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Abstract: This work proposes a matching data science approach for the laser ablation quality, reb, the
study of Si3N4 film based on supervised machine learning classifiers in the CMOS-MEMS process.
The study demonstrates that there exists an energy threshold, Eth, for laser ablation. If the laser
energy surpasses this threshold, increasing the interval time will not contribute significantly to the
recovery of pulse laser energy. Thus, reb enhancement is limited. When the energy is greater than
0.258 mJ, there exists a critical value of interval time at which the reb value is relatively low for each
energy level, respectively. In addition, the variation of reb, ∆reb, is independent of the interval time at
the invariant point of energy between 0.32 mJ and 0.36 mJ. Energy and interval time exhibit a Pearson
correlation of 0.82 and 0.53 with reb, respectively. To maintain ∆reb below 0.15, green laser ablation
of Si3N4 at operating energies of 0.258–0.378 mJ can adopt a baseline interval time of the initial
baseline multiplied by 1/
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Abstract: This work proposes a matching data science approach for the laser ablation quality, reb, 
the study of Si3N4 film based on supervised machine learning classifiers in the CMOS-MEMS pro-
cess. The study demonstrates that there exists an energy threshold, Eth, for laser ablation. If the laser 
energy surpasses this threshold, increasing the interval time will not contribute significantly to the 
recovery of pulse laser energy. Thus, reb enhancement is limited. When the energy is greater than 
0.258 mJ, there exists a critical value of interval time at which the reb value is relatively low for each 
energy level, respectively. In addition, the variation of reb, Δreb, is independent of the interval time at 
the invariant point of energy between 0.32 mJ and 0.36 mJ. Energy and interval time exhibit a Pear-
son correlation of 0.82 and 0.53 with reb, respectively. To maintain Δreb below 0.15, green laser abla-
tion of Si3N4 at operating energies of 0.258–0.378 mJ can adopt a baseline interval time of the initial 
baseline multiplied by 1/ ∜ 2. Additionally, for operating energies of 0.288–0.378 mJ during Si3N4 
laser ablation, Δreb can be kept below 0.1. With the forced partition methods, namely, the k-means 
method and percentile method, the XGBoost (v 2.0.3) classifier maintains a competitive accuracy 
across test sizes of 0.20–0.40, outperforming the machine learning algorithms Random Forest and 
Logistic Regression, with the highest accuracy of 0.78 at a test size of 0.20. 
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1. Introduction 
Within the realm of complementary metal oxide semiconductor microelectrome-

chanical systems (CMOS-MEMS) fabrication, following the construction of CMOS cir-
cuitry upon the silicon substrate, MEMS structures (e.g., sensors, actuators) are subse-
quently established atop this circuitry. However, this integration process frequently ne-
cessitates modifications to the underlying layers [1], or the formation of intricate features 
that are potentially unattainable through conventional lithography or etching alone. In 
such scenarios, laser ablation emerges as a valuable tool. The advantageous nature of laser 
ablation in post-CMOS-MEMS processing stems from its inherent precision, minimal col-
lateral damage to surrounding regions, and its versatility in addressing a diverse range of 
materials commonly employed in MEMS fabrication. Nevertheless, meticulous control 
over laser parameters such as power, wavelength, and pulse duration is paramount to 
mitigate the potential for undesirable effects, including thermal damage and uninten-
tional material alterations. 

The emergence of laser ablation in the 1960s, coinciding with the development of 
lasers, initially served as a cornerstone for fundamental research in physics, particularly 
in understanding laser-material interactions. Early applications focused on ablating or re-
moving material from surfaces using high-powered lasers. Subsequent advancements in 
laser technology propelled the development of diverse laser types, each with unique char-
acteristics and applications. Excimer lasers, for instance, with their short wavelengths and 
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2. Additionally, for operating energies of 0.288–0.378 mJ during Si3N4

laser ablation, ∆reb can be kept below 0.1. With the forced partition methods, namely, the k-means
method and percentile method, the XGBoost (v 2.0.3) classifier maintains a competitive accuracy
across test sizes of 0.20–0.40, outperforming the machine learning algorithms Random Forest and
Logistic Regression, with the highest accuracy of 0.78 at a test size of 0.20.

Keywords: machine learning; XGBoost classifier; laser ablation; CMOS-MEMS; k-means

1. Introduction

Within the realm of complementary metal oxide semiconductor microelectromechan-
ical systems (CMOS-MEMS) fabrication, following the construction of CMOS circuitry
upon the silicon substrate, MEMS structures (e.g., sensors, actuators) are subsequently
established atop this circuitry. However, this integration process frequently necessitates
modifications to the underlying layers [1], or the formation of intricate features that are
potentially unattainable through conventional lithography or etching alone. In such scenar-
ios, laser ablation emerges as a valuable tool. The advantageous nature of laser ablation
in post-CMOS-MEMS processing stems from its inherent precision, minimal collateral
damage to surrounding regions, and its versatility in addressing a diverse range of ma-
terials commonly employed in MEMS fabrication. Nevertheless, meticulous control over
laser parameters such as power, wavelength, and pulse duration is paramount to miti-
gate the potential for undesirable effects, including thermal damage and unintentional
material alterations.

