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Abstract: Navigation map generation based on remote sensing images is crucial in fields such as
autonomous driving and geographic surveying. Style transfer is an effective method for obtaining a
navigation map of the current environment. However, there is lack of robustness of the map-style
transfer model, resulting in unsatisfactory quality of the generated navigation maps. To address these
challenges, we average the parameters of generators sampled from different iterations with a dense
sampling strategy in the Generative Adversarial Network (CycleGAN). The results demonstrate
that the training efficiency of our method on the MNIST and generation quality on the Google Map
dataset are significantly superior to traditional style transfer methods. Moreover, it performs well in
multi-environment hybrid mapping. Our method improves the generalization ability of the model
and converts existing navigation maps to other styles of maps precisely. It can better adapt to different
types of urban layout and road planning, bringing innovative solutions for traffic management and
navigation systems.

Keywords: style transfer; remote sensing; model fusion; machine learning; deep learning

1. Introduction

Navigation maps [1–3], serving as a source of data, become more indispensable
in fields such as autonomous driving [4], as more and more researchers use them for
planning [5] and navigation decisions [6] in the context of autonomous vehicles. Point
cloud data [7] and navigation systems [8] could acquire navigation maps, but they are time
consuming, inefficient, and costly. In contrast, methods that use style transfer based on
remote sensing images [9–11] to generate navigation maps are cost effective and offers
real-time capability, which effectively address the aforementioned shortcomings. Style
transfer [12,13] is one of the most significant parts of navigation map generation, which
transforms images from one domain to another by using a style image to convert a given
image without altering its original content. It extracts features from the content and style
of the image separately, adjusting and optimizing the weights of neural networks, and
then fuses them to reconstruct the final image. Currently, navigation maps are mainly
used in urban environments and in off-road settings. Especially in some scenarios like
autonomous vehicle testing, the generation of navigation maps based on remote sensing
images can provide valuable off-road image samples and accurate geographic information
and real-time updates [14–16].

Nevertheless, style transfer faces challenges such as insufficient precision and high
time cost. In order to overcome the obstacles, we propose an improvement in optimization
methods, which fuses the parameters of generators sampled from different iterations
in CycleGANs [17]. The weight average (WA) of deep learning models leverages the
strengths of different models to compensate for individual model deficiencies, giving rise
to improved predictive outcomes [18,19]. However, the effect of CycleGAN combined
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with WA is often not ideal. Considering that WA based on Dense Stochastic Weighted
averaging (SWAD) [20] increases the diversity of samples and introduces cycle consistency
constraints, we also average the weights of generators with a similar dense sampling
strategy. The method improves the overall quality of style transfer and generalizability
in off-road environments, which provides users with the best route planning and traffic
information. In addition, it can also improve traffic efficiency and develop urban planning
and future transportation.

Specifically, we improve the performance of CycleGAN by averaging the weights of
generators sampled from different periods as shown in Figure 1. Image A is input into
the network and transformed into GeneratedB (image B ) by GA2B (generators). Then, we
establish a loss function between Generated B and image B via DB (discriminators). Cyclic
A is generated in reverse using GB2A to establish the cycle loss, so as to maintain content
consistency between Generated B and A. The SWAD is implemented within GA2B and GB2A
by calculating weighted averages of model weights with the dense sampling strategy at
different training stages. The method enables the model to efficiently extract features from
off-road environments, improving its ability to generate navigation maps that blend both
off-road and urban environments. Since each GAN model may have different training
data and network architectures, the fusion process is able to mitigate the limitations of
individual models and enhance the overall system’s robustness, which makes it more
adaptable to various input conditions [21,22].

Figure 1. SWAD-CycleGAN fusion model network structure diagram. A denotes the A-class-style
images including map information. Generated B denotes the final map with B-class-style images
obtained by generators from A-style map information. CyclicA denotes the final map with A-class-
style images obtained by generators from Generated B. GA2B represents the generator that converts
A-class-style images into B-class-style images, GB2A represents the generator that converts B-class-
style images into A-class-style images, and DB represents the discriminator for B-class images. GA2B

i

represents the model at round i in training.

