financial data. We delve into the specifics of these components.

3.3.1. Projector Layer

At the core of the “Adaptive Transformer” resides the projector layer, an intricate
multilayer perceptron (MLP). It recognises and adapts to non-stationary elements within
sequential data streams. The procedure initiates with a global average pooling operation to
reduce temporal complexity, thereby isolating pivotal attributes:

xpooled = GlobalAvgPooling(x) (1)

After this data reduction, dense layers (Densehidden) ensue. These layers are enhanced
with ReLU activation functions and L2 regularisation, a strategy that aids in distilling
and integrating intricate data features. The process also benefits from the application of
a hyperbolic tangent function, culminating in an output that encapsulates the identified
non-stationary elements:

y = tanh(Densehidden(xpooled)) (2)

3.3.2. Transformer Encoder Layer

The transformer encoder layer, an integral part of the “Adaptive Transformer”, has
a self-attention mechanism that is particularly proficient in meticulously examining and
interpreting financial data sequences. Embedded within this layer are two pivotal adap-
tive elements, termed tau_learner (Projectorτ) and delta_learner (Projector∆). These
components are instrumental in learning temporal scaling and shifting factors, endow-
ing the model with a refined acuity for adjusting its self-attention outputs to the present
non-stationary conditions:

τ = exp(Projectorτ(xraw, σenc)), ∆ = Projector∆(xraw, µenc), (3)

where σenc and µenc denote the standard deviation and mean of the input sequences,
respectively. The recalibrated multi-head attention (MHA) output is thus articulated
as follows:

Attnoutput = MHA(x) · τ + ∆ (4)



Appl. Sci. 2024, 14, 274 6 of 17

To promote robustness and prevent overfitting, layer normalisation and a dropout
strategy are applied:

x = LayerNorm(x + Dropout(Attnoutput)) (5)

3.3.3. Policy Network with Transformer

The policy network with transformer is designed to formulate a strategic policy for
decision-making processes. It integrates state representations with the robust architecture
of the transformer, succeeded by batch normalisation and a series of dense layers, thereby
creating a refined state-to-action mapping function, represented as:

Net = DenseReLU(BatchNorm(Transformer(xstate))) (6)

Following this, a Softmax function, tempered by a specified parameter, delineates
the action space. This process is essential in balancing the imperative dichotomy between
exploratory and exploitative behaviours:

Action = SoftmaxT(Dense(Net))× action_bound (7)

(Equation (7)) signifies the culmination of the network’s computation, where the
Softmax function, adjusted by a temperature factor, contributes to a probabilistic selection
of actions constrained within the defined bounds of possible actions.

3.3.4. Q-Value Network with Transformer

Simultaneously, incorporating a transformer architecture, the Q-value network calcu-
lates the expected returns for various state-action pairs. A concurrent transformer encoder
framework facilitates these calculations. Initially, the inputs representing the states and
actions are processed independently, followed by normalisation. They are then concate-
nated to combine the normalised state and action inputs into a single tensor. This combined
tensor then passes through a series of dense layers, ultimately leading to the extraction of
the Q-value. The Q-value represents a unified assessment of the anticipated reward for a
given state–action pair:

Q(s, a) = Dense(Concat(BatchNorm(s), BatchNorm(a))) (8)

The resultant Q-value is then articulated as:

Qvalue = Dense(Netcombined) (9)

This expression encapsulates the network’s computation, where the Q-value embodies
the expected utility of adopting a specific action in a given state, as per the model’s
learned policy.

3.3.5. Optimisation and Policy Learning within DDPG Framework

The DDPG algorithm lies at the heart of our optimisation technique. It is a model-free,
off-policy actor-critic algorithm using deep function approximators that can learn policies
in high-dimensional, continuous action spaces. Our implementation encapsulates an actor
network designed to map states to actions, and a critic network that evaluates the action
given the state.