The emergence of laser ablation in the 1960s, coinciding with the development of
lasers, initially served as a cornerstone for fundamental research in physics, particularly
in understanding laser-material interactions. Early applications focused on ablating or
removing material from surfaces using high-powered lasers. Subsequent advancements in
laser technology propelled the development of diverse laser types, each with unique char-
acteristics and applications. Excimer lasers, for instance, with their short wavelengths and
high energies, excel at precise material removal [2]. This technological evolution broadened
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the reach of laser ablation into various fields, including microelectronics, semiconductor
fabrication, medical device manufacturing [3], and cultural heritage preservation. Within
the realm of material processing, laser ablation has become a pivotal technique for micro-
machining, surface structuring, thin film deposition, and even micro/nano-scale feature
creation with intricate patterns. Ongoing research and development in laser technology
continue to refine laser ablation methods. The introduction of new laser sources, such as
femtosecond lasers, enables even finer control and minimal thermal damage, unlocking the
potential for novel applications and deeper integration across various industries.

Our investigation leverages the TSMC/TSRI D35 common use process, which employs
distinct materials for each layer (poly, oxide, via, metal, and silicon nitride (passivation))
to accommodate diverse design configurations. We meticulously fine-tuned a comprehen-
sive array of laser parameters encompassing wavelengths, energy levels, interval time,
pulse shots, and pad position, with the explicit objective of precisely removing silicon
nitride [4]. The unique properties of Si3N4, including its high mechanical strength, thermal
stability, chemical inertness, and superior electrical insulating capabilities, have propelled
its widespread adoption across various industries. In microelectronics, Si3N4 serves as a
crucial passivation layer, insulator, or mask material due to its exceptional electrical insula-
tion properties, safeguarding underlying semiconductor devices from external influences.
Furthermore, its compatibility with CMOS technology makes Si3N4 an extensively utilized
structural material in MEMS fabrication, offering both mechanical stability and resilience,
while seamlessly integrating with the underlying CMOS circuitry.

Prior to the widespread adoption of laser ablation for Si3N4 removal in post-processing
of CMOS-MEMS devices, several alternative methods were employed. Chemical etching,
utilizing solutions such as hydrofluoric acid (HF), offered selective removal of silicon nitride
while minimizing effects on other materials. Dry etching techniques, including reactive
ion etching (RIE) and plasma-enhanced chemical vapor deposition (PECVD), were also
implemented. These methods relied on plasma reactions for targeted removal of Si3N4.
Mechanical approaches, such as polishing and grinding, were occasionally employed,
albeit with limitations in their precision. Although chemical and dry etching techniques
demonstrated effectiveness, they often struggled to achieve the precise and selective Si3N4
removal observed with laser ablation in CMOS-MEMS processing, particularly with regard
to minimizing impacts on adjacent materials.

The coalescence of advanced artificial intelligence (AI) with domain-specific engineer-
ing expertise is significantly redefining the trajectory of contemporary engineering practice.
Recent advancements in temperature monitoring [5], indoor air quality monitoring [6],
thermal noise decoupling [7,8], and combustion monitoring [9] exemplify the transfor-
mative impact of AI across diverse engineering applications. The strategic integration of
field-specific data and features within intelligent models unlocks unprecedented levels of
automation and predictability. This synergistic dynamic empowers engineers to optimize
resource allocation, enhance design and operational efficiency, automate routine tasks, and
unveil novel insights through data-driven discovery.

This study uses the XGBoost algorithm [10] compared with famous classifiers, which
are Logistic Regression [11] and Random Forest [12] in supervised machine learning (ML)
to categorize the quality of laser ablation on Si3N4 film. The study imports the dataset
into the unsupervised ML k-means algorithm to label the data by a k value. This intrinsic
property of the k value is elaborated by the data science analysis.

XGBoost, Logistic Regression, and Random Forest stand out as widely recognized
and highly effective techniques in predictive modeling tasks. Developed by Chen and
Guestrin (2016) [10], XGBoost is a gradient boosting algorithm known for its exceptional
performance in a range of applications, including regression, classification, and ranking.

XGBoost excels in its capacity to tackle diverse and high-dimensional datasets while
mitigating overfitting, a ubiquitous challenge in machine learning. Leveraging an ensemble
of decision trees, XGBoost iteratively optimizes a loss function, enabling it to capture
complex relationships and achieve state-of-the-art performance. While other algorithms
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possess distinct strengths, XGBoost offers a compelling combination of versatility and accu-
racy. Logistic Regression, for instance, presents a clear and interpretable model for binary
classification tasks. Its simplicity facilitates understanding the underlying relationships
within the data. Random Forest, conversely, capitalizes on an ensemble of decision trees
to bolster predictive power and manage overfitting, offering an alternative approach to
complex problems.

