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Featured Application: This study is part of an ongoing research project titled “Smart Computing
Models, Sensors, and Early diagnostic speech and language deficiencies indicators in Child
Communication”, with the acronym “SmartSpeech”. The SmartSpeech project aims to assist
clinicians in decision making regarding early diagnosis for children with neurodevelopmental
disorders. SmartSpeech employs a serious game designed explicitly by the interdisciplinary
team for this project, with activities aiming to evaluate the child’s developmental profile. The
game is implemented in a tablet application and utilizes voice, and biomarkers of heart rate and
gaze, for additional physiological measurements. A back-end system supports user registration,
data collection, data analysis, and decision making. The potential application of this work is to
allow the SmartSpeech machine learning model to better capture underlying patterns in the data,
determine the most effective feature construction techniques for the given problem, and employ
the results of this study to enhance the screening automated prediction results of the machine
learning model in neurodevelopmental disorders.

Abstract: Developmental domains refer to different areas of a child’s growth and maturation, includ-
ing physical, language, cognitive, and social–emotional skills. Understanding these domains helps
parents, caregivers, and professionals track a child’s progress and identify potential areas of concern.
Nevertheless, due to the high level of heterogeneity and overlap, neurodevelopmental disorders
may go undiagnosed in children for a crucial period. Detecting neurodevelopmental disorders at an
early stage is fundamental. Digital tools like artificial intelligence can help clinicians with the early
detection process. To achieve this, a new method has been proposed that creates artificial features
from the original ones derived from the SmartSpeech project, using a feature construction procedure
guided by the Grammatical Evolution technique. The new features from a machine learning model
are used to predict neurodevelopmental disorders. Comparative experiments demonstrated that
using the feature creation method outperformed other machine learning methods for predicting
neurodevelopmental disorders. In many cases, the reduction in the test error reaches up to 65% to the
next better one.

Keywords: neurodevelopmental disorders; screening; feature construction; grammatical evolution;
evolutionary techniques

1. Introduction

Neurodevelopmental disorder (ND) refers to a variety of disorders disturbing neuro-
logical development that impact on several domains, including communication, learning,
social interaction, behavior, cognitive processes, and emotional functioning. Neurodevel-
opmental disorders (NDs) typically manifest during childhood [1,2]. Autism Spectrum
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Disorders (ASD), Attention Deficit Hyperactivity Disorder (ADHD), Intellectual Disability
(ID), Specific Learning Disorder (SLD), and Communication Disorders (CD) are among the
conditions that fall under the umbrella of neurodevelopmental disorders (NDs) [1].

Specific characteristics associated with each disorder are outlined in the Diagnostic and
Statistical Manual of Mental illnesses, Fifth Edition (DSM-5), which offers descriptions for
mental illnesses [1,3]. ASD is an ND with clinically severe functional deficits in distinctive,
recurring patterns of behavior, interests, or hobbies, along with persistent challenges in
social interaction and communication [1,2,4]. ASD can impact individuals’ educational
experiences, employment opportunities, and social relationships [5]. ADHD is another ND
with hallmarks on inattention, impulsivity, and hyperactivity, with a disruptive impact
on daily functioning [1,2,4]. It can affect academic performance, work productivity, and
interpersonal relationships [6,7]. ID is an ND characterized by deficiencies in general
mental skills that affect adaptive functioning, such as verbal skills, learning aptitude, logical
reasoning ability, and practical intelligence (problem-solving) [1,8]. ID can limit individuals’
independence and ability to live a fully inclusive life [9,10]. SLD is characterized by a
major impairment in one or more of the following domains: oral expression, listening
comprehension, basic reading and/or writing skills, and mathematical calculation and/or
problem-solving abilities [1,2,11]. SLD can lead to challenges in academic settings and
impact individuals’ self-esteem and confidence [12,13]. CD encompasses a collection of
disorders, including speech sound disorder, language disorder, childhood-onset fluency
disorder, social (pragmatic) communication disorder, and unspecified communication
disorder [1]. These disorders are characterized by ongoing challenges in the acquisition,
comprehension, and/or utilization of spoken or written language, resulting in an inability
to express themselves, engage in meaningful conversations, and participate fully in social
and professional interactions and effective communication [14].

