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Abstract: Recently, object detection has become a research hotspot in computer vision, which often de-
tects regular images with small viewing angles. In order to obtain a field of view without blind spots,
fisheye cameras, which have distortions and discontinuities, have come into use. The fisheye camera,
which has a wide viewing angle, and an unmanned aerial vehicle equipped with a fisheye camera
are used to obtain a field of view without blind spots. However, distorted and discontinuous objects
appear in the captured fisheye images due to the unique viewing angle of fisheye cameras. It poses a
significant challenge to some existing object detectors. To solve this problem, this paper proposes a
PGDS-YOLOv8s model to solve the issue of detecting distorted and discontinuous objects in fisheye
images. First, two novel downsampling modules are proposed. Among them, the Max Pooling
and Ghost’s Downsampling (MPGD) module effectively extracts the essential feature information
of distorted and discontinuous objects. The Average Pooling and Ghost’s Downsampling (APGD)
module acquires rich global features and reduces the feature loss of distorted and discontinuous
objects. In addition, the proposed C2fs module uses Squeeze-and-Excitation (SE) blocks to model
the interdependence of the channels to acquire richer gradient flow information about the features.
The C2fs module provides a better understanding of the contextual information in fisheye images.
Subsequently, an SE block is added after the Spatial Pyramid Pooling Fast (SPPF), thus improving
the model’s ability to capture features of distorted, discontinuous objects. Moreover, the UAV-360
dataset is created for object detection in fisheye images. Finally, experiments show that the proposed
PGDS-YOLOv8s model on the VOC-360 dataset improves mAP@0.5 by 19.8% and mAP@0.5:0.95 by
27.5% compared to the original YOLOv8s model. In addition, the improved model on the UAV-360
dataset achieves 89.0% for mAP@0.5 and 60.5% for mAP@0.5:0.95. Furthermore, on the MS-COCO
2017 dataset, the PGDS-YOLOv8s model improved AP by 1.4%, AP50 by 1.7%, and AP75 by 1.2%
compared with the original YOLOv8s model.

Keywords: fisheye image; object detection; pooling; ghost module; Squeeze-and-Excitation (SE) block

1. Introduction

Object detection is an important research direction in computer vision, and current
object detectors usually detect conventional images with small viewpoints. With the
continuous development of computer vision technology, the imaging range of captured
images needs to be broader. Unmanned aerial vehicles (UAVs) at a higher altitude can
access a richer range of information than ground-based shots [1,2]. The UAV expands
the viewing angle by raising the height, and at the same time, the overall object within
the image becomes smaller, which is difficult for current detectors to detect. Moreover,
the fisheye lens, which has a viewing angle of 180° to 270°, has by far the largest viewing
angle and can acquire rich visual information. It makes the fisheye camera have a wide
range of applications, such as unmanned aerial vehicles [3–6], autonomous driving [7,8],
robotics [9–11], and so on [12–15]. In this paper, instead of expanding the visual range
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by elevating the height of the UAV, a UAV-mounted fisheye camera is used to obtain a
360° view without blind spots. The combination of a UAV and a fisheye camera makes the
information acquisition more comprehensive, which is an important research area in the
development of computer vision.

The combination of a UAV and a fisheye camera can obtain information about the
field of view without blind spots. Therefore, a UAV equipped with a fisheye camera plays
a vital role in object detection, environmental monitoring, agricultural inspection, urban
planning, disaster prevention and relief, etc. For example, Barmpoutis et al. [3] used a
360-degree camera on a UAV to obtain a blind-free field of view, and this collocation can
play a significant advantage in forest fire monitoring. The captured equirectangular images
are first converted to stereoscopic images. Then, the DeepLab V3+ networks are utilized
to segment the flames and smoke in the images, and a post-validation adaptive method
is utilized to reduce the rate of false positives. This approach effectively achieves the
detection and localization of fire regions and can play an active role in early fire detection.
Furthermore, Luo et al. [4] used panoramic images captured by UAVs to address the
cost and safety concerns associated with the structural health assessment of infrastructure.
Multiple-projection methods are proposed to address the effects of panoramic image
distortion. Then, deep neural networks are used to detect the damage to multiple steel
surfaces in the 360° panoramic image. In addition, Gao et al. [5] used two fisheye cameras
to obtain an omnidirectional visual range for aerial robots, which is beneficial for safe
navigation in complex environments. Meanwhile, a dual-fisheye visual–inertial system
(VINS) is proposed, which uses two fisheye cameras and an inertial measurement unit
(IMU) to realize spherical omnidirectional sensing. The dual-fisheye omnidirectional visual–
inertial state estimator is externally calibrated to optimize the fisheye image distortion
problem. Yang et al. [6] constructed an autonomous landing system for UAVs that can
land automatically in GPS-denied environments. The system combines a fisheye camera
with a wide field of view and a stereo camera with depth imaging to obtain rich visual
information, forming a hybrid camera array that is easier to pinpoint. In particular, the
system employs YOLOv3 to directly detect objects in a fisheye image, robustly realizing
autonomous landing on a moving unmanned ground vehicle (UGV).