Due to its applicability in contemporary booming industries such as system on chip
(SoC), chip on wafer on substrate (CoWoS) packaging, and CMOS-MEMS chip fabrication,
laser micromachining has garnered significant global attention and resources in semicon-
ductor post-processing. The research led by J.A. Grant-Jacob [13,14] at the Optoelectronics
Research Centre, University of Southampton, UK, and Yohei Kobayashi [15,16] at the Uni-
versity of Tokyo, Japan, stand at the forefront. Both teams employ deep learning to simulate
images of laser ablation, significantly advancing the fundamental models of laser ablation
technology. However, the major limitation of deep learning lies in the discernibility of
features. Neither of the two teams has been able to propose distinctly identifiable features
linking the practical operational parameters of laser ablation to the final ablation quality. In
contrast, when using operational parameters as features for machine learning, the quality
of laser ablation, whether good or bad, can be confirmed by more precise machine learning
algorithms. This approach identifies the crucial parameters in the practical engineering of
laser ablation, leading to immediate effects on the advancement of laser ablation practice.

2. Experimental Methodology and Apparatus
2.1. Experimental Equipment and Process

Devices
The objective of this research is to remove the silicon nitride on top of the “dual-

function switch and humidity” chips, patent no. M479441 [17], Taiwan, as shown in
Figure 1. Once silicon nitride is removed, the underlying metal will be exposed, fostering
humidity sensing.
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Figure 1. (a) A 3D schematic of the “dual-function switch and humidity” chip; (b) top view from
microscopy.

The efficacy of laser ablation is extensively evaluated through a battery of metrics
that assess its performance across various facets. The ablation rate, quantified as material
removal per unit time, stands as a central metric for gauging efficiency, is typically mea-
sured in volume or depth per pulse or second. Surface quality, pivotal for assessing the
post-ablation topography, considers factors like roughness [18], irregularities, and damage,
which are evaluated using techniques such as profilometry, atomic force microscopy (AFM),
or scanning electron microscopy (SEM). Dimensional accuracy relies on optical or laser
systems to ensure precise realization of desired geometries and dimensions. Selectivity
evaluates the ability of laser ablation to target material precisely while minimizing collat-
eral damage to adjacent layers, while uniformity guarantees consistent results across the
entire substrate. Assessing residual stress and heat-affected zones post-ablation is crucial
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for determining potential structural integrity issues. Finally, process efficiency and cost
meticulously examine the overall economic viability of laser ablation, encompassing factors
like energy consumption, equipment maintenance, and throughput.

The laser ablation quality reb adopted in this study was originally defined by Tsai
and Chan [19,20]. It is a percentage of area ablated within the square laser aperture.
Figure 2a shows a sample that underwent laser ablation. The areas of the laser aperture
(28.6 × 28.6 µm2) are represented by black squares outlined with solid lines. In Figure 2b,
the areas ablated within the square laser aperture are highlighted in blue for reb calculation.
The 532 nm green light laser cutting system, New Wave Research Ezlaze II was utilized, as
shown in Figure 3.
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Figure 3. TSRI laser cutting system–New Wave Research Ezlaze II (New Wave Research, Sunnyvale,
CA, USA).

2.2. Methodology
2.2.1. Hypothesis

There exists an energy threshold Eth for laser ablation, wherein if the laser energy
surpasses this threshold, increasing the interval time will not contribute significantly to the
recovery of pulse laser energy. Thus, reb enhancement is limited.

The Interval Time Baseline (bit) is a defined set of interval times carefully optimized
to achieve high laser ablation quality (reb) with a short interval time for a specific range of
energy levels.

There is an invariant point of energy where, under such an energy operation, the
variation (∆reb) of reb is independent of the interval time.

2.2.2. Methods

In this study, we employed the “dual-function switch and humidity” chips manufac-
tured using the TSMC 0.35 µm process. The chips underwent a cleaning process involving
acetone, isopropyl alcohol, and deionized water. Subsequently, laser shots were fired at
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the Si3N4 passivation of the chips, and the resulting ablated areas within the square laser
aperture were then delineated, allowing for the calculation of reb values.

2.2.3. Study Design and Analysis

This study encompasses two distinct datasets: one comprising 90 samples, and another
with 48 samples.

The 90-sample dataset incorporates measurements from five discrete energy levels:
0.258, 0.288, 0.318, 0.348, and 0.378 mJ. For each of these energy levels, we evaluate three
distinct interval times: the bit, the bit/
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Additionally, for both datasets, three different pulse shots and two distinct pad posi-
tions are considered in the data collection process.

2.3. Unsupervised Learning Approach

Three machine learning classification algorithms were utilized: Logistic Regression,
Random Forest, and XGBoost. The accuracy is defined as Equation (1).

Accuracy =
Number of Correct Predictions

Total Number of Samples
(1)

2.3.1. Logistic Regression

Logistic Regression is a statistical model for binary classification tasks. It employs a
sigmoid function to map input features to probabilities. Parameters are learned through
gradient descent, minimizing a cost function. Regularization can be applied to prevent
overfitting. It is widely used due to its simplicity and interpretability.

2.3.2. Random Forest

Random Forest is an ensemble learning method for both classification and regression
tasks. It constructs multiple decision trees during training, each using a subset of the data
and features. The final prediction is an average (regression) or majority vote (classification)
of individual tree outputs. This technique reduces overfitting and enhances accuracy.