Although NDs are frequently detectable in their early phases, the main obstacle is
the lengthy and subjective character of conventional diagnostic techniques [2,15]. Conse-
quently, there exists a minimum waiting period over a year between the initial suspicion
and the subsequent confirmation of diagnosis. The process of diagnosis requires a sig-
nificant amount of time, around 10 h [15]. Moreover, there is a persistent and increasing
demand for appointments that surpasses the maximum capacity of pediatric clinics in many
countries [16]. Apart from being time-consuming and expensive, conventional diagnostic
techniques carry a considerable risk of receiving an incorrect diagnosis. This can lead to
unnecessary prolonged pharmaceutical therapy, decreased functionality, and increased
vulnerability to further health and social complications [17]. This backlog in diagnostic
procedures has led to significant delays in providing timely treatment and intervention for
children with suspected developmental disorders. Consequently, many children may go
undiagnosed and may be left without the necessary support and resources they require
during this critical period of their development. Early detection and intervention of NDs
are of the utmost significance, as they contribute significantly to the reduction or mitigation
of symptoms, eventually enhancing the individual’s overall quality of life. Nevertheless,
due to the temporal intervals between the onset of worry and the establishment of a diag-
nosis, a significant amount of precious time is squandered while this condition persists
undiscovered. Clinicians need to use digital tools, such as artificial intelligence, to aid in
efficient early detection. Machine learning techniques possess the potential to not only
expedite and enhance the accuracy of assessing the risk for NDs, but also play a crucial
role in optimizing the entire diagnostic procedure and facilitating expedited access to vital
therapeutic interventions for individuals and affected families [18].

It is well documented that to ensure accuracy and cost-effectiveness, it is necessary to
employ swift and sophisticated standards [17,19–21]. The study of Alam et al. highlights
the use of machine learning (ML) tools and deep learning (DL) techniques, such as con-
volutional neural network (CNN) and Deep Learning APIs (Application Programming
Interface), to detect and treat signs of ADHD and ASD at an early stage [17]. The diagnostic
procedures that utilize machine learning (ML) decrease the time required for intervention,
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enhance accuracy, and also facilitate comprehension of the techniques and algorithms
employed for various types of data. Multiple studies have been conducted on ASD [22–28],
ADHD [29–31], ID [9,10,32], SLD [33,34], CD [35], and NDs [4,19,20,31,36–38], providing
evidence that ML algorithms can enhance diagnostic strategies for NDs. Further, more
research efforts that seek to investigate ML approaches for early detection and diagnosis
of NDs in real-life situations are crucial for ensuring timely intervention and optimizing
lifelong outcomes [17,19,20,39–41]. This way, early intervention can help children with
NDs develop their skills and abilities to the fullest extent possible. Even further, evidence
in the literature suggests that SGs offer a flexible and innovative approach to assessing neu-
rodevelopmental issues [3,40,42–44]. This is due to their ability to actively engage, adapt,
and conduct tests that help to ensure more accurate, reliable, and user-friendly evaluations,
eventually enhancing our understanding of NDs and enabling appropriate interventions.

SmartSpeech is an ongoing project intended to support and enhance screening and
early detection procedures of NDs, utilizing smart computing models, sensors, and early
diagnostic speech and language deficiency indicators [45]. The ultimate goal of this smart
project is to improve children’s communication abilities in the context of digital healthcare,
thus leading to a positive economic outcome in line with current digital trends. The project
includes an online environment for gathering data from parents and physicians as well as a
serious game (SG) for the child to interact with. The SG fosters active participation and mo-
tivation in individuals with NDs by providing an attractive and stimulating environment
with 3D animations that bring life to characters guiding the child in the SG’s adventurous
story. The SG also simulates real-world scenarios incorporating various modalities, includ-
ing visual, auditory, and tactile elements, leading to more accurate observations of behavior
and abilities in contexts that closely resemble everyday situations and enabling a more
comprehensive assessment of diverse skills, like sensory processing, motor coordination,
and social interactions. The SG design is adapted to suit the specific needs and abilities of
each individual, ensuring that assessments are tailored to the unique characteristics of those
with NDs, providing a more accurate representation of their skills and challenges [40]. Data
collection is handled through a mobile application that collects child responses to game
activities and biometric data using sensors and timestamps. The game data are processed
on a dedicated server back-end service to examine early clinical screening/diagnostic
patterns on specified domains or skills towards automated indications. The SmartSpeech
ML approach enables automated decision-making based on the child’s communication
profile and biometrics.