The initialisation of these networks is performed with random weights, which are
subsequently refined through training iterations. The actor network proposes an action
given the current state, while the critic network appraises the proposed action by estimating
the Q-value. The policy, parameterised by θ, generates actions predicated on the current
state, aiming to maximise the cumulative reward:
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J(µθ) =
∫

S
ρµ(s)r(s, µθ(s)) ds = Es∼ρµ [r(s, µθ(s))] (10)

where µθ is the deterministic policy, Qµ is the action-value function according to policy
µ, and ρµ is the state distribution under policy µ. Considering the dynamic realm of
portfolio management, we recalibrate this function to account for the sequential product of
portfolio values:

JT(µθ) = J0

T

∏
t=1

(1 + r(st, µθ(st))) (11)

where J0 represents the initial portfolio valuation.
To ensure stability and promote convergence, we employ target networks for the actor

and critic, which are slowly updated to track the learned networks. The update for the
target networks is governed by a soft update parameter, τ, ensuring that the targets change
gradually, which helps with the stability of learning:

θtarget ← τθ + (1− τ)θtarget (12)

The policy is refined through gradient ascent on the expected cumulative reward, while
the critic’s parameters are adjusted based on the temporal difference error. To maintain
exploration, a noise process N is added to the actor’s policy action:

at = µθ(st) +Nt (13)

where at is the chosen action, µθ is the current policy, st is the current state, and Nt is the
noise term at time t, which decays during training to allow the policy to exploit the learned
values as it matures.

This methodical learning process culminates in developing a policy that maximises
expected returns, aligning with our objective of enhancing portfolio management strategies.

3.3.6. Action and Reward Formulation

At any discrete time step t, the action at is identified with the portfolio’s asset allocation
vector wt. The policy endeavours to optimise the allocation for the forthcoming period
wt+1, maintaining the constraint of unitary sum across all asset weights. The updated
allocation, which adapts to price fluctuations yt, is formalised as:

wt+1 =
yt ⊙ wt

yt · wt
(14)

Here, ⊙ denotes the Hadamard product and · represents the conventional dot product.
The reward function, a pivotal determinant of the portfolio’s efficacy, encompasses

transaction costs denoted by β, and is thus defined to capture the realised profit at time t:

rt = wt · yt − β
n

∑
i=1
|wi,t+1 − wi,t| (15)

Enhancing the practical applicability and differentiability of the reward function, we
integrate fixed commission rates cb for buying and cs for selling. The reward function is
consequently defined as:

rt = ln(βt · (wt · yt)) (16)

The ultimate objective is to amplify the cumulative return R across a designated
interval T, expressed as:

R(s1, w1, . . . , sT , wT) =
1
T

T

∑
t=1

ln(βt · (wt · yt)) (17)
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The optimisation conundrum thus revolves around ascertaining the optimal policy µθ

that maximises this return:

µ∗θ = arg max
µθ

1
T

T

∑
t=1

ln(βt · (wt · yt)) (18)

The policy gradient with respect to the parameters θ is meticulously derived:

∇θµθ(τ) =
1
T

T

∑
t=1
∇θ ln(µθ(wt, st)) (19)

and the parameters are then conscientiously updated with a learning rate λ:

θ ← θ + λ∇θ JT(µθ) (20)

The normalisation by T is crucial, as it appropriately scales the gradient irrespective of
batch sizes, an essential factor for effective mini-batch training in a stochastic environment.

Overall, this structured approach in the methodology section ensures a comprehensive
understanding of the sophisticated non-stationary transformer model and its integra-
tion with the DDPG framework, which is crucial for advanced portfolio management
techniques.

4. Experiment Setup
4.1. Dataset

Our analysis focuses on S&P 500 data from 2012 to 2016 (Table 1), chosen for their
market stability and diverse economic conditions. For efficiency, we selected the top
100 stocks by trading volume from the 2012 S&P 500 index. This selection means our
stock portfolio is based on these 100 stocks, allowing for a targeted and effective training
approach for our deep reinforcement learning models. To ensure robust model training
and validation, we divide our dataset into distinct subsets:

• Training Set (2012–2014): The initial phase of our analysis utilises data from 2012 to 2014
as the training set. This period is crucial for training our models, tuning hyperparameters,
and optimising algorithms based on historical market trends.