2.3.3. XGBoost

XGBoost, short for eXtreme Gradient Boosting, is an ensemble learning algorithm
known for its speed and performance. It builds a sequence of decision trees, each correcting
the errors of its predecessor. It employs a gradient boosting framework, optimizing a
user-specified loss function. Regularization techniques and parallel processing contribute
to its efficiency and effectiveness in various machine learning tasks. The detailed pseudo
code of XGBoost is provided in the reference [21].

2.4. Forced Partition Methods

Instead of treating the prediction of reb as a regression problem, this study categorizes
samples into different clusters based on reb. Two forced partition methods were employed:
the percentile method and the k-means method.
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2.4.1. Percentile Method

For the percentile method, the desired number of clusters (f) was initially determined,
and labels range from 0 to f − 1. Subsequently, samples were divided into f clusters based
on their reb percentiles. Each cluster contained either floor (total number of samples/f) or
floor (total number of samples/f) + 1 samples. This method ensured an even distribution
of the sample count across each cluster.

2.4.2. K-means Method

For the k-means method, samples underwent k-means unsupervised learning, and
the means of energy, interval time, and reb of each initial cluster were calculated. These
three mean values were analyzed to ensure sufficient distinctiveness among the initial
clusters. Following this, a forced partition method was introduced. This method established
boundaries using the arithmetic mean of the reb means of two adjacent initial clusters. It is
conceivable that initial clusters with closely aligned reb values might merge into a single
initial cluster. Samples falling within the same boundary were subsequently categorized
into the same final cluster.

3. Results and Discussion
3.1. Examples

Table 1 lists six samples from three Si3N4 pads in this study. Energy, interval time,
pulse shots, and pad position were the four parameters adopted, with microscopy photos
and laser ablation quality reb attached. With operating energy of 0.378 mJ and pulse shot
of 1 time, regardless of interval time, the ablation results show large portions of silvery
areas. This is in contrast with our study conducted in 2022, where Tsai and Chan explored
the impact of 532 nm laser energy ranging from 0.138 to 0.318 mJ and pulse shots set at 5,
revealing significant areas characterized by a distinct dark coloration [19]. The cause of
such disparity is owing to the pulse shot count. Across each pad in Table 1, the discrepancy
of reb is not substantial at all, both from visual inspection and from reb calculation. This
suggests a saturation in reb.

3.2. Correlation Analysis

The heatmap in Figure 4a, derived from the 90-sample dataset, reveals the relationships
among the features: energy, interval time, pulse shot, pad position, and laser ablation
quality reb. Pearson correlation coefficients were employed to quantify the associations
between these pairs of variables [22].

A strong positive association was observed between energy and interval time with
respect to reb, as evidenced by their respective correlation coefficients of 0.82 and 0.55.
This suggests that higher energy levels and longer interval times are significantly linked to
increased reb. Pulse shot and pad position, however, exhibited relatively modest correlations
with reb, at 0.17 and 0.05, respectively. Furthermore, pulse shot and pad position displayed
minimal linear relationships with other features, as indicated by their near-zero correlations.

The heatmap of the 48-sample dataset, Figure 4b, provides a nuanced perspective on
the interplay between the features and the laser ablation quality reb. Pearson correlation co-
efficients revealed moderate positive associations, with energy and interval time exhibiting
correlations of 0.62 and 0.53, respectively, with laser ablation quality reb.

Comparing the heatmap of Figure 4b to Figure 4a reveals a substantial decrease in
the correlation between energy and reb, dropping from 0.82 to 0.62. Additionally, the
association between interval time and reb exhibited a significant reduction, from 0.55 to
0.53. Furthermore, reb displays a correlation of 0.032 with pulse shot and 0.036 with pad
position, both of which are relatively weak associations. The correlation of reb with pulse
shot experienced a noticeable difference, from 0.17 to 0.032. The correlation of interval time
with energy also experienced a noticeable difference, from 0.69 to 0.4. It is worth noting
that pulse shot and pad position continue to display correlations close to zero with other
features, indicating little to no linear relationship with them.
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Table 1. Pad microscopy images and their respective reb with varied interval time.

Energy (mJ) Interval Time (s) Pulse Shots PAD-Left PAD-Right

0.378
100 × 1√

2
= 70.7

(belongs to the bit/
√

2 group)
1
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Table 1. Pad microscopy images and their respective reb with varied interval time. 
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3.2. Correlation Analysis 
The heatmap in Figure 4a, derived from the 90-sample dataset, reveals the relation-

ships among the features: energy, interval time, pulse shot, pad position, and laser abla-
tion quality reb. Pearson correlation coefficients were employed to quantify the associations 
between these pairs of variables [22]. 
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The 90-sample dataset encompasses five distinct energy levels, whereas the 48-sample
dataset only contains two. Regarding interval times, the 48-sample dataset exhibits four
unique values, while the 90-sample dataset has three. The enhanced range of energy
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levels in the 90-sample dataset contributes to a more accurate correlation coefficient of 0.82
between energy and reb. Likewise, the broader range of interval times in the 48-sample data
set fosters a more informative correlation coefficient of 0.53 between interval time and reb.