The primary objective of this study is to contribute to creating new digital tools
and procedures aiding clinicians in their decision-making processes. Precisely, this study
investigates a new proposed method that creates artificial features from the original ones
derived from the SmartSpeech project, using a procedure guided by the Grammatical
Evolution technique. The new features from an ML model are used to predict NDs.
Comparative experiments are used to identify speech, language, hearing, psychomotor,
cognitive, and psychoemotional impairments in both typically developed (TD) children and
children with NDs. In a range of neural networks, different optimizers were employed and
evaluated using our novel datasets. The objective was to automatically classify individuals
in a screening procedure based on neurodevelopmental abilities.

Next, Section 2 “Background information” provides a detailed explanation of the
chosen approach’s architecture for feature construction and classification tasks, outlining
the algorithms employed to compare the suggested method. In Section 3, the materials and
methods are described. Section 4 presents a comparison between the proposed approach
and three machine learning methods. Section 5 “Discussion—Conclusions” critically
analyzes and evaluates the proposed method and summarizes the findings of this study.

2. Background Information

This section offers a concise overview of the necessary background material and
algorithms pertaining to the study.
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Learning data are typically categorized into two distinct parts: training data and test
data. Learning models adapt their parameters by utilizing the training data as input and,
subsequently, undergo evaluation using the test data. The quantity of learning model
parameters is directly influenced by the dimensionality of the input problem, namely, the
number of features. Large problems require significant memory resources to store and
manage learning models with an impact of input problem dimensionality on the efficacy
of neural networks. Feature construction refers to the process of creating new features by
applying mathematical operations, transformations, or combinations to existing ones. The
ultimate goal of this method is to enhance the model by adding more details or connections
that may not be immediately apparent in the original features [46].

Feature construction includes various techniques such as polynomial feature creation,
interaction term generation, and the application of mathematical transformations, such as
logarithmic transformations. To put it simply, feature construction specifically focuses on gen-
erating new features by applying mathematical operations or transformations, and it is often
used when discussing the enhancement of machine learning model performance. Techniques
like PCA, MRMR, and auto-encoder are used to reduce input data dimensionality [46,47].

2.1. The Proposed Method

The proposed method is based on Grammatical Evolution [48] to generate new artificial
features from existing ones. Grammatical Evolution is an evolutionary algorithm, used to
produce valid programs in any language defined by a BNF grammar, and it has been used
in a variety of cases, such as solving trigonometric identities [49], automatic composition
of music [50], combinatorial optimization problems [51], etc. The feature construction
method was initially proposed by Gavrilis et al. [52] and was applied in many real world
problems, such as classification of EEG signals [53], prediction of COVID-19 cases [54],
Hemiplegia type detection [55], etc. The feature construction method creates artificial
features from the original ones through Grammatical Evolution, and every set of potential
features is evaluated on the training set using a machine learning method. For the purpose
of this article, the freely available software QFc, version 1.0 [56] was selected and the
evaluation machine learning model was a Radial Basis Function (RBF) network [57,58] with
H processing nodes. The main steps of the used method are as follows (Algorithm 1):

Algorithm 1. The main steps of the used method

Initialization Step

1. Denote as NC the number of chromosomes in the population, with NG being the
maximum number of allowed iterations and NF the number of constructed features.

2. Set the selection rate pS and the mutation rate pM.
3. Initialize the chromosomes as random integer numbers.
4. Set iter = 1

Genetic Step

1. Calculate fitness.

1. For Every chromosome gi, i = 1,. . ., NC do
2. Create NF artificial features for the gi chromosome, using the Grammatical

Evolution procedure.

1. Apply the new features to the training set.
2. Set the fitness value fi as the training error of an RBF network on the

modified training set.

3. End For

2. Apply crossover. Firstly, they are sorted according to their fitness values. The first
(1-pS)NC chromosomes are copied intact to the next generation. The rest will be
replaced by offsprings created in the crossover procedure. Every new offspring is
created with one-point crossover from two distinct parents selected by
tournament selection.