Most existing object detectors in computer vision often detect regular images with
small viewing angles. This paper investigates and uses a fisheye camera to further explore
object detection for wide-view angle images. Fisheye cameras have a wide angle of view,
and a UAV equipped with a fisheye camera can obtain a blind-spot-free view. However,
distorted and discontinuous objects appear in the captured fisheye images due to the unique
viewing angle of fisheye cameras. This poses a significant challenge to some existing object
detectors. Therefore, in this work, based on the YOLOv8 model, which is one of the current
state-of-the-art lightweight object detectors, this paper proposes a PGDS-YOLOv8s model
to solve the problem of detecting distorted and discontinuous objects in fisheye images.

2. Related Works
2.1. Cameras for Object Detection

At present, object detection is a research hotspot in computer vision, and object
detectors usually detect conventional life images taken with traditional perspective cameras.
Perspective cameras are designed based on human vision and have a small viewing angle.
Geiger et al. [16] presented the KITTI dataset, which captures 6 h of real-world traffic
scenes using multiple sensor modalities such as high-resolution color and grayscale stereo
cameras, a Velodyne 3D laser scanner, and a high-precision GPS/IMU inertial navigation
system. The KITTI dataset provides images and object labels for automatic object detection
research for driving. Mao et al. [17] created the ONCE dataset, which consists of one
million LiDAR scenes and seven million corresponding camera images selected from
144 driving hours. This dataset is used for a 3D object detection task in a self-driving
scenario. In addition, the images captured by UAVs contain rich point-of-view information.
For example, Naude et al. [18] used a SkyReach BushCat light sport aircraft mounted with
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Canon 6D digital single-lens reflex cameras to collect 2101 images. The Aerial Elephant
dataset contains 15,511 bush elephants in their natural African habitat. A baseline algorithm
for elephant detection is also trained and tested to demonstrate the feasibility of the task.
Mou et al. [2] used a drone to collect 14,375 UAV aerial images. The WAID (Wildlife
Aerial Images from Drone) dataset encompasses six wildlife species and multiple habitat
types. This study brings new data to the field of UAV detection of wildlife. Meanwhile, the
introduced SE-YOLO model effectively detects small objects in UAV images.