3.3. Critical Point of Interval Time

Figure 5a,b depicts the relationship between reb (on the y-axis) and varying levels of
interval time and energy. Figure 5a is derived from a dataset of 90 samples, displaying
data for three distinct interval times and five energy levels, resulting in a total of 15 boxes.
Within each box, the mean is denoted by a blue diamond. Notably, blue diamonds with
the same energy level are connected, forming five distinct lines. Each line connects three
means corresponding to the same energy level.
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1. Introduction 
Within the realm of complementary metal oxide semiconductor microelectrome-

chanical systems (CMOS-MEMS) fabrication, following the construction of CMOS cir-
cuitry upon the silicon substrate, MEMS structures (e.g., sensors, actuators) are subse-
quently established atop this circuitry. However, this integration process frequently ne-
cessitates modifications to the underlying layers [1], or the formation of intricate features 
that are potentially unattainable through conventional lithography or etching alone. In 
such scenarios, laser ablation emerges as a valuable tool. The advantageous nature of laser 
ablation in post-CMOS-MEMS processing stems from its inherent precision, minimal col-
lateral damage to surrounding regions, and its versatility in addressing a diverse range of 
materials commonly employed in MEMS fabrication. Nevertheless, meticulous control 
over laser parameters such as power, wavelength, and pulse duration is paramount to 
mitigate the potential for undesirable effects, including thermal damage and uninten-
tional material alterations. 

The emergence of laser ablation in the 1960s, coinciding with the development of 
lasers, initially served as a cornerstone for fundamental research in physics, particularly 
in understanding laser-material interactions. Early applications focused on ablating or re-
moving material from surfaces using high-powered lasers. Subsequent advancements in 
laser technology propelled the development of diverse laser types, each with unique char-
acteristics and applications. Excimer lasers, for instance, with their short wavelengths and 
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2 groups specified. (Note: ‘ˆ’ notation stands for the power of a number).

In contrast, Figure 5b is acquired from a dataset of 48 samples and presents data for
two energy levels and four unique interval times, yielding a total of eight boxes. Similarly,
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the blue diamond represents the mean within each box. In this figure, two lines connect the
means of the same energy level.

In both figures, there is a clear upward trend, indicating that as both interval time and
energy level increase, reb tends to also increase.

To visualize the bit, bit/

 
 

 

 
Appl. Sci. 2024, 14, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci 

Article 

Investigation of Laser Ablation Quality Based on Data Science 
and Machine Learning XGBoost Classifier 
Chien-Chung Tsai * and Tung-Hon Yiu 

Department of Semiconductor and Electro-Optical Technology, Minghsin University of Science and  
Technology, Hsinchu 30401, Taiwan; tonyyiu30@gmail.com 
* Correspondence: cctsai@must.edu.tw 

Abstract: This work proposes a matching data science approach for the laser ablation quality, reb, 
the study of Si3N4 film based on supervised machine learning classifiers in the CMOS-MEMS pro-
cess. The study demonstrates that there exists an energy threshold, Eth, for laser ablation. If the laser 
energy surpasses this threshold, increasing the interval time will not contribute significantly to the 
recovery of pulse laser energy. Thus, reb enhancement is limited. When the energy is greater than 
0.258 mJ, there exists a critical value of interval time at which the reb value is relatively low for each 
energy level, respectively. In addition, the variation of reb, Δreb, is independent of the interval time at 
the invariant point of energy between 0.32 mJ and 0.36 mJ. Energy and interval time exhibit a Pear-
son correlation of 0.82 and 0.53 with reb, respectively. To maintain Δreb below 0.15, green laser abla-
tion of Si3N4 at operating energies of 0.258–0.378 mJ can adopt a baseline interval time of the initial 
baseline multiplied by 1/ ∜ 2. Additionally, for operating energies of 0.288–0.378 mJ during Si3N4 
laser ablation, Δreb can be kept below 0.1. With the forced partition methods, namely, the k-means 
method and percentile method, the XGBoost (v 2.0.3) classifier maintains a competitive accuracy 
across test sizes of 0.20–0.40, outperforming the machine learning algorithms Random Forest and 
Logistic Regression, with the highest accuracy of 0.78 at a test size of 0.20. 

Keywords: machine learning; XGBoost classifier; laser ablation; CMOS-MEMS; k-means 
 

1. Introduction 
Within the realm of complementary metal oxide semiconductor microelectrome-

chanical systems (CMOS-MEMS) fabrication, following the construction of CMOS cir-
cuitry upon the silicon substrate, MEMS structures (e.g., sensors, actuators) are subse-
quently established atop this circuitry. However, this integration process frequently ne-
cessitates modifications to the underlying layers [1], or the formation of intricate features 
that are potentially unattainable through conventional lithography or etching alone. In 
such scenarios, laser ablation emerges as a valuable tool. The advantageous nature of laser 
ablation in post-CMOS-MEMS processing stems from its inherent precision, minimal col-
lateral damage to surrounding regions, and its versatility in addressing a diverse range of 
materials commonly employed in MEMS fabrication. Nevertheless, meticulous control 
over laser parameters such as power, wavelength, and pulse duration is paramount to 
mitigate the potential for undesirable effects, including thermal damage and uninten-
tional material alterations. 