The contributions made by this paper are as follows: we propose a novel method
that averages the parameters of generators sampled from different iterations with the
dense sampling strategy in CycleGANs. We conduct a large number of experiments to
compare the performance of the method on datasets from Google Maps [23]. Additionally,
we conduct separate training for urban and off-road environments. We confirm that the
method not only conducts the convergence at a more rapid speed, but it also ensures the
generation quality in both scenarios, ultimately resulting in the development of a hybrid-
map-style transfer model. The remaining structure of this paper is organized as follows:
Section 2 provides an overview of related work on GANs and the optimization methods
employed. Section 3 gives priority to the mathematical formulation of the constructed
models and the optimization methods adopted in our experiments. In Section 4, we present
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comparative experiments and draw conclusions based on the results. Finally, we conclude
our proposed method and offer prospects for future research.

2. Related Work

The work of map-style transfer focuses on transferring texture features in the early
stage. However it does not explicitly address the style transfer task itself, resulting in less-
than-ideal outcomes. With the development of deep learning technologies, some work [24]
trains images with neural networks to make the image’s style closer to the target style. But,
these methods are computationally intensive and not suitable for real-time map generation,
which tends to distortions in certain image data during transfer. Gatys et al. [25] simplify
the style transfer problem as an optimization problem within a single neural network, of
which the texture model based on deep image models was able to generate new images by
matching feature representations of example images via an image search. However, it is not
well suited for photos. Subsequently, Johnson et al. [26] expand on Gatys’ work by replacing
the input random noise image with a target image and incorporating a forward autoencoder
network to model the style transfer process. Luan et al. [27] address the limitations of Gatys’
model by constraining the output within a specific color space to suppress deformations
and maintain the realism of photos. The constraint is fully differentiable, enabling better
preservation of style information from reference images without introducing distortions
caused by deformations. Li et al. [28] use feature transformations such as Whitening and
Coloring Transform (WCT) to directly match the statistical properties of content feature
statistics with those of style images in the deep feature space. Li et al. [29] improve the
WCT-based method by introducing stylization and smoothing steps to tackle structural
artifacts in the output of the WCT algorithm. However, the WCT-based approach still have
the potential to produce spatial distortions or unrealistic artifacts. Yoo et al. [30] suggest
incorporating wavelet transform into neural networks based on WCT, enabling features
to retain both structural information and statistical properties of the VGG space, thereby
addressing the aforementioned limitations. Recent work tends to use GANs to implement
map-style transfer, especially CycleGAN [31]. However, there are challenges pertaining to
image accuracy and real-time processing, which motivates us to enhance the CycleGAN
for map-style transfer.

WA is a technique which fuses the deep learning models and aims to improve the
model. Some recent work [32] uses Stochastic Weighted Averaging (SWA) [33] in Cy-
cleGANs [34,35], which enhances the capabilities of generators. Inspired by checkpoint
averaging [36,37], Izmailov et al. [33] propose SWA. Using the mean of multiple models
on the training trajectory can help find a better-performing network with no additional
computational overhead compared to training a single model. When SGD convergence
is good, the checkpoint of SWA sampling is concentrated around the optimal solution.
Using SWA operations for these checkpoints helps optimize the training network. Similar
to FGE [38–40], using the cyclic learning rate [33,41], models that are spatially close to
each other but produce different predictions can be collected. Some recent work proposes
variations on SWA that allow SWA to be adapted to more complex application scenarios
and have more efficient rates. We tend to combine SWAD and SWA with CycleGANs to
improve the performance of the navigation maps.