3. Apply the mutation procedure to the chromosomes with pM rate.



Appl. Sci. 2024, 14, 305 5 of 18

Algorithm 1. Cont.

Termination Check

1. Set iter = iter + 1
2. If iter >= NG then terminate else goto Genetic Step.

2.2. Comparative Methods

The following methods were used for comparison.
The RBF neural network is a specific type of neural network that incorporates radial

basis functions as activation functions. The Radial Basis Function (RBF) is a mathematical
function employed in diverse machine learning techniques, specifically in kernelized ap-
proaches like Support Vector Machines (SVMs). The RBF kernel, also called the Gaussian
kernel, is utilized to quantify the similarity or distance between data points in a modified
feature space [59,60]. RBF neural networks are widely used for various tasks such as classi-
fication, regression, and clustering. It has proven to be effective in dealing with problems
that involve high-dimensional input spaces and intricate patterns [58,61,62]. Compared
with other neural network architectures, the RBF network has numerous advantages, such
as its ability to process high-dimensional data, quick training and testing times, and the
ability to approximate any continuous function with unrestricted accuracy [58,63]. The
RBF network has three layers: input, hidden, and output. The multilayer perceptron train
with the BFGS optimization method (MLP BFGS) is also employed. The hidden layer uses
radial basis functions as activation functions to convert the input data into a new repre-
sentation. Subsequently, this representation is used for subsequent analysis in the output
layer. The network’s output is calculated by taking the modified inputs and combining
them linearly. Therefore, the result is a binary determination expressed as either TRUE or
FALSE, representing the two outcomes (NDs is predicted, NDs is not predicted) [40]. The
radial basis networks were used in the construction phase of the artificial features since
they are distinguished not only for their fast training method but also for their ability to
approximate any function if a sufficient number of computing units are available [64].

MLP BFGS is a specific type of artificial neural network trained with the BFGS op-
timization method. The application of the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
optimization algorithm to train a Multilayer Perceptron (MLP) represents a departure from
conventional methods. In this approach, the BFGS algorithm, designed for unconstrained
optimization, is employed to minimize the MLP’s loss function. The MLP architecture
comprises layers of neurons with weighted connections, and the BFGS algorithm iteratively
updates the weights by considering the inverse Hessian matrix. This methodology entails
a distinct departure from the standard stochastic gradient descent approaches commonly
used in neural network training. The study of Hery, Ibrahim, and June [65] illustrated the
efficacy and robustness of this unconventional MLP training strategy for small-dimensional
test problems. The BFGS algorithm’s capacity for non-convex optimization is leveraged
to achieve convergence towards optimal parameter values, showcasing its potential as
an alternative in neural network optimization paradigms. It has been utilized in various
experimental studies using machine learning, for instance, in automatic EEG epilepsy
detection [66], feature extraction for hemiplegia type detection [55], Neural Networks on
Biometric Datasets for Screening Speech and Language Deficiencies in Child Communi-
cation [41], machine learning for the performance and early drop prediction for higher
education students [67], and many more.

MLP PCA is an application of MLP that involves a two-step training process. Initially,
Principal Component Analysis (PCA) is employed to reduce the dimensionality of the
input data, extracting principal components that capture the essential variance [68]. The
resulting transformed features, representing a subset of principal components, serve as
inputs for training the MLP. The MLP, with its layered architecture, learns intricate patterns
and relationships within the reduced-dimensional data [52]. This approach offers advan-
tages such as mitigating the curse of dimensionality and potentially improving the MLP’s
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generalization to new, unseen instances [69]. Careful hyperparameter tuning, including
selecting the optimal number of principal components and configuring the MLP architec-
ture, is crucial for effective implementation. Overall, the MLP PCA algorithm integrates
dimensionality reduction with the capacity of MLPs, presenting a solution for handling
complex data with high dimensionality [52].

3. Materials and Methods

This work was part of the project SmartSpeech, with the full title “Smart Computing
Models, Sensors, and Early diagnostic speech and language deficiencies indicators in
Child Communication” funded by the Region of Epirus and supported by the European
Regional Development Fund (ERDF). The participants were recruited through private and
public health and education institutions; they were mainly children, and their parents
were informed thoroughly regarding the project’s scope and procedures, and asked to
provide written consent and details about their child’s developmental and communication
profile. Also, the parents were notified about the approval of this study from the University
of Ioannina Research Ethics Committee with compliance to the General Data Protection
Regulation (GDPR). The child’s active role in this study involved playing the serious game
(SG), part of the SmartSpeech system.