The emergence of laser ablation in the 1960s, coinciding with the development of 
lasers, initially served as a cornerstone for fundamental research in physics, particularly 
in understanding laser-material interactions. Early applications focused on ablating or re-
moving material from surfaces using high-powered lasers. Subsequent advancements in 
laser technology propelled the development of diverse laser types, each with unique char-
acteristics and applications. Excimer lasers, for instance, with their short wavelengths and 

Citation: Tsai, C.-C.; Yiu, T.-H.  

Investigation of Laser Ablation 

Quality Based on Data Science and 

Machine Learning XGBoost  

Classifier. Appl. Sci. 2024, 14, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor: Soshu Kirihara 

Received: 30 November 2023 

Revised: 22 December 2023 

Accepted: 26 December 2023  

Published: date 

 

Copyright: © 2023 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 

2, and bit/
√

2 group in Figure 5c, the bit represents a line
connecting the rightmost blue diamonds for each of the five energy levels. Similarly,
the bit/

 
 

 

 
Appl. Sci. 2024, 14, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci 

Article 

Investigation of Laser Ablation Quality Based on Data Science 
and Machine Learning XGBoost Classifier 
Chien-Chung Tsai * and Tung-Hon Yiu 

Department of Semiconductor and Electro-Optical Technology, Minghsin University of Science and  
Technology, Hsinchu 30401, Taiwan; tonyyiu30@gmail.com 
* Correspondence: cctsai@must.edu.tw 

Abstract: This work proposes a matching data science approach for the laser ablation quality, reb, 
the study of Si3N4 film based on supervised machine learning classifiers in the CMOS-MEMS pro-
cess. The study demonstrates that there exists an energy threshold, Eth, for laser ablation. If the laser 
energy surpasses this threshold, increasing the interval time will not contribute significantly to the 
recovery of pulse laser energy. Thus, reb enhancement is limited. When the energy is greater than 
0.258 mJ, there exists a critical value of interval time at which the reb value is relatively low for each 
energy level, respectively. In addition, the variation of reb, Δreb, is independent of the interval time at 
the invariant point of energy between 0.32 mJ and 0.36 mJ. Energy and interval time exhibit a Pear-
son correlation of 0.82 and 0.53 with reb, respectively. To maintain Δreb below 0.15, green laser abla-
tion of Si3N4 at operating energies of 0.258–0.378 mJ can adopt a baseline interval time of the initial 
baseline multiplied by 1/ ∜ 2. Additionally, for operating energies of 0.288–0.378 mJ during Si3N4 
laser ablation, Δreb can be kept below 0.1. With the forced partition methods, namely, the k-means 
method and percentile method, the XGBoost (v 2.0.3) classifier maintains a competitive accuracy 
across test sizes of 0.20–0.40, outperforming the machine learning algorithms Random Forest and 
Logistic Regression, with the highest accuracy of 0.78 at a test size of 0.20. 

Keywords: machine learning; XGBoost classifier; laser ablation; CMOS-MEMS; k-means 
 

1. Introduction 
Within the realm of complementary metal oxide semiconductor microelectrome-

chanical systems (CMOS-MEMS) fabrication, following the construction of CMOS cir-
cuitry upon the silicon substrate, MEMS structures (e.g., sensors, actuators) are subse-
quently established atop this circuitry. However, this integration process frequently ne-
cessitates modifications to the underlying layers [1], or the formation of intricate features 
that are potentially unattainable through conventional lithography or etching alone. In 
such scenarios, laser ablation emerges as a valuable tool. The advantageous nature of laser 
ablation in post-CMOS-MEMS processing stems from its inherent precision, minimal col-
lateral damage to surrounding regions, and its versatility in addressing a diverse range of 
materials commonly employed in MEMS fabrication. Nevertheless, meticulous control 
over laser parameters such as power, wavelength, and pulse duration is paramount to 
mitigate the potential for undesirable effects, including thermal damage and uninten-
tional material alterations. 

The emergence of laser ablation in the 1960s, coinciding with the development of 
lasers, initially served as a cornerstone for fundamental research in physics, particularly 
in understanding laser-material interactions. Early applications focused on ablating or re-
moving material from surfaces using high-powered lasers. Subsequent advancements in 
laser technology propelled the development of diverse laser types, each with unique char-
acteristics and applications. Excimer lasers, for instance, with their short wavelengths and 

Citation: Tsai, C.-C.; Yiu, T.-H.  