3. Methods
3.1. Cyclic Adversarial Generation Network Based on SWAD Optimization Method

CycleGAN realizes mapping from one domain to another via generators and discrimi-
nators. In this section, we propose a method that averages the parameters of generators
sampled from different iterations with the dense sampling strategy in CycleGANs. First, we
illustrate the framework of SWAD-CycleGAN, as shown in Figure 2. CycleGAN involves
four models: GA2B, GB2A, DA and DB. GA2B transforms Real A inputs into Cyclic B outputs,
while GB2A handles the transformation of Cyclic B inputs into Cyclic A outputs. The con-
cept of cycle consistency in adversarial networks involves both forward cycle consistency
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and backward cycle consistency. Forward cycle consistency refers to the fact that when an
input from the source domain passes through a generator and a reverse generator, it should
map back to an output within the source domain while maintaining consistency with the
original input. Similarly, backward cycle consistency ensures that an input from the target
domain, after going through the reverse generator and generator, should map back to
an output within the target domain, remaining consistent with the original input. The
cycle consistency loss helps in preventing the adversarial networks from learning mapping
functions G and F, while learning mapping functions G and F tends to make the source
and target domains have the same distribution. Despite the network having the capacity to
map source domain images to any image in the target domain and generate a distribution
equivalent to that of the target domain, cycle consistency loss is beneficial to constraining
this behavior. Additionally, the identity loss function ensures that when A-class-style maps
are inputted into GA2B, the generated output resembles B-class-style images and vice versa.
However, this may not always hold true, so the identity loss function is designed to impose
constraints on this aspect.

Figure 2. Forward experimental model and reverse experimental model of SWAD-CycleGAN.

DA and DB are responsible for discriminating between the authenticity of A and B.
Additionally, there are four types of loss functions: Gloss, Dloss, Cycleloss, and identityloss.
The loss function G_loss for the Generator as Equation (1), with a target to make the
generated images closely align with the distribution of target images, ultimately “deceiving”
the discriminator.

LGAN(G, DY, X, Y) = Ey∼pdata (y)[log DY(y)] +Ex∼pdata (x)[log(1 − DY(G(x))] , (1)

where pdata(y) denotes probability distribution on the output. G and D denote the generators
and discriminators. On the other hand, the loss function for the Discriminator (Dloss) has the
opposite objective, namely the distinguishment of the images generated by the Generator.
The cycle loss (Cycleloss) function is depicted as Equation (2):

Lcyc(G, F) = Ex∼pdata (x)[∥F(G(x))− x∥1] +Ey∼pdata (y)[∥G(F(y))− y∥1]. (2)

The generator and discriminator we designed are based on residual networks, and the
specific internal network structures are shown in Figures 3 and 4. While previous work has
mainly laid stress on improving loss functions, our target is to enhance the optimization
methods for the four models and compare them with several state-of-the-art techniques.
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Figure 3. Neural network structure of the generators. ResBlock is a residual module composed of
multiple convolutional layers and activation layers.

Figure 4. Neural network structure of the discriminators.

3.2. Network Optimization

Definitely, CycleGAN itself serves as a generative adversarial network for image
transformation, which realizes mapping from one domain to another via two generators
and two discriminators. We can fuse the output of two generators of CycleGAN to produce
better results.

In this paper, we not only adopt SWAD to solve the instability and relieve mode
oscillation problems in GAN model training, but also boost the robustness of the model.
By averaging multiple best points in the training process, the model can better adapt to
the unseen data. There are several generator networks in the GAN network, and through
the SWAD strategy, the parameters of these generators can be averaged and the multiple
generators can be “fused” into a unified generator model. While this reduces the difficulty
in choosing the best generator, it also makes the model more stable and reliable. The SWA is
based on averaging multiple points on the SGD trajectory with a periodic learning rate [33]
as Equation (3):

α(i) = (1 − t(i))α1 + t(i)α2,

t(i) =
1
c
(mod(i − 1, c) + 1).

(3)

where α denotes the learning rate at i iteration, and c denotes the number of iterations.
An improvement in generalization is accessible, only by averaging some points on the
optimized trajectory during the training process. SWA significantly improves the training
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of many state-of-the-art deep neural networks on a series of important baselines, with
essentially no overhead. Considering that SWA averages the latter part of the network,
the result cannot accurately approximate the ideal minimum on the high-dimensional
parameter space. Therefore, we use SWAD [20] to gather enough weights in each iteration.