The SG consists of children-specific activities with the objective of gathering data
regarding the developmental skills of the child and biometric data such as heart rate and
gaze responses. These biometric data were collected in order to investigate their role as
bio-markers and their potential use for classification purposes.

The interaction of the child with the game involved several activities, each with the
goal to actively participate and help to overcome missions/tasks and advance to the next
level. All the activities had visual context directed in a way that they were entertaining
and attractive, as seen in Figure 1. Nevertheless, behind the scenes activities also served as
clinical tools trained toward measuring several speech, language, and developmental skills.
The child followed a narrated story and had to solve puzzles through its chapters, select
or drag objects on the touchscreen, identify images and shapes, recall names and events,
recognize emotions, and even answer questions verbally.
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Regarding the child verbal responses, for word recognition, we used the speech-to-
text program CMUSphinx, version 5.0.0 [70], which is an open-source project that is free
of charge, has cross-platform support for desktop and mobile systems, and can be used



Appl. Sci. 2024, 14, 305 7 of 18

offline. Also, there exists a model for Greek language that was created and trained for
this software [71].

For the biometric samples, we used a smartwatch with bio-sensors and a software-
based eye-tracking module that monitors the gaze of the child while looking at the screen.

The smartwatch the individual wore during the SG activities captured and sent their
cardiac rhythm to the SmartSpeech database for analysis. Heart rate variables were com-
puted for each activity, including HRV, which was estimated using heart rate standard
deviation and range statistics due to challenges in directly calculating HRV from the wear-
able device’s heart rate data. Thus, for each activity, we obtained three variables that were
the mean, the standard deviation, and the range of the heart rate.

SeeSo software, Unity mobile SDK version 2.4.4, was used for eye tracking [72] to
determine where the user’s eyes focused while performing certain activities on the mobile
device. It recorded gaze points with X and Y coordinates of the screen at specific time
intervals during SG activities. The variables obtained by the software are relevant, with the
fixation being the fundamental metric for eye-tracking. A fixation is defined as a cluster of
gaze points close to each other in space and time, which means the individual is looking at
a specific region. Fixations are the most common measures of visual attention. During the
game, certain areas on the screen are predetermined as areas of interest (AOI). An AOI may
be, for example, a face, an animal, or a moving object, and it is defined as a rectangular
region with specific coordinates and a specific time duration. The software extracted three
fundamental variables from the eye movement experiments:

• Fixation count (FC), i.e., the total number of fixations in an AOI;
• Time to first fixation (TTFF), i.e., the time needed after an AOI is visible until the first

fixation is counted on it;
• The total duration of fixations (TS), i.e., the total time that an individual spends looking

at a specific AOI.

The data collection of the eye-tracking software depends on how the subject reacts to
stimuli. The subjects, especially children, move around a lot; thus, the camera fails to take
some measurements. Therefore, due to missing values in our datasets, in the final variables
selected after clearing the data, there were no variables with TTFF metrics. Eliminating
missing values was necessary, and we needed to ensure that all cases were filled with
valid data.

After finishing the game, all data were exported and automatically stored as variables
in a remote server. The abovementioned variables belong to 3 categories: the game vari-
ables (25), which were the scores from the game activities; the eye-tracking variables (16);
and the heart rate variables (15) [3]. The data variables for the game score, eye-tracking,
and heart rate datasets are illustrated in Figures 2–4, respectively, also presenting the
dimensionality of each dataset. Table 1 illustrates in more detail the description of the
variables for the game dataset.

