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Abstract: In order to increase a nonlinear system’s state estimate precision, an iterated orthogo-
nal simplex cubature Kalman filter (IOSCKF) is presented in this study for target tracking. The
Gaussian-weighted integral is decomposed into a spherical integral and a radial integral, which are
approximated using the spherical simplex-radial rule and second-order Gauss–Laguerre quadrature
rule, respectively, and result in the novel simplex cubature rule. To decrease the high-order error
terms, cubature points with appropriate weights are taken from the cubature rule and processed using
the provided orthogonal matrix. The structure supporting the nonlinear Kalman filter incorporates
the altered points and weights and the calculation steps; from this, the updated time and measure-
ment can be inferred. The Gauss–Newton iteration is employed repeatedly to adjust the measurement
update until the termination condition is met and the IOSCKF is attained. The proposed algorithms
are applied in target tracking, including CV target tracking and spacecraft orbit tracking, and the
simulation results reveal that the IOSCKF can achieve higher accuracy compared to the CKF, SCKF,
and OSCKF. In spacecraft orbit tracking simulation, compared with the SCKF, the position tracking
accuracy and velocity tracking accuracy of the OSCKF are increased by 2.21% and 1.94%, respectively,
which indicates that the orthogonal transformation can improve the tracking accuracy. Furthermore,
compared with the OSCKF, the position tracking accuracy and velocity tracking accuracy of the
IOSCKF are increased by 2.71% and 2.97%, respectively, which indicates that the tracking accuracy
can be effectively improved by introducing iterative calculation into the measurement equation, thus
verifying the effectiveness of the method presented in this paper.

Keywords: cubature Kalman filter; spherical simplex-radial rule; orthogonal transformation; target
tracking; nonlinear system

1. Introduction

For several decades, target tracking has had substantial applications in many fields,
such as navigation guidance, military application, and sensor networks [1,2]. Target
tracking is a process whereby the position and velocity of a target’s motion are estimated
using to discrete measurements with random noise output by sensors. Mathematical
models of target tracking are generally described in different coordinate systems, where
the process model is established in the Cartesian coordinate system and the measurements
are generally implemented in the spherical coordinate system [3–5]. Thus, target tracking
can be considered to be a typical nonlinear filtering problem [6,7]. The posterior probability
density function (pdf) is very important in nonlinear filtering theory. Because pdf includes
every piece of information on the state vector, it provides an integral filtering solution.
Therefore, nonlinear filtering should focus on the calculation of posterior pdf, as the
posterior mean and covariance of the state cannot be propagated using the nonlinear
function directly.

In nonlinear systems, there contain two types of approaches to estimate the posterior
pdf; one is optimal estimation, while the other is suboptimal estimation [8]. The former
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mainly includes a particle filter [9] and makes no assumptions on the pdf, which leads
to a large amount of computation and is not suitable for applications in engineering. For
the latter method, the posterior pdf is assumed to have a Gaussian distribution, and
the typical representation, the nonlinear Kalman filter, is primarily studied in practical
applications [10].

In a nonlinear Kalman filter, the recursive estimation of the state vector is divided
into two processes consisting of a time update and a measurement update, and a unified
filtering calculation framework is given. The key problem in the filtering framework is
in the approximation of the Gaussian-weighted integral of multi-dimensional nonlinear
function [8], and two approximate approaches, including the approximation of the nonlin-
ear function and that of the Gaussian pdf, are mainly taken. The extended Kalman filter
(EKF) [11] belongs to the former, and the basic idea of EKF is to use the first-order Taylor
expansion to linearize the nonlinear system equations, and then, the conventional Kalman
filter is used to estimate the state [12]. It is required to calculate the Jacobian matrix of the
system, which demands that the model be smooth and differentiable. The EKF filtering
accuracy is reduced or even divergent for a highly nonlinear system, and an improved
algorithm, named iterated EKF (IEKF) [13], is proposed. The latest measurements are fully
utilized through iterative calculation in the measurement update of IEKF to improve the
estimation accuracy; however, the inherent disadvantage of EKF is still present in IEKF, that
is, the differential operation of the Jacobian matrix. In general, the approximation of pdf
is easier than that of the nonlinear function, so the approximation is performed using the
deterministic sampling points in the latter method, and results in the unscented Kalman
filter (UKF) [14], Gauss–Hermite–Kalman filter (GHKF) [15], sparse-grid Kalman filter
(SGKF) [16], and cubature Kalman filter (CKF) [17,18]. These filters are all derivative-free
filters, that is, there is no need to calculate the Jacobian matrix to linearize the nonlinear
equation [19]. Specifically, a set of sigma points is used to approximate the posterior mean
and covariance in UKF, and Chang [20] proposes using the orthogonal transformation of
the sigma points for improving the approximation accuracy without increasing the compu-
tational complexity, thus reducing the high-order error term. However, there exist three
adjustable parameters in UKF, and the inappropriate choice of parameters may reduce the
filtering accuracy and the numerical stability. The computation amount of GHKF increases
exponentially with the system state, which may cause the curse of dimensionality [16].
In order to reduce the computational complexity, the sparse-grid integral rule can be uti-
lized to derive the SGKF, and the number of integral points is increased polynomially [17].
However, the CKF is widely used in engineering [21–24]. The CKF helps the intractable
Gaussian-weighted integral to decompose and is composed of a spherical integral and a
radial integral, and a set of cubature points with equal weights are deduced [25]. It can
achieve more filtering accuracy and numerical stability compared with UKF. Similar to the
IEKF, the principle of iteration can also be expanded to these filters’ measurement update
processes [26–29].