Object detectors often detect regular images with smaller viewing angles. However,
people’s requirements for images are not only intuitive and clear but also more concerned
about the completeness and comprehensiveness of image information. The imaging range
of the fisheye lens can reach 180°–270°, and the binocular fisheye camera can acquire a
360-degree field of view. Fisheye cameras effectively fulfill the need for a wide viewing
angle. The Oxford RobotCar Dataset [19] contains nearly 20 million images collected from
vehicle-mounted cameras and LIDAR, GPS, and INS ground truths. The cameras include
mainly the Point Grey Grasshopper2 monocular camera and the Point Grey Bumblebee
XB3 trinocular stereo camera with a 180° fisheye lens. The Oxford RobotCar Dataset is
used for research on localization and mapping of self-driving vehicles. Yogamani et al. [20]
presented the WoodScape dataset, which uses four fisheye cameras with 190° horizontal
FOV, LiDAR, and other devices to acquire images. The WoodScape dataset provides labels
for autonomous driving tasks, including semantic segmentation, monocular depth estima-
tion, object detection, etc. However, the unique viewing angle of the fisheye camera causes
problems such as significant image distortions, exaggerated relative sizes and distances
of objects, and discontinuity of objects at the edges. Chiang et al. [21] proposed a pedes-
trian detection method for fisheye images in top view. The method generates multiple
perspective views from the fisheye image and then detects the combined image of multiple
perspective patches using existing detectors. Chen et al. [22] proposed a shallow Concate-
nated Feature Pyramid Network (CFPN). The proposed concatenated block further reduces
the number of convolutional layers. Also, the concatenated approach effectively preserves
the spatial information of smaller objects at the end of the network. CFPN is better at
detecting small vehicles in fisheye cameras in real-time traffic flow. Arsenali et al. [23]
proposed a multi-task network (MTL) to perform joint semantic segmentation, boundary
prediction, and object detection on raw fisheye images. Two rotation-invariant object detec-
tion methods for fisheye images have also been explored, including YOLO-RotRect and
YOLO-Circ. They effectively reduce the complexity of the network, but accurate estima-
tion is still challenging. Wei et al. [24] proposed Rotation-Mask Deformable Convolution
(RMDC) to address the problem of rotation and distortion in top-view fisheye images. The
method adaptively rotates the convolution filter and introduces a center-fixed deformable
convolution. The learning capability of the convolution kernel and the object detection
accuracy of the top-view fisheye images are improved.

In addition, a UAV equipped with a fisheye camera can obtain a blind-free field of
view. A UAV equipped with a fisheye camera plays an important role in environmental
monitoring, disaster prevention and relief, object detection, etc. Barmpoutis et al. [3]
utilized a 360-degree camera on a UAV to obtain a blind-free field of view, which can be
used for a significant advantage in forest fire monitoring. The DeepLab V3+ network is
utilized to segment flames and smoke in an image, which effectively achieves the detection
and localization of fire areas. Yang et al. [6] constructed an autonomous landing system for
UAVs. The system combines a fisheye camera with a wide field of view and a stereo camera
with depth imaging to acquire rich visual information. In particular, the system employs
YOLOv3 to directly detect objects in fisheye images, robustly realizing autonomous landing
of mobile unmanned ground vehicles (UGVs).

Currently, there are few fisheye image datasets of real scenes. As the demand for a
wide field of view increases, the fisheye image dataset of real scenes needs to be expanded.
In addition, the wide viewing angle of fisheye cameras leads to distortion and discontinuity
of objects in the captured fisheye images. Existing object detectors mainly detect regular
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images, and distorted and discontinuous objects in fisheye images pose a challenge to
object detectors.

2.2. Object Detection Methods

Deep-learning-based object detection frameworks can be categorized into two-stage
object detection algorithms and single-stage object detection algorithms. The two-stage
object detection algorithm consists of generating candidate regions and performing a classi-
fication process on them. Two-stage object detectors include R-CNN [25], Fast-RCNN [26],
Mask R-CNN [27], etc. Girshick et al. [25] proposed the R-CNN. Object candidate regions
are first generated on the image, then features are extracted using a convolutional neural
network for the candidate regions, and a support vector machine classifier is applied for
classification. Subsequently, Girshick et al. [26] proposed the Fast RCNN, which incor-
porates the ideas of SPP-net to improve R-CNN and introduces the pooling of regions
of interest to unify the input size. Mask R-CNN [27] adds another parallel branch for
pixel-level segmentation of object instances, which detects the objects and allows for objects
to perform pixel-level segmentation. The two-stage object detection algorithm is more ac-
curate. However, it is slower and still has obstacles in meeting the needs of complex object
detection scenarios. The other is the single-stage object detection algorithm, which treats ob-
ject detection as a one-time problem and quickly localizes and classifies objects end-to-end.
Single-Shot MultiBox Detector (SSD) [28] is a classic single-stage object detection algorithm
that guarantees detection speed while keeping the detection accuracy comparable to two-
stage object detection algorithms. You Only Look Once (YOLO) [29] is an iconic algorithm
for single-stage object detection that transforms the detection problem into a regression
problem, but it is not highly effective in detecting small objects. YOLOv2 [30] uses Darknet-
19 to extract object features and uses global average pooling and batch normalization to
improve network convergence. YOLOv3 [31] employs a residual network module and
uses Darknet-53 as a backbone to enhance object detection performance. YOLOv4 [32] uses
Complete Intersection over Union (CIoU) loss for predictive frame filtering to improve
the accuracy and robustness of the model. YOLOv5 [33] uses Feature Pyramid Network
(FPN) and Pixel Aggregation Network (PANet) structures in the neck network, which is
designed to be lightweight and faster. Li et al. [34] proposed YOLOv6, which injects a
self-distillation strategy for classification and regression tasks. YOLOv7 [35] proposed
E-ELAN, which does not change the original gradient path, uses group convolution to
increase the cardinality of the added features, and combines different groups of features in
a way that shuffles and merges the cardinality.