• Validation Set (2015): Data from 2015 are used as the validation set. The primary
purpose of this phase is to compare different time window hyperparameters and select
the optimal ones for application in our models. This step is critical for assessing the
performance of our models under different market conditions and ensuring that they
can generalise well to new data.

• Testing Set (2016): Finally, the 2016 data serve as our testing set. In this phase, we
apply the models refined through training and validation to this unseen dataset.
This allows us to compare the performance of various models and configurations,
providing insights into their effectiveness and robustness.

The rationale behind this structured approach to dataset splitting is to ensure that our
models are well-trained on historical data and thoroughly validated before being tested.
By comparing the performance of models trained and validated on different subsets, we
can more accurately assess their predictive capabilities and adaptability to market changes.
This systematic approach significantly enhances the reliability and validity of our findings.

Table 1. Statistics of training, validation and testing datasets.

Period Date Range #Examples

Training 2 January 2012 to 31 December 2014 754
Validation 4 January 2015 to 31 December 2015 252

Testing 2 January 2016 to 30 December 2016 252
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4.2. Compared Models

Our empirical evaluation contextualises the performance of the NSTD model by
benchmarking it against a selection of advanced deep-learning models and traditional
financial strategies. The models in this comparative analysis include the following:

1. Deep Learning Approaches:

• Transformer: [19] Employs self-attention mechanisms for long-range dependen-
cies in time-series data.

• LSTM (Long Short-Term Memory): [32] Excels in learning from sequences with
long temporal dependencies.

• GRU (Gated Recurrent Unit): [33] Designed to capture dependencies of varying
time scales in sequential data.

• RNN (Recurrent Neural Network): [34] Processes temporal sequences through
a directed graph architecture.

• EIIE (Ensemble of Identical Independent Evaluators): [6] Processes time series
for each asset independently while maintaining shared network parameters.

• EI3 (Ensemble of Identical Independent Inception): [35] Extracts and aggregates
multiscale price movement information, integrated with a recurrent reinforce-
ment learning framework.

2. Traditional Financial Strategies:

• OLMAR (Online Moving Average Reversion): [36] Utilises mean reversion
effect based on moving average.

• UBAH (Uniform Buy and Hold): [37] Allocates funds uniformly across assets,
maintaining them without further trading actions.

4.3. Evaluating Investment Strategies with Financial Metrics

We employ several financial metrics to evaluate the efficiency and risk of investment
portfolios, as discussed below:

4.3.1. Accumulative Return (AR)

Accumulative return (AR) [38] is a crucial metric that quantifies the total return
generated by an investment relative to its initial capital. It is calculated as the ratio of the
final portfolio value pt to the initial portfolio value p0, directly measuring the overall return
on investment. Mathematically, it is expressed as:

AR =
pt

p0
(21)

where pt represents the portfolio’s value at the end of the investment period, and p0 is the
portfolio’s initial value. This metric is particularly useful for assessing an investment’s
growth or decline over a specified time frame. A higher AR indicates a greater return
on the initial capital invested, signifying effective portfolio management and investment
strategy. Conversely, an AR of less than one means a decline in the value of the initial
investment, indicating potential areas for strategic adjustment in portfolio management.
AR is thus an integral component of a comprehensive investment performance analysis,
providing a straightforward yet powerful tool for investors to gauge the efficacy of their
investment decisions.

4.3.2. Sharpe Ratio

The Sharpe ratio [39] measures risk-adjusted returns:

Sharpe Ratio =
Rp − R f

σp
(22)
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where Rp is the return of the portfolio, R f is the risk-free rate, and σp is the standard
deviation of the portfolio’s excess return. A Sharpe ratio greater than one is generally
considered good, indicating adequate returns relative to the risk taken.

4.3.3. Maximum Drawdown (MDD)

MDD [40] assesses the largest drop in portfolio value:

MDD =
Trough Value− Peak Value

Peak Value
(23)

A lower MDD is preferable, indicating less potential loss.

4.3.4. Sortino Ratio

The Sortino ratio [41] differentiates harmful volatility from overall volatility:

Sortino Ratio =
Rp − R f

σd
(24)

where σd is the standard deviation of negative asset returns. A higher Sortino ratio indicates
better performance concerning downside risk.