Based on the CKF, Jia [30] puts forward the high-degree cubature Kalman filter (HDCKF)
by using arbitrary degree symmetric spherical rule and moment matching method, which
achieve higher accuracy than the CKF. And then, Wang [31] employs a transformation group
of regular simplexs to approximate the spherical integral, and proposes the spherical simplex-
radial cubature Kalman filter (SSRCKF). Compared with the HDCKF, the SSRCKF has more
accurate performance, whereas the moment matching method cannot guarantee optimality
when it is used in the abovementioned approaches’ radial integrals. Furthermore, Singh [32]
uses the high-order Gauss–Laguerre quadrature rule instead of the moment matching method
to calculate the radial integral, and proposes the high-degree cubature quadrature Kalman
filter (HDCQKF), which could improve the radial integral accuracy effectively, so as to
enhance the filtering accuracy. The advantage of the high-degree cubature Kalman filter
is that it can increase the filtering accuracy, although it will increase the computational
complexity and reduce the numerical stability for the high-dimensional system, and thus
limit the application of filters.
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To further improve the nonlinear filtering accuracy without using the high-degree
cubature rule, a new iterated orthogonal simplex cubature Kalman filter (IOSCKF) is pro-
posed in this paper. The way to calculate the intractable integral is to combine the spherical
simplex rule with the second-order Gauss–Laguerre quadrature rule. By introducing the
orthogonal matrix to reduce the higher-order moments of the Taylor series expansion which
appear during the approximation of the mean and covariance, the results in the novel cuba-
ture points with corresponding weights are improved. The time update is the method used
to reduce the computational complexity for the linear process equation. It is equivalent to a
simplification of the time update of the standard linear Kalman filter. The posterior state
and covariance matrix, in the measurement update, perform Gaussian Newton iteration
until the result is optimal. On target tracking problems, the IOSCKF’s performance was
tested, and the simulation results verify the effectiveness of the proposed algorithm.

The remainder of this paper is organized as follows: a review of Gaussian approxima-
tion filter is described in Section 2, the improved spherical simplex-radial cubature rule is
deduced in Section 3, the iterated orthogonal simplex cubature Kalman filter is derived in
Section 4, the target tracking simulations and results are presented in Section 5, and the
conclusions are drawn in Section 6.

2. Brief Review of Gaussian Approximation Filter

The following discrete nonlinear system model is defined:{
xk = f(xk−1) + wk−1
zk = h(xk) + vk

(1)

where k is the time step, xk ∈ Rn denotes the state vector at time step k, zk ∈ Rp represents
the measurement vector at time step k, and f(·) and h(·) are the known nonlinear state
function and measurement function, respectively. The process noise wk and measurement
noise vk are uncorrelated zero-mean Gaussian white noise, with the covariance matrices
being Qk and Rk, respectively.

The key problem in the nonlinear Kalman filter is calculating the multi-dimensional
vector integral of the form “nonlinear function × Gaussian pdf” [8], that is, calculating the
integral IN =

∫
Rn g(x)N(x; x, Px)dx in the Cartesian coordinate system, where g(x) denotes

the arbitrary nonlinear function, and N(x; x, Px) represents the Gaussian pdf, with the
mean and covariance being x and Px, respectively.

This Gaussian-weighted integral IN can be approximated using various quadrature
rules, and the integral with respect to N(x; 0, I) can be approximated by the following
quadrature rule:

IN =
∫

Rn
g(x)N(x; 0, I)dx ≈

Np

∑
i=1

ωig(σi) (2)

where I is the identity matrix, Np denotes the total number of points, and σi and ωi represent
the quadrature points and weights, respectively.

The integral with respect to the more general Gaussian distribution N(x; x, Px) can be
obtained using the equation below:

IN =
∫

Rn g(x)N(x; x, Px)dx =
∫

Rn g
(
x +
√

Pxx
)

N(x; 0, I)dx

≈
Np

∑
i=1

ωig
(
x +
√

Pxσi
) (3)

where
√

Px denotes the square root of Px, which can be solved by the Cholesky decomposi-
tion, and x(i) = x +

√
Pxσi represents the integral point.