4. Experiments

The workstation configuration used for the experiments in this article consists of
an AMD Ryzen 9 6900HX with 16 GB RAM. To evaluate the effectiveness of the SWAD
method on general GAN networks, we first conduct tests on the MNIST [42] to ensure
comprehensiveness. Subsequently, we evaluate the effectiveness and benefits of the SWAD-
CycleGAN model on Google Maps [23]. Additionally, we conduct experiments in both
urban and off-road environments to assess the generalization ability of SWAD-CycleGAN.
The experimental results for these two environments are presented in this section.

We randomly split the data in each domain into two splits: 20% for an independent
test set, and the remaining 80% for 10 times 10-fold cross validation to set hyperparameters.
After that, the training set and validation set are combined and retrained to obtain the final
model. Finally, we use the test set to assess the model’s generalization ability.

4.1. Dataset and Hyperparameters

In the integrity testing phase of this study, we use the MNIST dataset which is com-
posed of numbers handwritten by 250 different people, as shown in Table 1. During the
experimental phase, we utilize RS maps and navigation maps provided by Google Maps
which were sampled from in and around New York City. The Google Maps datasets also
include urban and off-road environmental data from various locations, categorized into RS
maps (class-A-style data) and navigation maps (class-B-style data), each with its respective
training and testing subsets.

Table 1. The introduction of datasets.

Phase Source Image Size Structure

Integrity Testing MNIST 28 × 28

{
train
test

Experiment Google Maps 256 × 256


train

{
A class
B class

test

{
A class
B class

The foundational neural network architecture used in this paper is the Residual
Network [43] (ResNet). Consequently, the input size for the data was set at 256 × 256. For
the training set, in order to ensure comprehensive training, the original data was initially
magnified by a factor of 1.12 and subsequently randomly cropped to 256 × 256 dimensions.
The data images were then subjected to random flips and finally normalized. Conversely,
there were no such constraints applied to the testing set. The data was randomly split into
a test set comprising 20% of the total data. The remaining 80% was divided into 10 parts.
In each iteration, we randomly select nine parts as the training set, and the remaining part
was used as the validation set, which ensures that each part was used as the validation set
in turn. We repeat the process 10 times and average the results. The hyperparameters were
adjusted based on the final results, as shown in Table 2.
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Table 2. Hyperparameters employed in SWAD and traditional methods.

Hyperparameters SGD 1 Adam 1 SWAD 1 SWA 2 PSWA 2 SGD 2 SWAD 2

Learning rate - - 1 × 10−3 1 × 10−4 2 × 10−4 2 × 10−4 2 × 10−4

Batch size - - 64 2 2 2 2
Number of epochs - - 100 100 100 100 100

1 Integrity testing phase. 2 Experiment phase.

4.2. Integrity Testing of the SWAD Method on the GAN Network

Prior to the formal experiments, we conduct integrity testing on the SWAD opti-
mization method to assess its feasibility and reliability. The integrity testing is performed
using the MNIST datasets. We compare the performance of two conventional optimization
methods, Stochastic Gradient Descent [44] (SGD) and Adaptive Moment Estimation [45]
(Adam), with that of SWAD on the MNIST train set. Figure 5 presents the discriminator
and generator loss based on three different optimization methods: Adam, SGD, and SWAD.
Generated data is displayed every 10 epochs, with 16 samples randomly selected from the
generated datasets. Over the course of 100 epochs, the SWAD method effectively reduces
loss fluctuations, resulting in a steady decline. The SWAD method achieves a significantly
lower discriminator loss and a slight decrease in generator loss, which performs exception-
ally well on a GAN network. Generated data is displayed every 10 epochs, with 16 samples
randomly selected from the generated datasets. Moreover, Figure 6 illustrates that by
the 40th epoch, discernible handwritten numbers can already be observed. This suggests
that the SWAD method rapidly converges and produces clear images, greatly improving
training efficiency and image quality. In summary, the SWAD optimization method demon-
strates faster convergence and a better ability to identify the optimal solution in gradient
descent. This results in shorter training time while maintaining the quality of generated
images. The method has successfully passed the integrity test and can be further applied to
CycleGAN in a multi-environment in subsequent experiments.