Although these object detectors perform well, considering the characteristics of dis-
torted and discontinuous objects in fisheye images and the balance between speed and
accuracy, this paper uses the YOLOv8s model for improvement and experimentation.
YOLOv8 [36] is a fast, accurate, robust, and lightweight network built on YOLOv5. The
main ideas of the YOLOv8 algorithm are as follows. First, the C2f module is designed,
which refers to the ideas of the C3 module in YOLOv5 and Efficient Layer Aggregation
Networks (ELANs). It makes the YOLOv8 model lightweight and effectively improves the
object detection accuracy of the model. Next, YOLOv8 compares with YOLOv5, which
removes the objectness branch and keeps the classification and regression branches. The
decoupling structure in the detection section separates the regression and classification,
and the Distributive Focal Loss (DFL) is used as the regression loss, allowing the network
to quickly focus on the location distribution close to the object location. Then, YOLOv8s
uses the Anchor-Free method instead of the Anchor-Base method to correct the object
positions. The Anchor-Free method predicts the distance from the center to the bounding
box after locating the object’s center. In addition, the Task-Aligned Assigner selects positive
samples based on the weighted scores of classification and regression [37]. YOLOv8 has
five models with different scales. They are YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and
YOLOv8x [38]. The network architecture of YOLOv8 consists of Input, Backbone, Head,
and Detect. The network model consists of these base modules. The CBS module con-
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sists of Convolution (Conv2d), Batch Normalization (BatchNorm2d), and SiLU activation
functions. UP is the up-sampling operation. The C2f module parallelizes more gradient
flow branches to obtain more information. Spatial Pyramid Pooling Fast (SPPF) is a highly
efficient pooling module for extracting and fusing features.

2.3. Current Issues in Object Detection for Fisheye Images

Currently, object detection in fisheye images still faces many challenges. For example,
there are fewer publicly available fisheye image datasets in real scenes, and object distor-
tions and discontinuities in fisheye images suffer from the detection performance of object
detectors. In this paper, the following improvements are made to address these challenges:

1. The UAV-360 dataset is captured using a UAV-mounted fisheye camera, which con-
tains 2045 equirectangular projection images converted from fisheye images. This
dataset is beneficial to enhance the practical study of object detection in fisheye images.

2. Standard convolution makes it challenging to recognize the distorted and discontinu-
ous objects in fisheye images, so two novel downsampling modules are proposed for
the characteristics of fisheye images. The Max Pooling and Ghost’s Downsampling
(MPGD) module effectively extracts the essential feature information of distorted and
discontinuous objects. Meanwhile, the Average Pooling and Ghost’s Downsampling
(APGD) module obtains rich global features and reduces the feature loss of distorted
and discontinuous objects. In addition, compared to the convolutional layers in
the downsampling stage of the original YOLOv8s, the two downsampling modules
slightly reduce the parameters and computation of the model.

3. The complex background information in fisheye images degrades object detection
performance in fisheye images. The proposed C2fs module uses the Squeeze-and-
Excitation (SE) block to model the interdependencies between channels and to obtain
richer information about the feature gradient flow. The C2fs module provides a
better understanding of the contextual information in fisheye images. Meanwhile,
the SPPFSE module adds an SE block after Spatial Pyramid Pooling Fast (SPPF). It
uses global information to selectively emphasize basic features, thus improving the
model’s ability to capture distorted and discontinuous features.

4. The proposed PGDS-YOLOv8s model is a lightweight network structure that applies
the above-proposed modules to the YOLOv8s model. The PGDS-YOLOv8s model
effectively solves the problem of missed and wrong detection of distorted and discon-
tinuous objects and obtains excellent object detection performance in fisheye images.