The Gaussian approximation filter, which is deduced using the numerical integration
method in Equation (3), is summarized below [30].
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Time Update:
The predicted state x̂−k and error covariance P−k are calculated, respectively, as follows:

x̂−k =
Np

∑
i=1

ωif
(

x̂(i)k−1

)
(4)

P−k =
Np

∑
i=1

ωi

(
f
(

x̂(i)k−1

)
− x̂−k

)(
f
(

x̂(i)k−1

)
− x̂−k

)T
+ Qk−1 (5)

where x̂(i)k−1 = x̂+k−1 +
√

P+
k−1σi stands for the integral points generated using the numerical

rule.
Measurement Update:
The updated state x̂+k and corresponding error covariance P+

k are estimated, respec-
tively, as follows:

x̂+k = x̂−k + Kk(zk − ẑk) (6)

P+
k = P−k + KkPzKT

k (7)

where Kk = PxzP−1
z denotes the Kalman filtering gain, ẑk =

Np

∑
i=1

ωih
(

x̂(i)k

)
represents

the predicted measurement, x̂(i)k = x̂−k +
√

P−k σi denotes the integral points generated

by the numerical rule, Pz =
Np

∑
i=1

ωi

(
h
(

x̂(i)k

)
− ẑk

)(
h
(

x̂(i)k

)
− ẑk

)T
+ Rk denotes the in-

novation covariance matrix, and Pxz =
Np

∑
i=1

ωi

(
x̂(i)k − x̂−k

)(
h
(

x̂(i)k

)
− ẑk

)T
represents the

cross-covariance matrix.

3. The Improved Spherical Simplex-Radial Cubature Rule

In this section, an improved spherical simplex-radial cubature rule is proven to be
more accurate than the traditional conventional spherical-radial rule. Before introducing the
improved cubature rule, the definition of the dth-degree rule is given first for the integral

Definition 1 ([30]). ∫
Rn

g(x)ωg(x)dx ≈∑
i

ωig(γi) (8)

where x =
(

x1 x2 · · · xn
)T ∈ Rn and ωg(x) is a given weighing function. Equation (8)

is a dth-degree rule if it is accurate for g(x), whose components are linear combinations of
monomials xα1

1 xα2
2 · · · x

αn
n with a total degree up to d. α1 , α2 , · · · , αn are nonnegative inte-

gers and α1 + α2 + · · · αn ≤ d, and there is at least one monomial of degree d + 1 for which
Equation (8) is not exact.

Specifically, an intractable integral of the form Ig =
∫

Rn g(x)e−xTxdx is considered first
in the cubature rule. Let x = ry with yTy = 1, where y means the direction vector and the
radius r ≥ 0. As a consequence, xTx = r2; then, the integral Ig can be written anew as in a
spherical-radial coordinate system as follows [12]:

Ig =
∫ ∞

0

∫
Un

g(ry)rn−1e−r2
dσ(y)dr (9)
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where Un is the sphere surface defined by Un =
{

y ∈ Rn : yTy = 1
}

, and σ(·) is the area ele-
ment on Un. The integral Ig is decomposed into the spherical integral S(r) =

∫
Un

g(ry)dσ(y)

and radial integral R =
∫ ∞

0 S(r)rn−1e−r2
dr, respectively.

Because of the difficulty in achieving the analytical solutions, the approximate solu-
tion method of Ig requires numerical integration, which should be approximated using
the numerical integration method. From the third-degree spherical-radial cubature rule
proposed in [17], we obtain

S(r) ≈
Ns

∑
i=1

ωs,ig(ryi) (10)

R ≈
Nr

∑
j=1

ωr,jS
(
rj
)

(11)

and Ig is approximated using the following formula:

Ig =
∫ ∞

0
rn−1e−r2

dr
∫

Un
g(ry)dσ(y) ≈

Nr

∑
j=1

Ns

∑
i=1

ωr,jωs,ig
(
rjyi
)

(12)

where yi and ωs,i denote the points and weights to calculate the spherical integral, and the
number of points is Ns. rj and ωr,j represent the points and weights to calculate the radial
integral, and the number of points is Nr. The total number of points is Nr Ns if rj 6= 0, or
(Nr − 1)Ns + 1 if one of rj is zero.

3.1. Spherical Simplex Rule

The proposed third-degree spherical rule and spherical simplex rule to calculate
Equation (10) are listed below, respectively.

The third-degree spherical rule is

Ss(r) ≈
Ns

∑
i=1

ωs,ig(ryi) =
An

2n

n

∑
i=1

[g(rei) + g(−rei)] (13)

where An = 2
√

πn/Γ(n/2) denotes the surface area of the unit sphere, and
Γ(z) =

∫ ∞
0 e−ttz−1dt is the Gamma function. The vector ei represents the unit column

vector with the ith element being 1. The number of cubature points needed is Ns = 2n.
The third-degree spherical simplex rule [31] consisting of Ns = 2(n + 1) points is

Sss(r) =
An

2(n + 1)

n+1

∑
i=1

[g(rai) + g(−rai)] (14)

where aj =
(
aj,1 aj,2 · · · aj,n

)T, j = 1, 2, · · · , n+ 1 denote the vertices of the n-dimensional
simplex, and the elements are defined as follows.

aj,i =


−
√

n+1
n(n−i+2)(n−i+1) , i < j√

(n+1)(n−j+1)
n(n−j+2) , i = j

0, i > j

(15)

Although the aforementioned two spherical rules share the same accuracy of the
third degree, through extensive simulations, it has been proven that spherical simplex
rules have higher accuracy than spherical rules [31], and that is the reason the spherical
simplex rule is chosen to approximate S(r) in this paper. For more details, please refer to
the related references.
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3.2. Radial Rule

Then, the calculation of the radial integral R is considered. Two methods, including
the moment matching method and Gauss–Laguerre quadrature rule, may be used. To
construct the (2m + 1)th-degree radial rule, the two methods lead to identical points and
weights when m is odd and (m + 1)/2 points are used. However, they may be different
when m is even and (m/2 + 1) points are used [30]. In the CKF and SSRCKF, the radial
integral is calculated using the former one, and results in the following third-degree radial
rule with only one point (that is, m = 1, Nr = 1).