Figure 5. Loss reduction functions of various optimization methods under integrity testing. (a) The
discriminator and generator loss of Adam. (b) The discriminator and generator loss of SGD. (c) The
discriminator and generator loss of SWAD.
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Figure 6. The generation results of SWAD on MNIST after 100 rounds of training (results sampled
every 10 rounds).

4.3. Evaluation Indicators

The performance of the GAN’s generators is evaluated based on the ability to deceive
the discriminator with generated “fake maps”. This iterative process aims to achieve a
“Nash equilibrium”, which is a non-cooperative game equilibrium between the generator
and discriminator. To explore this, we conduct experiments using a “controlled variable
method” where optimization algorithms are applied separately to the two types of models
mentioned above, as well as simultaneously to both. The results indicate that applying the
optimization algorithm to both models does not significantly improve their performance.

The quantitative indexes of navigation map generation quality include positioning
accuracy, map coverage rate, update speed, path planning accuracy, real-time traffic in-
formation accuracy, etc. Generally, FID (Frechet inception distance score) [46] and IS
(inception score) [47] are the main indicators used to evaluate the image quality generated
by GANs. FID calculates the distance between feature vectors of real and generated
images. A lower FID score indicates a closer similarity between the two images or more
similar distributions. In the best case scenario, the FID score is 0.0, which represents
identical images. Another indicator used is the IS (inception score) [47], which can be
understood as a measure of image clarity or resolution during training. Since the primary
goal of the generative model is to produce realistic images, the IS score reflects the clarity
of the generated images. For a clear image, the values of vector y in one dimension are
larger, indicating a higher probability of belonging to a certain class, while values in other
dimensions are smaller. In professional terms, a clear image has lower entropy in P(y | x)
(higher entropy indicates greater chaos or uncertainty in the values of a random variable).
The IS indicator is shown as Equation (4):

IS(G) = E[Ex ∼ PgKL(P(y | x)P(y))]. (4)

In brief, the larger the IS index of the generated image, the clearer and higher the
resolution, which is obviously expected by the generated model.

4.4. Experiment Results
4.4.1. Experiment Results of Prevailing and Proposed Methods on Google Maps Dataset

In the initial phase, we conduct 200 rounds of training. The training results show
that after approximately 100 rounds, all indicators display minimal fluctuations, indicat-
ing convergence. Therefore, we present the results and various parameter metrics after
100 rounds of training. To ensure the completeness of the model, we conduct forward and
reverse experiments for each set of methods. This means that the model should be able
to transform from satellite map-style class-A data to navigation map-style class-B-style
data and vice versa. Table 1 presents the parameter values for the various methods used
in the four comparative experiments. IS-B refers to the inception score of the generated
class-B-style data in the forward process (satellite map to navigation map). IS-A refers to
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the inception score of the generated class-A-style data in the reverse process (navigation
map to satellite map).

First, from Table 3, the combination of CycleGAN with SWAD performs best than SWA
and other methods. Compared to SWA, when SWAD is deployed on the generators, the
FID indicator decreases by 55.8% and the IS-B indicator has increased by 28.9%. It means
that the gap of SWAD between the generated data and real data decreases significantly
compared to SWA or SGD. At the same time, the quality of both A-class-style and B-
class-style generated data improves considerably, which is a favorable outcome for GANs.
Moreover, when PSWA [37] is deployed on both the generators, it improves the IS-A
indicator, but it performs less well on other indicators such as FID.

Table 3. The performance indicators based on prevailing and proposed methods on test dataset.

Methods FID Decreasing Rate of FID 1 IS-A IS-B

SWA 194.970 0 4.328 2.334
SWA (generators and discriminators) 2 331.962 −70.3% 3.897 2.097

PSWA 246.689 −26.5% 4.756 1.796
SGD 89.147 54.3% 3.696 3.004

SWAD 86.274 55.8% 3.892 3.008
1 Using SWA (only generators) as a reference. 2 Other methods only use SWA for generators by default.