These metrics offer valuable insights for strategic portfolio positioning and serve as
benchmarks for evaluating post-investment performance. When integrated with DRL strate-
gies, they optimise investment strategies, adapting to changing economic landscapes.

5. Experiment and Analysis

Our experiment used the S&P 500 data from 2012 to 2014 as our training dataset.
This selection was instrumental in training our models, providing a comprehensive rep-
resentation of market activities over this period. To circumvent memory overflow issues
commonly encountered in prolonged training sessions, we adopted a strategy of fine-
tuning model parameters after every set of 200 episodes. The training process was executed
in a phased manner, with each model undergoing training ten times, each consisting of
200 episodes, amounting to a total of 2000 training rounds. The learning rate was subse-
quently reduced to 90% of its value from the previous phase. This progressive reduction in
the learning rate facilitated nuanced model tuning and optimisation. The optimisation was
conducted using the Adam optimiser.

In addition to the primary training process, we conducted comprehensive comparative
experiments to determine the most effective hyperparameters for our model. These ex-
periments focused on two key hyperparameters: the temperature coefficient and window
length. The window length, a crucial hyperparameter in time-series analysis, was also
rigorously examined. To ascertain the most effective window length for capturing mar-
ket dynamics, we considered a range of durations, specifically 3, 5, 7, 10, 15, 20, 30, and
50 days. For the temperature coefficient, to control the portfolio diversity, we explored
various settings, including 500, 1000, 3000, 5000, and 10000, to observe the impact on model
performance. Each model, configured with a distinct set of these hyperparameters, was
initially trained on our training dataset (S&P 500 data from 2012 to 2014). Following the
training phase, we saved the model parameters and then validated their performance on
a separate validation dataset from 2015. This approach allowed us to thoroughly assess
the influence of each hyperparameter on the model’s efficacy, enabling us to fine-tune our
model for optimal performance.

Upon identifying the most effective hyperparameters through our rigorous evaluation
process, we applied these optimised settings to a backtest dataset from 2016. This phase of
our research involved conducting comparative ablation studies using four distinct dataset
compositions, each offering unique insights into the model’s performance. The primary
dataset encompassed a comprehensive blend of macroeconomic indicators, sentiment scores
from news articles, and historical stock trading data, providing a holistic view of market
influences. The second dataset was curated by excluding macroeconomic indicators while
maintaining sentiment scores and historical trading data, allowing us to assess the impact
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of macroeconomic factors on model performance. In contrast, the third dataset excluded
news sentiment scores but included macroeconomic indicators alongside historical data,
enabling us to isolate and evaluate the influence of sentiment analysis. The fourth and final
dataset was streamlined to include only historical stock trading data, offering a baseline to
gauge the added value of macroeconomic and sentiment data.

Moreover, to contextualise our model’s performance within the broader landscape of
financial analytics, we conducted comparative analyses against other leading deep learning
models and established traditional financial models. This comprehensive approach allowed
us to validate our model’s efficacy and understand its standing relative to the current state-
of-the-art methodologies in financial portfolio management.

5.1. Evaluation on Validated Dataset

Upon training our models with the dataset from 2012 to 2014, we evaluated the efficacy of
various hyperparameters—specifically, the window length and temperature coefficients—using
the 2015 dataset as our validation set. This step was crucial to calibrate the models effectively
before final testing.

In Figure 2, the analysis of cumulative returns for the validation dataset across varying
window lengths reveals the strategic influence of the chosen time frame. An intriguing peri-
odic decline in Pt/P0 at the end of each month is observed, which may reflect routine market
occurrences such as settlement cycles. The 10-day window (NSTD-10), marked in red, con-
sistently surpasses other strategies from mid-year to year-end, indicating that a 10-day span
effectively leverages historical data to inform current market predictions. Shorter windows
like the 3-day (NSTD-3) and 5-day (NSTD-5) show early promise but later falter, suggest-
ing they may be too narrow to grasp the larger cyclical movements of the market that a
10-day window encapsulates. Conversely, the longer window strategies—NSTD-30 and
NSTD-50—demonstrate smoother return trajectories but do not achieve the higher returns
seen with NSTD-10. This implies that while longer windows provide a broader historical
context, potentially capturing more extended market cycles, they may lack the agility to
capitalise on immediate market shifts. The 10-day strategy emerges as the most effective,
balancing immediate market reactivity with understanding broader market movements,
highlighting its efficiency for this period.