R =
1
2

Γ
(n

2

)
S
(√

n
2

)
(16)

In this paper, the second-order Gauss–Laguerre quadrature rule is adopted to approxi-
mate the radial integral. This method improves the accuracy of radial integration.

For radial integral R =
∫ ∞

0 S(r)rn−1e−r2
dr, let r2 = t to obtain r =

√
t, which takes

the place of the radial integral, and for R = 1
2

∫ ∞
0 S

(√
t
)

t
n−2

2 e−tdt, let q(t) = S
(√

t
)

, and

β = n
2 − 1. Then, R is transformed into R = 1

2

∫ ∞
0 q(t)tβe−tdt, and this form can be handily

approximated using the Gauss–Laguerre quadrature [32] rule as follows:

R =
1
2

∫ ∞

0
q(t)tβe−tdt ≈ 1

2

m

∑
j=1

Ajq
(
tj
)

(17)

where tj denotes the quadrature points, with Aj being the corresponding weights.
The approximation accuracy depends on the order m. The m-order Chebyshev–

Laguerre polynomial’s solutions are the quadrature points, as shown in the following:

Lβ
m(t) = (−1)mt−βet dm

dtm

(
tβ+me−t

)
= 0 (18)

and the weights are calculated using the following equation.

Aj =
m!Γ(β + m + 1)

tj

[
.
L

β

m
(
tj
)]2 (19)

On account of m being set at 2, the solutions are obtained are t1 = n/2 + 1 +
√

n/2 + 1,
t2 = n/2 + 1 −

√
n/2 + 1, A1 = nΓ(n/2)/

(
2n + 4 + 2

√
2n + 4

)
, and A2 = nΓ(n/2)/(

2n + 4− 2
√

2n + 4
)
, which are substituted into Equation (17) to deduce the following

radial rule.

R =
nΓ
( n

2
)

4n + 8 + 4
√

2n + 4
S

√n
2
+ 1 +

√
n
2
+ 1

+
nΓ
( n

2
)

4n + 8− 4
√

2n + 4
S

√n
2
+ 1−

√
n
2
+ 1

 (20)

From Equation (20) we see that the number of points is Nr = 2, which leads to the
radial rule to achieve the fifth-degree accuracy. Compared with third-degree radial rule
used in the CKF and SSRCKF Equation (16), the fifth-degree accuracy is more accurate. It
is noted that the two points can be solved using the moment matching method as well,
with one of the points set to zero. However, it is pointed out that the two points generated
by the Gauss–Laguerre quadrature rule have higher radial accuracy than those generated
using the moment matching method [30].

3.3. Spherical Simplex-Radial Cubature Rule

By substituting Equation (14) into Equation (20), we obtain the following improved
spherical simplex-radial cubature rule which is composed of Np = Nr Ns = 4(n + 1) points.
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IN =
∫

Rn g(x)N(x; x, Px)dx

= n
4(n+1)(n+2+

√
2n+4)

n+1
∑

i=1

[
g
(

x +
√(

n + 2 +
√

2n + 4
)
Pxai

)
+ g
(

x−
√(

n + 2 +
√

2n + 4
)
Pxai

)]
+

n
4(n+1)(n+2−

√
2n+4)

n+1
∑

i=1

[
g
(

x +
√(

n + 2−
√

2n + 4
)
Pxai

)
+ g
(

x−
√(

n + 2−
√

2n + 4
)
Pxai

)] (21)

If we define matrix a =
[
a1 a2 · · · an+1

]
, and the calculation methods of the

cubature points and weights are extracted from cubature rule (21), we obtain the following.

x(i) =

 x +
√(

n + 2 +
√

2n + 4
)
Px
[

a −a
]

i, i = 1, 2, · · · , 2n + 2

x +
√(

n + 2−
√

2n + 4
)
Px
[

a −a
]

i, i = 2n + 3, · · · , 4n + 4
(22)

ωi =


n

4(n+1)(n+2+
√

2n+4)
, i = 1, 2, · · · , 2n + 2

n
4(n+1)(n+2−

√
2n+4)

, i = 2n + 3, · · · , 4n + 4
(23)

The order of the quadrature rule determines the accuracy of the cubature rule. The
relationship of the number of quadrature points and the accuracy is proportional [8,32].
The radial rule proposed in Section 3.2 uses two points to achieve fifth-degree accuracy.
In contrast to the third degree adopted by the CKF and SSRCKF, when only one point
is used, fifth-degree is more accurate. And the spherical simplex rule performs better
than the spherical rule; therefore, the improved spherical simplex-radial cubature rule,
which is shown in Equation (21), can achieve higher accuracy than the conventional CKF
and SSRCKF.