Investigation of Laser Ablation 

Quality Based on Data Science and 

Machine Learning XGBoost  

Classifier. Appl. Sci. 2024, 14, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor: Soshu Kirihara 

Received: 30 November 2023 

Revised: 22 December 2023 

Accepted: 26 December 2023  

Published: date 

 

Copyright: © 2023 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 

2 forms another line connecting the five middle blue diamonds for each energy
level. Likewise, the bit/

√
2 is a line connecting the five leftmost blue diamonds of the five

energy levels.
Upon observing Figure 5a, the mean line for the 0.258 mJ energy level shows an in-

creasing trend with interval time. Specifically, reb initially rises with interval time, indicating
a positive response. However, this effect diminishes as interval time increases, resulting
in a decreasing rate of increase in reb. In contrast, the other energy levels in Figure 5a
demonstrate a V-shaped curve. This suggests the presence of an energy threshold Eth
for laser ablation, likely situated between 0.258 mJ and 0.288 mJ. Beyond this threshold,
prolonging the interval time may not significantly contribute to the recovery of pulse laser
energy, thereby limiting reb enhancement. For various laser energies, when the energy
exceeds 0.258 mJ, there exists a critical value of interval time (ti)c, at which the reb value is
relatively low. As shown in Table 2, (ti)c is 63.9 s for 0.288 mJ, 70.6 s for 0.318 mJ, 77.4 s for
0.348 mJ, and 84.1 s for 0.378 mJ. The (ti)c were observed in the bit/
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2 group.

Table 2. (ti)c of each energy level.

Energy (mJ) (ti)c (s)

0.288 63.9

0.318 70.6

0.348 77.4

0.378 84.1

In Figure 5b, the mean line for the 0.318 mJ energy level exhibits a pattern similar to
that of the 0.258 mJ energy level in Figure 5a. Initially, it rises, but the increase gradually
approaches saturation. This is in contrast to the mean line for the 0.318 mJ energy level
in Figure 5a, where the line follows a V-shaped curve. In Figure 5b, the mean line for the
0.258 mJ energy level stands out with a sudden spike at an interval time of 57.2 s, creating
a distinctive curve not replicated in the other lines of both Figure 5a,b. There is no (ti)c
observed from the 48-sample dataset.

Figure 5b reveals a clear similarity between the behavior of the mean line for the
0.318 mJ energy level and that of the 0.258 mJ energy level in Figure 5a. Both exhibit
an initial rise, followed by a gradual saturation effect. This contrasts with the V-shaped
trajectory observed for the 0.318 mJ energy level in Figure 5a. A defining characteristic of
Figure 5b is the prominent spike exhibited by the mean line for the 0.258 mJ energy level at
an interval time of 57.2 s. This distinct behavior is not replicated in any other lines across
both figures. Notably, the box plot of the 48-sample dataset yielded no (ti)c observations.

3.4. Delta reb

For each of the 15 combinations of energy levels and interval times (15 boxes) in the
dataset of 90 samples, a corresponding range of reb values (∆reb) was calculated and is
depicted in Figure 6a. The outlier at the leftmost point (an upright triangle) for the energy
level 0.258 mJ was excluded in the regression line calculation. Notably, we observe a change
in slope (d∆reb/dt) from positive to negative in the regression lines.
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1. Introduction 
Within the realm of complementary metal oxide semiconductor microelectrome-

chanical systems (CMOS-MEMS) fabrication, following the construction of CMOS cir-
cuitry upon the silicon substrate, MEMS structures (e.g., sensors, actuators) are subse-
quently established atop this circuitry. However, this integration process frequently ne-
cessitates modifications to the underlying layers [1], or the formation of intricate features 
that are potentially unattainable through conventional lithography or etching alone. In 
such scenarios, laser ablation emerges as a valuable tool. The advantageous nature of laser 
ablation in post-CMOS-MEMS processing stems from its inherent precision, minimal col-
lateral damage to surrounding regions, and its versatility in addressing a diverse range of 
materials commonly employed in MEMS fabrication. Nevertheless, meticulous control 
over laser parameters such as power, wavelength, and pulse duration is paramount to 
mitigate the potential for undesirable effects, including thermal damage and uninten-
tional material alterations. 

The emergence of laser ablation in the 1960s, coinciding with the development of 
lasers, initially served as a cornerstone for fundamental research in physics, particularly 
in understanding laser-material interactions. Early applications focused on ablating or re-
moving material from surfaces using high-powered lasers. Subsequent advancements in 
laser technology propelled the development of diverse laser types, each with unique char-
acteristics and applications. Excimer lasers, for instance, with their short wavelengths and 
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Between laser energies of 0.32 mJ and 0.36 mJ there is an invariant point of energy,
characterized by a constant ∆reb across all pulse intervals, forming a horizontal line. Under
such energy operation, the variation (∆reb) of reb is independent of the interval time. Higher
energy levels with longer pulse intervals lead to higher reb values and reduced variability,
thereby maintaining high-quality laser ablation.

Conversely, the findings depicted in Figure 6b, which are based on the 48-sample
dataset, diverge from those in Figure 6a. Notably, the regression lines for both energy
levels, 0.258 mJ and 0.318 mJ, exhibit an identical downward trend in ∆reb as the pulse
interval increases.

Considering the variation in ∆reb, to maintain ∆reb below 0.15, green laser ablation
of Si3N4 at operating energies of 0.258–0.378 mJ can adopt a baseline interval time of the
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2, as shown in Figure 6c. Additionally, for the operating
energies of 0.288–0.378 mJ during Si3N4 laser ablation, ∆reb can be kept below 0.1.

The slope values of the regression lines from Figure 6a,b are plotted with energy to
generate Figure 7a,b. In Figure 7a, the plot of d∆reb/dt versus energy intersects the x-axis
at (0.350 mJ, 0), indicating an energy level at which reb is independent of interval time.
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In Figure 7b, however, when plotting the two negative slope values and extending the
regression line to intersect the x-axis, it yields a negative energy level of −0.197 mJ. This
value is inapplicable within the scope of this study.