In Figure 3, the cumulative returns for the validated dataset are mapped out across
different temperature coefficients (T) on portfolio performance. The parameter T influ-
ences the dispersion of stock weights within the portfolio, with higher T values promoting
diversification and lower values indicating concentration. Portfolios with T = 5000 and
T = 10,000, respectively, demonstrate a marked increase in cumulative return, especially
noticeable from mid-year onward, with T = 10,000 displaying a pronounced uptick as the
year concludes. This trend suggests that higher temperature settings, while promoting
a more balanced weight distribution across the portfolio, may also enable the capture
of growth opportunities in a rising market, contributing to higher overall returns. Con-
versely, the T = 500 and T = 1000 settings indicate a preference for a more concentrated
portfolio. While this strategy may yield higher short-term gains by focusing on a limited
number of stocks, it also introduces heightened risk, as the portfolio is more vulnera-
ble to the volatility of its few constituents. These lower T values produce more modest
growth throughout the year, with occasional dips reflecting the increased risk exposure.
The T = 3000 setting balances the two extremes. Portfolios with this temperature setting
deliver steady, consistent growth over the year, suggesting that a moderate T value can
effectively balance the benefits of diversification with the potential gains from a more
focused investment strategy. Overall, the temperature parameter’s calibration is crucial for
managing risk and capturing growth within a portfolio.
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Figure 2. Comparison with different window lengths in 2015 (validation set).

Figure 3. Comparison with different temperature controllers in 2015 (validation set).

5.2. Ablation Study for Features

After obtaining the optimal hyperparameters, we tested our model based on different
features in 2016 (test set). The comprehensive NSTD-10 includes macroeconomic indicators,
sentiment-derived news scores, and historical stock trading data. The NSTD without
Macro excludes macroeconomic indicators while retaining news scores and historical data.
The NSTD without News removes news scores featuring macroeconomic indicators and
historical data. The NSTD Pure is the most pared-down, solely comprising historical stock
trading data.

Figure 4 shows the year-long trajectory of cumulative returns for each NSTD variant.
The NSTD-10 model sets a high standard with an impressive performance, indicating that a
10-day time window robustly captures market trends when combined with a full feature set.
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Meanwhile, the NSTD without the macro variant experiences a moderate decline in return.
This suggests that while macroeconomic indicators contribute to performance, their absence
does not drastically diminish the model’s efficacy. Conversely, the model without news
sentiment maintains a competitive AR close to the full model’s, suggesting that excluding
sentiment indicators might not significantly impact the model’s performance in the presence
of other data types. Yet, as shown in Table 2, the altered ratios of Sharpe and Sortino indicate
that news scores play a role in refining risk-adjusted returns. Notably, the NSTD Pure
model demonstrates a significant decrease in AR and the Sharpe ratio, emphasising the
collective value of integrating both macroeconomic and sentiment indicators into the model.
This variant’s underperformance highlights the complexity of market dynamics and the
importance of a diversified information set for effective market analysis. It is evident that
the comprehensive NSTD-10 model, with its full suite of indicators, excels, underscoring
the importance of a multifaceted approach to capturing the full spectrum of market signals.
However, the model does not predict the recurrent end-of-month drops in Pt/P0, which
indicates a potential area for model refinement to accommodate such cyclical patterns.

Figure 4. Backtesting compared with ablation study in 2016.

Table 2. Different metrics’ performance of models.