Second, the method works better when deployed on generators than deployed on both
generators and discriminators. When SWAD is deployed only on the generators, the gap
between generated data and real data decreases significantly compared to the previous ex-
periments. Although it is still larger than the baseline, the quality of generated A-class data
is even higher, and the quality of generated B-class data also improves considerably. This
indicates that deploying SWAD on the generator alone yields better results than deploying
it simultaneously. When SWAD is simultaneously deployed on both the generator and
discriminator, it amplifies the gap between generated data and real data. This is because
the model inherently involves an adversarial iterative process, where the generator and
discriminator compete with each other to achieve training effectiveness. Deploying the
optimization method on both sides inevitably leads to one side being weaker and the other
stronger, which is clearly not conducive to training. Hence, the elevated value of this
indicator is understandable.

Third, compared to SGD, the indicators of SWA related to the quality of generation
are better, which indicates that SWDA improves the resolution of generated images. Ad-
ditionally, the effect of SWAD on FID, IS-A, and IS-B is higher than SGD, but other SWA
variants still fall short of the SGD indicators. This further highlights that the network’s
adversarial performance is not solely dependent on the optimization method.

Figure 7 demonstrates the loss reduction process of various methods during the
training process. Each column corresponds to a different optimization method. Within
each column, the top section represents the loss when discriminating A-class images (DA),
the middle section represents the loss when discriminating B-class-style images (DB), and
the bottom section represents the total loss of the generator. To compare the convergence
speed and oscillation level of different optimization methods during training, we perform
statistical analysis on the total loss of generator shown at the bottom of Figure 7 and
document the results in Table 4. In order to standardize the convergence criteria, we
establish the following guidelines:

1. Convergence is considered when the amplitude of the loss curve does not exceed 10%
of the maximum loss value, and the training round at this point is identified as the
convergence time.

2. We record the oscillation counts equal to or greater than 10% of the maximum loss
value to assess the extent of oscillation during training.
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Table 4. The convergence rounds and oscillation counts for each optimization method.

Methods Convergence Rounds Oscillation Counts

SWA 42 k 40
SWA (generators and discriminators) 35 k 35

PSWA 48 k 51
SGD 36 k 46

SWAD 26 k 36

As shown in Table 4, the convergence speed of SWA is nearly identical to that of
SGD, but it significantly reduces the degree of oscillation. On the other hand, the PSWA
method not only converges slower but also intensifies the oscillation. In contrast, SWAD
demonstrates better performance by significantly accelerating the convergence speed and
reducing the degree of oscillation, leading to a more stable training process.

Figure 7 indicates that the SWA is more effective in identifying the optimal solution
compared to the baseline, enabling it to reach the lowest gradient more rapidly. However,
this also leads to a higher generator loss for the same batch compared to the baseline.
In panel (d), both the generator and discriminator exhibit a more balanced performance,
ultimately surpassing the baseline. The experimental results further demonstrate that the
SWA optimization method effectively addresses the two longstanding issues encountered
in map-style transfer tasks: time-consuming processes and poor quality.

The total loss of the generator consists of three components: GGANloss (composed solely
of the loss from the GA2B and GB2A generators), Gcycleloss

, and Gidentityloss
. The loss functions

for these components are depicted in Figure 8.

Figure 7. Training loss for each optimization method. (Top) loss of discriminator A; (Middle) loss of
discriminator B; and (Bottom) total loss of generator.
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Figure 8. Three components of the total loss in the generator. (Top) GAN loss; (Middle) cycle loss;
and (Bottom) identity loss.