3.5. Supervised Learning: Classification

At a test size of 0.20, with k-means method k = 5, then f = 4, the accuracies of Logistic
Regression and Random Forest are 0.61 and 0.67, respectively. However, using XGBoost
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increased the accuracy to 0.78. Therefore, this study adopts XGBoost as the algorithm to
analyze the experimental data obtained.

Figure 8a presents the comparative performance of three classification algorithms—Logistic
Regression, Random Forest, and XGBoost—in response to diverse test sizes. The al-
gorithms were configured as follows: Logistic Regression was allotted a maximum of
1000 iterations for convergence, Random Forest employed an ensemble of 100 decision trees
(n_estimators = 100), and XGBoost utilized the default value of 100 estimators. The x-axis
unveils the spectrum of test sizes, spanning from 0.20 to 0.40, while the y-axis illustrates
the corresponding accuracy scores. Notably, Logistic Regression consistently exhibits the
lowest accuracy among the three models. At a test size of 0.30, a notable crossover occurred
where Random Forest surpassed XGBoost, becoming the model with the highest accuracy.
The highest accuracy among the three models occurs for the XGBoost algorithm, with an
accuracy of 0.74 at a test size of 0.25. For Random Forest, the accuracy varies between
0.56 and 0.67, indicating a consistent performance across different test sizes. XGBoost
consistently demonstrates competitive performance, with accuracies ranging from 0.53 to
0.74, showcasing its effectiveness under different test size conditions. XGBoost displays
a general decreasing trend in accuracy as the test size increases, suggesting a potential
sensitivity to data size. On the other hand, Random Forest maintains a relatively stable
trend, indicating robustness to variations in test size.
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Figure 8b illustrates the performance of three classification algorithms using the
percentile method. Similar to Figure 8a, Logistic Regression consistently exhibits the lowest
accuracy among the three models. This indicates its limited effectiveness in accurately
categorizing samples based on the provided features. Notably, at a test size of 0.20, XGBoost
demonstrates the highest accuracy with an impressive 0.78. As the test size increases,
Logistic Regression shows a gradual decline in accuracy, suggesting potential sensitivity
to data size. Random Forest maintains a relatively stable trend in accuracy across the
entire range of test sizes, performing between 0.56 and 0.67. This indicates its robustness
to variations in test size. Meanwhile, XGBoost starts strong, with a high accuracy of 0.78
at a test size of 0.20. However, it experiences a slight decrease as the test size increases,
hinting at a potential sensitivity to data size. Nevertheless, even at the largest test size of
0.40, XGBoost maintains a competitive accuracy of 0.67. XGBoost consistently outperforms
Random Forest.

Figure 8c presents the performance of three classification algorithms utilizing a forced
partition into five clusters. Consistent with previous observations in Figure 8b, XGBoost
consistently outperforms Random Forest across the entire range of test sizes. It is note-
worthy that the accuracies obtained in Figure 8c are notably lower compared to those in
Figure 8a,b. Despite these lower accuracies, the relative performance of the models remains
consistent, underscoring the effectiveness of XGBoost in this dataset. Logistic Regression
consistently yields lower accuracy compared to the other models. At a test size of 0.20,
XGBoost exhibits the highest accuracy, reaching 0.61. As the test size increases, Logistic
Regression shows a gradual decline in accuracy, indicating a potential sensitivity to data
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size. Both Random Forest and XGBoost maintain relatively stable trends in accuracy across
the range of test sizes. Random Forest performs between 0.41 and 0.52, while XGBoost
achieves accuracies ranging from 0.44 to 0.61.

4. Conclusions

This work proposes a matching data science approach for the laser ablation quality,
reb, the study of Si3N4 film based on supervised machine learning classifiers in the CMOS-
MEMS process. The study demonstrates that there exists an energy threshold, Eth, for laser
ablation. If the laser energy surpasses this threshold, increasing the interval time will not
contribute significantly to the recovery of pulse laser energy. Thus, reb enhancement is
limited. When the energy is greater than 0.258 mJ, there exists a critical value of interval
time at which the reb value is relatively low for each energy level, respectively. In addition,
the variation of reb, ∆reb, is independent of the interval time at the invariant point of energy
between 0.32 mJ and 0.36 mJ. Nevertheless, higher energy levels with a longer interval
time led to higher reb values and reduced variation of reb, thereby maintaining high-quality
laser ablation. The results of this research have been validated through data science and
machine learning, and they abide by the fundamental principles of laser physics.

5. Future Research Directions

The study of selective laser ablation offers insights not only for Si3N4, but also for
another dielectric, SiO2, situated at the chip’s central white region. The ablation of SiO2
could alter its physical properties from hydrophobic to hydrophilic. Through capillary
phenomena, the air’s humidity could penetrate the now hydrophilic SiO2 surface improving
wetting characteristics. This enhancement would allow the CMOS circuit to conduct by
the moist sensing functionality of the “dual-function switch and humidity” chip, once
voltage-driven.
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