For the experiments, in total, 435 children aged 8.8 ± 7.4 years participated, of which
224 were boys and 211 were girls. The parents provided written consent along with the
child’s neurodevelopmental or medical history. After completion of all the games, data
were gathered for each child that belong to the three aforementioned sources—game scores,
eye-tracking, and heart rate—forming the three datasets in the study. The eye-tracking
dataset had 309 cases, the heart rate dataset had 181 cases, and the game scores had
435 cases. The sample was further divided into two groups according to the existence of a
specific neurodevelopmental disorder or not, inserting a new variable in the datasets with
the name Disorder. This variable denotes whether an individual has one of the Diagnostic
and Statistical Manual of Mental Disorders [1], which defines one or more of the following
five disorders: Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder
(ADHD), Intellectual Disability (ID), Specific Learning Disorder (SLD), and Communication
Disorder (CD). The Disorder variable is binary with values true/false, denoting two classes
for the classification procedures that follow.
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Table 1. Description of variables.

Variable Type Description—Examples

Objects recognition

Identification of shadow (shape)
Identification of object by acoustic stimuli
Categorization (i.e., distinguishing fruits from vegetables)
Time sequences (i.e., setting pictures to correct order)

Click on objects

Burst balloons
Color sequences (i.e., fill bridge gap with colored boards)
Pre-writing skills (i.e., move a teleferic with hand)
Cognitive flexibility (i.e., lead character out of a maze)
Sustained attention (i.e., catch thrown fruits in basket)
Fine motor skills (i.e., solve classic puzzle with pieces)
Sequences for size (arrange boards according to size)

Vocal intensity Avoid clouds using voice intensity in a flying game

Verbal responses

Repeat a vocalization (word)
Naming objects
Answer questions
Naming feelings

Memory tasks Recall names of characters
Remember object’s position in a grid

Emotion recognition Color sequences (i.e., fill bridge gap with colored boards)

4. Experiments
4.1. Experimental Datasets, Methods, and Parameter Details

This section reports on the assessment of the proposed FC2RBF technique’s efficacy in
creating artificial features for feature learning and class prediction using the three datasets
from the SmartSpeech project (see Section 3). These issues have been extensively examined
by numerous scholars in the pertinent academic discourse, encompassing a diverse array
of research domains spanning from economics to health [3,40,54,55,73,74].

The parameters used in the employed algorithms are shown in Table 2. The following
methods were used:

1. RBF—an RBF neural network with H processing nodes.
2. MLP BFGS—an artificial neural network with H hidden nodes, trained with the BFGS

optimization method.
3. MLP PCA—an artificial neural network with H hidden nodes and trained with the

BFGS method. The neural network is applied on two constructed features produced
by the PCA method.

4. FC2RBF—an RBF network with 10 processing nodes applied on two artificial features
constructed by the proposed method.

Table 2. Experimental settings parameters.

Parameter Name Value Parameter

NC 500 Chromosomes
NF 2 Number of constructed features
NG 200 Maximum number of generations
H 10 Processing nodes
pS 0.10 Selection rate
pM 0.05 Mutation rate

To establish a higher level of trust in the outcomes of the experiments that were
carried out, the technique of ten-fold cross validation was implemented for each and every
experimental dataset. Each experiment was performed a total of thirty times, with a unique
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seed being input into the random number generator each time. Also, the experiments
were executed 30 times using different seeds for the random generator each time. Finally,
the same pre-processing and initial manual feature extraction stage was applied in all
experiment runs to avoid any bias between the compared methods.

The code utilized was written in ANSI C++ and optimized with the help of the
OPTIMUMS programming library. This library, which can be downloaded for free at
https://github.com/itsoulos/OPTIMUMS/, was used to implement the code (accessed
on 12 September 2023). The software was developed with the ANSI C++ programming
language and relies on the freely accessible QT programming library. The software exhibits
compatibility with a wide range of operating systems, including mobile platforms such
as Android and iOS. The software can be freely downloaded from the official GitHub
repository located at https://github.com/itsoulos/QFc (accessed on 1 September 2023).

A visual representation of the overall flowchart and study structure is included in
Figure 5 outlining the structure of this study. This visualization includes the steps involved
in the feature construction process, the application of machine learning methods, and the
comparative analysis framework.

Most prediction models place the data points that they use in one of these four categories:

1. True positive (TP)—the individual in question does in fact have NDs and our predic-
tion was accurate that the individual does have NDs.

2. True negative (TN)—the individual in question does not in fact have NDs and our
prediction was accurate that the individual does not have NDs.

3. False positive (FP)—although the individual in question does not in fact have NDs,
our prediction was inaccurate that the individual does have NDs. The term for this
kind of error is a Type 1 error.