Model AR MDD Sharpe Ratio Sortino Ratio

NSTD 10 3.353 0.277 1.859 282.140
NSTD without News 3.000 0.182 1.273 78.099
NSTD without Macro 2.311 0.158 1.668 0.000

NSTD Pure 1.801 0.237 0.443 3.101
Transformer 1.460 0.231 1.119 7.823

RNN 1.953 0.282 1.303 29.622
LSTM 1.921 0.248 1.824 0.000
GRU 1.622 0.251 1.772 158.717
EI3 2.196 0.291 1.446 27.188

EIIE 2.174 0.298 1.773 0.000
OLMAR 2.349 0.221 1.517 98.337
UBAH 2.349 0.221 1.517 98.337

5.3. Comparison with Other Deep Learning and Traditional Financial Methods

In demonstrating the superior performance of the NSTD-10 model, we conducted
extensive backtesting analysis over 2016 and compared it with deep learning architectures,
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such as the transformer, RNN, LSTM, and GRU, as well as state-of-the-art EIIE and EI3, to-
gether with traditional financial algorithms like online moving average reversion (OLMAR)
and the universal portfolio algorithm (UBAH). The evaluation hinged on critical financial
metrics: annual return (AR), maximum drawdown (MDD), Sharpe ratio, and Sortino ratio.
The analysis depicted in Figure 5, when considered alongside the quantitative metrics from
Table 2, offers a nuanced assessment of various model performances. The NSTD-10 model
emerges as the frontrunner, boasting an annual return (AR) of 3.353, indicative of its effec-
tive market trend utilisation for optimal capital increase. Its Sharpe ratio of 1.859 and a
notably high Sortino ratio of 282.140 reflect its adeptness at securing returns per unit of
risk, with a pronounced efficiency in mitigating downside risk. Delving into the NSTD
model variations, the omission of news sentiment analysis (NSTD without News) results
in a slight decrease in AR to 3.000 and a marked reduction in the Sortino ratio to 78.099,
highlighting the significant contribution of sentiment data to forecasting precision and
risk-adjusted returns. Excluding macroeconomic indicators (NSTD without Macro), we
see a reduced AR of 2.311. However, it attains the lowest maximum drawdown (MDD)
at 0.158, signifying macroeconomic insights’ protective role against market downturns.
The NSTD Pure variant, which solely incorporates historical trading data, reiterates the
value of a diversified data approach, as evidenced by its lower metrics across the spectrum.
Compared with established deep learning models such as the transformer, RNN, LSTM,
and GRU, these models exhibit commendable results but do not match the NSTD-10’s su-
perior standards. Specifically, the LSTM model’s high Sharpe ratio of 1.824 underscores its
strength in handling time-series data. Nevertheless, this does not correlate with a high AR
or Sortino ratio, pointing to potential limitations in market dynamics adaptation. The en-
semble approaches EI3, and EIIE offers more consistent returns. However, their Sharpe and
Sortino ratios fall short of those achieved by NSTD-10, suggesting that while reliable, they
may not optimise the balance between risk and return. Traditional financial methods such
as OLMAR and UBAH maintain stable risk management but lack NSTD-10’s efficacy in
capitalising on market conditions. Overall, the NSTD-10 model’s unmatched performance
in terms of overall returns and risk management sets a new standard in portfolio manage-
ment. It underscores the strategic benefit of integrating comprehensive market data, from
economic indicators to sentiment analysis, within a sophisticated algorithmic framework.

Figure 5. Backtesting compared with different models in 2016.

6. Conclusions

This study introduces the non-stationary transformer with the deep deterministic
policy gradient (NSTD) model, a novel approach in portfolio management that leverages
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macroeconomic insights and sentiment analysis. Our empirical evaluation suggests that the
NSTD model, particularly with a 10-day window, outperforms various financial strategies
by effectively capturing market trends and balancing short-term reactivity with long-term
insights. While integrating many data sources has significantly augmented the decision-
making process, we acknowledge the model’s current limitation in predicting specific
cyclical market movements. In future work, we aim to enhance the NSTD model’s efficacy
by incorporating a broader spectrum of external economic indicators and multimodal data,
which will improve its predictive capabilities for cyclical patterns. This development is
expected to refine our understanding of complex market dynamics and support the creation
of more informed and adaptable investment strategies. The NSTD model represents a
significant step forward in applying machine learning to portfolio management. With these
enhancements, it has the potential to set a new benchmark for technological innovation in
financial analysis.
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