4. Iterated Orthogonal Simplex Cubature Kalman Filter
4.1. Orthogonal Transformation of Cubature Points

It is suggested from the invariant theory and the orthogonal transformation property
that the transformed points O×

[
a −a

]
, with weights shown in Equation (23), remain to

constitute a numerical cubature rule if O is an n× n orthogonal matrix. The orthogonally
transformed points are able to reduce the higher-order terms of the Taylor series expansion
that appeared while approximating the mean and covariance [20], and it is observed that
more accurate estimation is obtained with the transformed points compared to the ordinary
cubature points, which lead to the approximation accuracy of the cubature rule becoming
further enhanced. In other words, the new set of cubature points can be modified as follows:

x(i) =


x +

√(
n + 2 +

√
2n + 4

)
Pxγi, i = 1, 2, · · · , 2n + 2

x +
√(

n + 2−
√

2n + 4
)
Pxγi, i = 2n + 3, · · · , 4n + 4

(24)

where γ =
[
γ1 γ2 · · · γ2n+2

]
= O×

[
a −a

]
, and the orthogonal matrix O can be

designed using different methods. As an effective design method, the n× n matrix O is
constructed in this paper as O =

[
O1 O2 · · · On

]
, and Oi = (Oi,1Oi,2 . . . Oi,n)

T , whose
elements are defined as follows:

Oi,2r−1 =
√

2
n cos

[
(2r−1)iπ

n

]
Oi,2r =

√
2
n sin

[
(2r−1)iπ

n

] , r = 1, 2, · · · , max
(

p ∈ Z|p ≤ n
2

)
(25)

where Oi,n = (−1)i/
√

n if n is odd.
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The information of high-order terms can be reduced to a low level using the orthogonal
matrix, which means the non-local sampling problem can be significantly reduced with a
rare computational complexity increase.

4.2. Iterated Measurement Update Process

The prior state x̂−k and covariance matrix P−k are used in the measurement update
process to calculate the posterior state x̂+k and covariance matrix P+

k , which are revised using
the latest measurement zk via Kalman gain Kk. This means an approximation accuracy of
x̂+k to the real state is bound to be better than x̂−k , and the filtering accuracy will be improved
if we can use x̂+k and P+

k directly in the measurement update. Therefore, to iteratively
make use of the measurement information, the Gauss–Newton iteration is introduced into
the updating process of the mean and covariance of the state. Under the assumption of
Gaussian variable independence, there exist xk : N

(
x̂−k , P−k

)
and zk : N(h(xk), Rk), and the

likelihood function of xk and zk is defined as follows [33].

p(xk|zk) = C exp
{
−1

2

[(
xk − x̂−k

)T(P−k )−1(xk − x̂−k
)
+ (zk − h(xk))

TR−1
k (zk − h(xk))

]}
(26)

where C is a constant, and the cost function is defined as follows.

J(xk) =
(
xk − x̂−k

)T(P−k )−1(xk − x̂−k
)
+ [zk − h(xk)]

TR−1
k [zk − h(xk)] (27)

The maximum likelihood estimate of Equation (26) is equivalent to the minimum
value of the cost function (27), which is usually solved by the nonlinear iteration method.
The linearized measurement equation and the Gauss–Newton iteration are used to achieve
the iterative formula for solving the minimum value of Jxk as follows:

x̂i+1
k = x̂−k + P−k

(
Hi

k

)T
[

Hi
kP−k

(
Hi

k

)T
+ Rk

]−1[
zk − h

(
x̂i

k

)
−Hi

k

(
x̂−k − x̂i

k

)]
(28)

where Hi
k = ∂h(xk)/∂xk|xk=x̂i

k
denotes the Jacobian matrix, and i represents the iteration index.

The analogous representation that Pxz = P−k HT
k and Pz = HkP−k HT

k + Rk is obtained
using the statistical linear error approach, which is used instead of the Jacobian matrix to
reduce the computational complexity and avoid the linearization error caused by the Taylor
first-order expansion. Furthermore, the enhanced Gauss–Newton iteration is displayed
as follows.

x̂i+1
k = x̂−k + Pi

xz

(
Pi

z

)−1
[

zk − h
(

x̂i
k

)
−
(

Pi
xz

)T(
P−k
)−1
(

x̂−k − x̂i
k

)]
(29)

4.3. The Iterated Orthogonal Simplex Cubature Kalman Filter

The enhanced Gauss–Newton iteration and the aforementioned altered cubature points
are combined to create the IOSCKF method within the nonlinear Kalman filter architecture,
and the specific calculation steps are as follows.