4. False negative (FN)—although the individual in question does in fact have NDs, our
prediction was inaccurate that the individual does not have NDs. The term for this
kind of error is a Type 2 error.

For the classification of the datasets, the reported error is the average classification
error, as measured in the test set. The classification error refers to the percentage of patterns
in the test set that were assigned to a class that was not the anticipated one. Error rate is
calculated by Equation (1):

Error rate =
FP + FN

TP + TN + FP + FN
(1)

The precision metric quantifies the degree of accuracy of our positive predictions,
meaning that it indicates the proportion of projected positive points that really occurred.
Equation (2) defines precision:

Precision =
TP

TP + FP
(2)

The recall metric quantifies the proportion of positive instances that our model suc-
cessfully recognized. In other words, it assesses the accuracy of our model in correctly
classifying positive instances out of the total number of instances classified as positive.
Recall and sensitivity are synonymous. Next, Equation (3) specifies recall:

Recall =
TP

TP + FP
(3)

https://github.com/itsoulos/OPTIMUMS/
https://github.com/itsoulos/QFc
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4.2. Experimental Results

Table 3 shows the results of the classification experiments for each of the methods in
use in terms of error rate percentage. The experiments took place separately for each of the
three datasets. Figure 6 presents a visualization of the error rates results.

Table 3. Error rates (%) of the methods applied for the classification procedures.

Method
FC2RBF RBF MLP BFGS MLP PCA DATASET

5.41% 15.48% 14.45% 27.16% Eye-tracking
21.85% 23.28% 35.19% 28.58% Heart rate
20.33% 21.81% 27.20% 25.04% Game scores
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The precision results of the classification studies for each of the employed methods are
presented in Table 4. The experiments were conducted individually for each of the three
datasets. The results indicate that the FC2RBF method bested the other three approaches in
terms of precision, with great performance on the eye-tracking dataset. A visualization of
the precision results is depicted in Figure 7.

Table 4. Precision of the methods applied for the classification procedures.

Method
FC2RBF RBF MLP BFGS MLP PCA DATASET

0.9125 0.6887 0.7644 0.5558 Eye-tracking
0.5748 0.5264 0.5067 0.5006 Heart rate
0.5604 0.5344 0.5574 0.5344 Game scores

The recall findings for each of the methods utilized in the classification experiments are
presented in Table 5, designated as sensitivity. The experiments were conducted separately
for each of the three datasets. Figure 8 shows a visualization of the recall findings.
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Table 5. Recall of the methods applied for the classification procedures.

Method
FC2RBF RBF MLP BFGS MLP PCA DATASET

0.9371 0.8906 0.8231 0.6004 Eye-tracking
0.7639 0.8076 0.5405 0.5545 Heart rate
0.7065 0.6905 0.5872 0.5598 Game scores

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 18 
 

The recall findings for each of the methods utilized in the classification experiments 
are presented in Table 5, designated as sensitivity. The experiments were conducted sep-
arately for each of the three datasets. Figure 8 shows a visualization of the recall findings. 

Table 5. Recall of the methods applied for the classification procedures. 

Method  
FC2RBF RBF MLP BFGS MLP PCA DATASET 
0.9371 0.8906 0.8231 0.6004 Eye-tracking 
0.7639 0.8076 0.5405 0.5545 Heart rate 
0.7065 0.6905 0.5872 0.5598 Game scores 

 
Figure 8. Recall results visualization. 

5. Discussion—Conclusions 
This study contributes to identifying the most accurate and efficient algorithms for a 

practical application such as SmartSpeech by proposing and comparing ML methodolo-
gies on these particular, consistent datasets. It offers valuable analysis of the advantages 
and disadvantages of various algorithms, enabling informed decision-making in the de-
velopment and implementation of the SmartSpeech ML solution that may serve as a val-
uable screening tool for clinicians and other specialists to identify NDs from non-NDs 
children and, thus, plays a crucial role in their rehabilitation strategy. 