4.4.2. Style Transfer Result on Google Maps Dataset

We select urban and off-road environment datasets for group training. After complet-
ing the training, we input class-A-style data or class-B-style data into the model to generate
the corresponding transformed image. In the following sections, we display and analyze
the output results of the PSWA and SWAD methods. These results consist of 16 randomly
selected outputs from over a thousand results obtained in urban and off-road environments.
The relationship between the input and output is as follows: when the class-A-style test set
is inputted, a class-B-style converted image is generated, and when the class-B-style test
set is inputted, a class-A-style converted image is generated. Figures 9 and 10 illustrate the
forward migration process using the PSWA method, while Figure 11 depicts the reverse
migration process using the PSWA method. Additionally, Figures 12 and 13 demonstrate
the forward migration process using the SWAD method, and Figure 14 showcases the
reverse migration process using the SWAD method.

Figure 9. The forward transfer process in urban environments based on PSWA.
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Figure 10. The forward transfer process in off-road environments based on PSWA.

Figure 11. The reverse transfer process based on PSWA.
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Figure 12. The forward transfer process in urban environments based on SWAD.

Figure 13. The forward transfer process in off-road environments based on SWAD.
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Figure 14. The reverse transfer process based on SWAD.

As observed in Figures 9 and 10, it is apparent that the forward migration effect of
PSWA is not satisfactory. The map outline drawn appears blurred, and the migration effect
of certain key elements is subpar. Overall, this can be attributed to the fact that although
PSWA partially addresses the issue of over-fitting in ordinary SWA, it still lacks sufficient
training, resulting in a decrease in the clarity of the generated images. Furthermore, the
data adaptability to off-road environments is limited, and the mapping accuracy is low,
which does not meet the requirements for hybrid mapping in multiple environments.
Nevertheless, it is evident that PSWA exhibits a strong resemblance to the source domain,
thereby demonstrating its potential to enhance the model’s robustness.

Figure 11 illustrates the reverse migration process of the PSWA method. The outlines
of the buildings in the map appear to be clearer, although still somewhat blurry. The
migration effect is more pronounced for data with significant differences in characteristics,
but the distinction between the reverse generation of data with similar characteristics is
low. Specifically, there is not a significant differentiation between rivers and green spaces
in the data.

From Figures 12 and 13, we can observe that the SWAD method effectively addresses
the issue of over fitting without compromising the quality of generation. Furthermore,
the clarity of the SWAD method surpasses the generation effect of the PSWA method. In
urban environments, distinct features such as vegetation, lakes, and rivers are adequately
represented in the remote sensing images and exhibit good transfer results. Boundaries
like roads and sidewalks are also well reflected in the navigation maps. In off-road environ-
ments, the elements in the remote sensing images are relatively uniform, mainly consisting
of deserts or channels. As a result, the transfer effect is good, essentially achieving the goal
of generating hybrid-transfer maps between urban and off-road environments.

When inputting class-B-style images, it should be possible to perform a reverse style
transfer back to class-A-style images. Therefore, the results of the reverse transfer are
shown in Figure 14. It can be observed that although some empty areas in the remote
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sensing images can only be filled with houses or other objects generated by the algorithm
after the transfer, the overall segmentation lines and block restoration are relatively good,
resulting in a satisfactory outcome.

5. Conclusions

In this paper, we propose a novel method that averages the parameters of generators
sampled from different iterations with the dense sampling strategy in CycleGANs. Two
networks of generators converse images from one domain to another. The fusion of
generators improves the conversion quality, increases sample diversity, balances generator
strengths and weaknesses, and reduces problems such as mode crashes and oscillations. In
future work, we will generalize the method under different datasets and scenarios to adapt
to migration tasks in different environments. In sum, the fusion of GAN generators is an
efficient method to further improve the performance of image conversion in CycleGAN,
bringing more diverse and authentic results. However, the computing time and resource
consumption will increase significantly in large-scale occasions. Also, the adjustment of
parameters may increase the cost of training. The combination of WA and the generation
of navigation maps based on style transfer has a potential future. With the development
of deep learning and generative models, there may be a more efficient and accurate WA
technique of GANs in the future, making navigation image generation more intelligent and
realistic. In addition, combined with other technologies such as reinforcement learning
and augmented reality, navigation image generation may further explore the fields of
application and provide a more rich and interactive navigation experience.
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