Step 1: Filter Initialization x̂+0 = E(x0)

P+
0 = E

[(
x0 − x̂+0

)(
x0 − x̂+0

)T
] (30)

Step 2: Time Update
x̂+k−1 and P+

k−1 take the place of x and Px in Equation (24) to calculate the cuba-

ture points x̂(i)k−1, which are disseminated nonlinearly using f(·), and the prior state x̂−k
and covariance P−k are calculated using the weights in Equation (23) on the basis of
Equations (4) and (5), respectively.
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Step 3: Measurement Update
Take the prior state x̂0

k = x̂−k and covariance matrix P0
k = P−k as the initial values of

the iterated measurement update, and the estimated state and covariance matrix in the jth
iteration express x̂j

k and Pj
k (j = 1, 2, · · · , Nmax), respectively. The cubature points x̂(i),j−1

k

are calculated using x̂j−1
k and Pj−1

k instead of x and Px in Equation (24), and propagated

nonlinearly using h(·). The predicted measurement ẑj
k, the measurement covariance matrix

Pj
z, and the cross covariance matrix Pj

xz are calculated using the weights in Equation (23) on
the basis of the measurement update process of the Gaussian approximation filter, respec-
tively. The Kalman filtering Kj

k and covariance matrix Pj
k are estimated to be equivalent to

the Gaussian approximation filter, respectively, while the posterior state x̂j
k is calculated

using the following iterated form.

x̂j
k = x̂−k + Kj

k

[
zk − h

(
x̂j−1

k

)
−
(

Pj
xz

)T(
P−k
)−1
(

x̂−k − x̂j−1
k

)]
(31)

The above iteration format obtains a posterior estimate higher than the last one after
each iteration step, and the system model h(·) is known and unchanged, so the whole
iterative calculation process is convergent and stable.

The iteration termination condition is set as shown below.∥∥∥x̂j
k − x̂j−1

k

∥∥∥ ≤ εor j = Nmax (32)

where ε and Nmax are the pre-set threshold and maximum iteration times.
The number of iterations in the end is presumed to be N, whereupon the estimated

state and covariance matrix at time k are x̂+k = x̂N
k and P+

k = PN
k , respectively. Note that

the calculational burden of the ICKF and CKF is within the same order of magnitude if
Nmax is not too large, and in general, Nmax is no more than three.

Considering that all parameters in the algorithm are definite values, the algorithm has
low sensitivity and strong robustness to parameters.

5. Simulations and Results

The proposed IOSCKF algorithm is applied in CV target tracking and spacecraft orbit
tracking, respectively, in this section.

5.1. CV Target Tracking Simulation

The target is assumed to be in constant velocity (CV) motion; the state equation of the
CV model in a two-dimensional case is described as follows:

Xk = FCVXk−1 + Gwk−1 (33)

where Xk =
(

xk
.
xk yk

.
yk
)T represents the position and velocity of the target at time

index k, wk denotes the process noise, and FCV and G denote the state transformation
matrix and the noise-driven matrix, which are defined, respectively as follows:

FCV =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

, G =


T2/2 0
T 0
0 T2/2
0 T

 (34)

where T is the sampling interval.
In the target tracking system, the bearings-only measurement equation is written

as follows.

Zk = arctan
(

yk − yr

xk − xr

)
+ vk (35)
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where Zk is the radar measurement at time k,
(
xr yr

)
is the location of the radar, and vk is

the measurement noise.
The proposed algorithm has the following two degraded forms: the cubature Kalman

filter with the improved spherical simplex-radial rule (SCKF), and the SCKF with or-
thogonal transformation (OSCKF). In order to evaluate the performance of the proposed
algorithm, it is compared to the general CKF, SSRCKF, SCKF, and OSCKF. This simulation
shows the radar location

(
xr yr

)
=
(
200 m 300 m

)
, the simulation time is 40 s, T = 1,

the initial position of the target is
(
x0 y0

)
=
(
100 m 200 m

)
and the initial velocity is( .

x0
.
y0
)
=
(
2 m/s 20 m/s

)
. The initial state and covariance matrix in the simulation are

set to x̂+0 =
(
100 m 2 m/s 200 m 20 m/s

)T and P+
0 = diag

[
0.01 0.01 0.01 0.01

]
,

respectively. The standard deviation of the measurement noise is 0.1 deg. The maximum
iteration time Nmax is set to 3. The Monte Carlo simulation is implemented 500 times,
and the position accuracy is evaluated using the root mean square error (RMSE), defined
as follows:

RMSEpos =

√√√√ 1
N

N

∑
i=1

[(
xk − x̂+i,k

)2
+
(

yk − ŷ+i,k
)2
]

(36)

where N is the execution number of Monte Carlo simulations,
(
xk yk

)
is the real position

of the target, and
(

x̂+i,k ŷ+i,k
)

is the estimated position at time k in the ith Monte Carlo
simulation. The velocity RMSE is defined similarly.

The simulation results are shown in Figure 1. The position RMSE and velocity RMSE
of various filters are shown in Figure 1a,b, respectively, and the partial magnification is
given to show the details of the curve. It can be seen from the figure that all the four filters
have the ability to track the target trajectory, the tracking accuracy of the conventional
CKF is significantly lower than that of the other filters, and the proposed IOSCKF achieves
higher target tracking accuracy than the other filters. The average RMSE of the various
filters is shown in Table 1; compared with the CKF, the estimated position accuracy of
the SCKF is improved by 20.77%, indicating that the second-order Gauss–Laguerre rule
used in the proposed modified spherical simplex-radial cubature rule has higher accuracy
than the spherical-radial cubature rule. The accuracy of the OSCKF is 1% greater than
that of the SCKF due to the orthogonal transformation of the cubature points reducing
the high-order error components. While the filtering accuracy is further enhanced by the
repetitive calculation of the measurement update, the IOSCKF’s accuracy is 0.5% higher
than that of the OSCKF. Through the analysis of the simulation results, the validity of the
proposed method is verified.
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Table 1. Average RMSE of various filters.