In this study, a novel method called FC2RBF has been proposed for feature construc-
tion, which aims to improve the machine learning model by incorporating additional de-
tails or connections that may not be directly discernible in the original features. Feature 
construction involves generating new features by applying mathematical operations, 
transformations, or combinations to existing ones. The primary objective of this method 
is to enhance the model by introducing more details or connections that may take time to 
become apparent in the original features. The experimental results presented in Section 
4.2 confirm that the optimized features generated by the FC2RBF algorithm in the com-
parative experiments demonstrated that using this feature creation method outperformed 
other machine learning methods for predicting neurodevelopmental disorders. The use of 
the FC2RBF algorithm on the SmartSpeech datasets showed significant results. In the eye-
tracking dataset, the test error was reduced by up to 65% compared with the MLP BFGS 
algorithm, which was the next best-performing algorithm. In the heart rate dataset, the 
test error was reduced by 6.14% compared with the RBF neural network, the next best-
performing algorithm. Similarly, in the game scores dataset, the test error was reduced by 
6.78% compared with the RBF neural network, which was again the next best-performing 

0

0.2

0.4

0.6

0.8

1

RBF MLP BFGS MLP PCA FC2RBF

Re
ca

ll

Classification methods

Recall for classification methods

Eye-tracking Heart-rate Game scores

Figure 8. Recall results visualization.

5. Discussion—Conclusions

This study contributes to identifying the most accurate and efficient algorithms for a
practical application such as SmartSpeech by proposing and comparing ML methodologies
on these particular, consistent datasets. It offers valuable analysis of the advantages and
disadvantages of various algorithms, enabling informed decision-making in the develop-
ment and implementation of the SmartSpeech ML solution that may serve as a valuable
screening tool for clinicians and other specialists to identify NDs from non-NDs children
and, thus, plays a crucial role in their rehabilitation strategy.

In this study, a novel method called FC2RBF has been proposed for feature construc-
tion, which aims to improve the machine learning model by incorporating additional
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details or connections that may not be directly discernible in the original features. Fea-
ture construction involves generating new features by applying mathematical operations,
transformations, or combinations to existing ones. The primary objective of this method
is to enhance the model by introducing more details or connections that may take time to
become apparent in the original features. The experimental results presented in Section 4.2
confirm that the optimized features generated by the FC2RBF algorithm in the compar-
ative experiments demonstrated that using this feature creation method outperformed
other machine learning methods for predicting neurodevelopmental disorders. The use
of the FC2RBF algorithm on the SmartSpeech datasets showed significant results. In the
eye-tracking dataset, the test error was reduced by up to 65% compared with the MLP
BFGS algorithm, which was the next best-performing algorithm. In the heart rate dataset,
the test error was reduced by 6.14% compared with the RBF neural network, the next best-
performing algorithm. Similarly, in the game scores dataset, the test error was reduced by
6.78% compared with the RBF neural network, which was again the next best-performing
algorithm. Moreover, the proposed technique achieves high success rates using only two
artificial features, which are generated as non-linear combinations of the original features
in each dataset. Also, the proposed method was applied without any modification in the
different SmartSpeech datasets.

The number of learning model parameters is directly related to the dimensionality of
the input problem, which is determined by the number of features. Therefore, complex
problems, such as the evaluation and screening of neurodevelopmental disorders, require
substantial memory resources to accommodate and handle the learning models. Moreover,
as the number of parameters within computational models increases, it takes more time
to modify those parameters. With a higher dimensionality of the data, a larger number of
samples (patterns) is needed to achieve high learning rates. In this study, we managed to
reduce the error rate and the dimensionality of the screening NDs features; for instance, in
the game scores dataset, from 24 original features to two new artificial features produced
from the original ones from non-linear transformations. Hence, only two features are
required to obtain a low error rate in each dataset. Based on the results, the proposed
technique performs better than the compared ones. Thus, it is faster, more accurate, and
has higher sensitivity and specificity, especially for the eye-tracking dataset.

The study’s findings demonstrate the method’s effectiveness with outstanding results
in analyzing the SmartSpeech eye-tracking dataset, exhibiting lower error rates and, thus,
higher accuracy, together with higher precision and sensitivity. This method can be inte-
grated into the SmartSpeech machine learning model to support automated prediction
in neurodevelopmental disorders (NDs), and to further assist clinicians in distinguishing
children with NDs from those without during screening procedures.

Future research may focus on addressing challenges and exploring innovations to
enhance the efficiency, interpretability, and generalization capabilities of models addressing
real-world challenges in NDs.
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