Filters Position RMSE/m Velocity RMSE/(m/s)

CKF 2.9379 0.1852
SCKF 2.3277 0.1643

OSCKF 2.3045 0.1622
IOSCKF 2.2929 0.1619

5.2. Spacecraft Target Tracking Simulation
5.2.1. Spacecraft Orbit Dynamics Model

For spacecrafts operating in low Earth orbit, Earth’s J2 term non-spherical perturbation
and atmospheric drag perturbation are the most important perturbations. In the J2000
geocentric inertial coordinate system (O-XYZ), considering the above two perturbations,
the orbital dynamics model of the spacecraft is as follows:

.
x = vx
.
y = vy
.
z = vz
.
vx = µx

r3

[
J2

(
Re
r

)(
7.5 z2

r2 − 1.5
)
− 1
]
+ fax + fx

.
vy = µy

r3

[
J2

(
Re
r

)(
7.5 z2

r2 − 1.5
)
− 1
]
+ fay + fy

.
vz =

µz
r3

[
J2

(
Re
r

)(
7.5 z2

r2 − 4.5
)
− 1
]
+ faz + fz

r =
√

x2 + y2 + z2

(37)

where X =
(

x y z
)T is the position vector of the spacecraft in O-XYZ;

.
X =

(
vx vy vz

)T

is the velocity vector of the spacecraft in O-XYZ; J2 is the harmonic term coefficient; µ is
the gravitational constant of the Earth; Re is the radius of the Earth; and

(
fx fy fz

)T

is the sum of the high-order non-spherical perturbation of the Earth, three-body gravita-
tional perturbation, and solar luminous pressure perturbation on the three coordinate axes,
which can be equivalent to Gaussian white noise with a zero mean value in this study.
fa =

(
fax fay faz

)T is the atmospheric drag perturbation, and its specific expression is
as follows:

fa = −
1
2

cd A
m

ρdvrelvrel (38)
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where cd is the atmospheric drag coefficient, A/m is the surface mass ratio of the spacecraft,
ρd is the atmospheric density, and vrel is the relative speed between the spacecraft and the
atmosphere, assuming that the atmosphere rotates with the Earth, as follows:

vrel =
.

X−ω×X (39)

where ω = ωe ×
(
0 0 1

)T is the angular velocity vector of the Earth rotation and ωe is
the angular velocity of the Earth rotation. Using the fourth-order Runge–Kutta method,
Equation (32) is written in the following discrete form:

Xk = f(Xk−1) + wk−1 (40)

where Xk =
[

xk yk zk vx,k vy,k vz,k
]T is the track state at time k, and wk is the

system noise.

5.2.2. Ground Radar Measurement Model

The radar measurement model is built in the radar horizon coordinate system
(O− XhYhZh), and the orbit model is built in the radar horizon coordinate system (O− XYZ),
so it is necessary to use the WGS84 Earth fixed coordinate system (O− XeYeZe) to achieve the
conversion from O− XYZ to O− XhYhZh. Assuming that the orbital state of the spacecraft in

O− XYZ is
(

X
.

X
)T

, the orbital state in O− XeYeZe is
(

X f
.

X f

)T
, and the orbital state

in O− XhYhZh is
(

Xh
.

Xh

)T
, the conversion of the orbital state is completed in two steps.

Step 1: Transition from O− XYZ to O− XeYeZe
The conversion matrix is MW

J = MPwMRoMNuMPr, where MPr is the precession matrix,
MNu is the nutation matrix, MRo is the Earth rotation matrix, and MPw is the pole shift
matrix; then, we can obtain:

X f = MW
J X (41)

.
X f = MW

J
.

X +
.

M
W
J X (42)

In these formulas, the derivative of the transformation matrix
.

M
W
J is shown as follows:

.
M

W
J =

d(MPwMRoMNuMPr)

dt
≈ MPw

d(MRo)

dt
MNuMPr (43)

where d(MRo)/dt is the derivative matrix of the Earth rotation matrix as follows:

d(MRo)

dt
=

 0 ωe 0
−ωe 0 0

0 0 0

 ·MRo (44)

Equations (36) and (37) are written in matrix form as:X f
.

X f

 =

MW
J 0

.
M

W
J MW

J

X
.

X

 (45)

Step 2: Transition from O− XeYeZe to O− XhYhZh
The conversion matrix MH

W is:

MH
W =

 − sin λ cos λ 0
− sin ϕ cos λ − sin ϕ sin λ cos ϕ
cos ϕ cos λ cos ϕ sin λ sin ϕ

 (46)



Appl. Sci. 2024, 14, 392 13 of 17

where λ is the radar geocentric longitude and ϕ is the radar geocentric latitude, which can
be converted to the geocentric coordinates of the radar Xc =

(
xc yc zc

)T in O− XeYeZe;
so, we obtain:

Xh = MH
W

(
X f −Xc

)
(47)

.
Xh = MH

W
.

X f (48)

This is written in matrix form as below:[
Xh
.

Xh

]
=

[
MH

W 0

0 MH
W

][
X f
.

X f

]
−
[

MH
WXc

0

]
(49)

Substituting Equation (40) into Equation (44) yields:[
Xh
.

Xh

]
=

[
MH

W 0

0 MH
W

]MW
J 0

.
M

W
J MW

J

[X
.

X

]
−
[

MH
WXc

0

]
(50)

Thus, the transformation of the orbital state from O− XYZ to O− XhYhZh is achieved,
as shown in Equation (45). In order to obtain the relationship between the measured value
and the orbit state, we write Xh and

.
Xh in the form of a specific vector as Xh =

(
xh yh zh

)T

and
.

Xh =
( .

xh
.
yh

.
zh
)T; then, the geometric relationship between the radar ranging

value R, velocity measurement value
.
R, azimuth angle A, and pitch angle E and the orbit

state is as follows: 
R =

√
x2

h + y2
h + z2

h

A = arctan yh
xh

E = arctan zh√
x2

h+y2
h

(51)

Equation (46) can be written as the following discrete measurement equation:

Zk = h(Xk) + vk (52)

where Zk =
(

Rk Ak Ek
)T is the measured value at time k, and vk is the measured noise.

Thus, Equations (35) and (47) constitute the state equation and measurement equation
corresponding to Equation (11) for real-time filtering orbit determination.

5.2.3. Simulation Result and Analysis

Figure 2a shows the spacecraft ground simulator on which the algorithm of High-
Precision Orbit Propagation (HPOP) is run, which takes into account the perturbation effects
of the Earth’s high-order non-spherical gravity, atmospheric drag, solar light pressure,
three-body gravity, and tides. Among them, the 21-layer Earth model, atmospheric drag
coefficient cd = 2.2, and spacecraft surface mass ratio 0.02 m2/kg are considered; the
atmospheric density model adopts the Jacchia–Roberts model; and the solar luminous
pressure coefficient cr = 1. The orbital epoch of the spacecraft considered in the experiment
is 16:00:00 (UTC) on 1 September 2016, and the six orbital roots are:

a = 7028.14 km, e = 0, i = 80.7◦, Ω = 63.8◦, ω = 0◦, f = 107.1◦
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Figure 2. Schematic diagram of spacecraft tracking. (a) Spacecraft simulator. (b) Radar spacecraft tracking.

As shown in Figure 2b, the lowest measured elevation angle of the radar is 10◦. It is
assumed that the radar ranging error is 60 m and the angle error is 0.02◦.

The algorithm proposed in this paper is compared with the SCKF and OSCKF, and the
root mean square error (RMSE) is used to evaluate the spacecraft tracking accuracy. The
Monte-Carlo simulation is run 200 times, and the results are shown in Figure 3. The mean
positioning RMSE and velocity RMSE are listed in Table 2.
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Table 2. Spacecraft tracking RMSE of the various filters.

Filters Position RMSE/m Velocity RMSE/(m/s)

SCKF 24.86 0.103
OSCKF 24.31 0.101
IOSCKF 23.65 0.098

It can be seen that the spacecraft tracking accuracy of the OSCKF is higher than that of
the SCKF; specifically, the position tracking accuracy is increased by 2.21%, and the velocity
tracking accuracy is increased by 1.94%, which indicates that the orthogonal transformation
can improve the tracking accuracy. The spacecraft tracking accuracy of the IOSCKF is
higher than that of the OSCKF; specifically, the position tracking accuracy is increased
by 2.71%, and the velocity tracking accuracy is increased by 2.97%, which indicates that
the tracking accuracy can be effectively improved by introducing iterative calculation into
the measurement equation, thus verifying the effectiveness of the method presented in
this paper.

6. Conclusions

A new iterated orthogonal simplex cubature Kalman filter (IOSCKF) is proposed to
improve the nonlinear system filtering accuracy in target tracking. The new cubature
points are determined using the orthogonal matrix after being modified using the spherical
simplex-radial rule and the second-order Gauss–Laguerre quadrature rule. This lowers the
high-order error terms. The Gauss–Newton iteration is used to maximize the posteriori
state and covariance in the measurement update process until the iteration is finished.
Target tracking simulations, including CV target tracking and spacecraft orbit tracking,
are used to examine the performance of the proposed method, and the results reveal
that the IOSCKF can achieve greater accuracy compared to the CKF, SCKF, and OSCKF.
In spacecraft orbit tracking simulation, compared with the SCKF, the position tracking
accuracy and velocity tracking accuracy of the OSCKF are increased by 2.21% and 1.94%,
respectively, which indicate that the orthogonal transformation can improve the tracking
accuracy. Furthermore, compared with the OSCKF, the position tracking accuracy and
velocity tracking accuracy of the IOSCKF are increased by 2.71% and 2.97%, respectively,
which indicate that the tracking accuracy can be effectively improved by introducing
iterative calculation into the measurement equation, thus verifying the effectiveness of the
method presented in this paper.
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