3. Materials and Methods

In this work, the PGDS-YOLOv8s model is proposed to solve the problem of detecting
distorted and discontinuous objects in fisheye images. Figure 1 describes the steps involved
in detecting fisheye images. First, the image and label files of the fisheye image dataset are
prepared. Second, the proposed model is trained on the training and validation sets, and
the weight files of the model are generated. Third, the proposed model is detected on the
test set. Finally, the proposed model is evaluated and analyzed using the evaluation metrics.

• Prepare image and label files 

for the fisheye image dataset

Data Preparation

• Train the models on the 

training and validation sets

Train Models

• Detect the test set using the 

trained weights

Test Models

• Use evaluation metrics to 

evaluate the performance of 

the models

Evaluate Models

Figure 1. Detection process using the improved model.

3.1. Data Preparation

This paper uses three datasets to evaluate the model performance, including the UAV-
360, VOC-360, and MS-COCO 2017 datasets. Among them, the UAV-360 dataset contains
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equirectangular projected images converted from fisheye images captured in real scenes,
the VOC-360 dataset contains synthesized fisheye images, and the MS-COCO 2017 dataset
contains regular images.

3.1.1. UAV-360 Dataset

In the data preparation stage, the DJI MAVIC 3 drone with the RICOH THETA V fish-
eye camera is used to collect fisheye images. The UAV-360 dataset contains equirectangular
projected images converted from fisheye images captured with a UAV-mounted fisheye
camera. The dataset has 2045 equirectangular projection images. Among them, the training
set has 1430 images, the validation set has 410 images, and the test set has 205 images.
In addition, the UAV-360 dataset has four categories, including people, cars, motorbikes,
and buildings. The UAV-360 dataset is labeled with 12,530 objects, 3652 people, 4862 cars,
1063 motorbikes, and 2953 buildings. Figure 2a demonstrates the original binocular fisheye
image. The two circular regions are the effective imaging regions. Figure 2b shows the
equirectangular projection image converted from the binocular fisheye image. When a 360°
image is rendered as a two-dimensional equirectangular projection image, it will inevitably
have problems such as image distortion, relative size and distance of the objects being
exaggerated, and incomplete objects at the edges.

(a)

(b)

Figure 2. Fisheye images. (a) Original binocular fisheye image; (b) equirectangular projection image
converted from binocular fisheye image.

Figure 3 shows the labelimg tool drawing a rectangular bounding box for an object in
an equirectangular projected image to obtain the XML file with the location information
of the object. The XML file contains the image width and height, the object category, and
the upper-left and lower-right coordinates of the rectangular bounding box of the object,
etc. Finally, the center coordinates, width, and height of the object bounding box in the
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XML file are normalized to the range [0, 1] and saved to the TXT file. The TXT file contains
the category number, normalized center coordinates, normalized width, and normalized
height. The TXT label file is used for object detection.

Figure 3. The labelimg tool labels objects in an equirectangular projected image, the green box is the
bounding box for the labeling.

3.1.2. VOC-360 Dataset

The VOC-360 dataset is converted from the regular images of the VOC2012 dataset to
fisheye images using an algorithm [39]. Figure 2a is the original binocular fisheye image.
Figure 4 shows some synthesized fisheye images. The synthesized image is significantly
similar to the actual fisheye image and suffers from severe distortion and discontinuous
edge objects. The VOC-360 dataset has 20 categories, including people, motorcycles, cows,
horses, birds, and so on. In this paper, 37,974 fisheye images are used as experimental data
for object detection and randomly divided into training, validation, and test sets. Among
them, the training set has 28,480 images, the validation set has 5696 images, and the test set
has 3798 images.

(a) (b)

Figure 4. Some examples of the VOC-360 dataset. (a,b) are synthesized fisheye images.

3.1.3. MS-COCO 2017 Dataset

The MS-COCO 2017 dataset consists of a large regular image dataset containing 118k
training images and 5k validation images. The eighty categories of this dataset include
people, cars, motorcycles, birds, etc. It is commonly used to evaluate the performance of
object detection models.
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3.2. The Proposed Approach

Fisheye cameras have a wide viewing angle and can acquire rich perspective infor-
mation. However, this leads to distorted and discontinuous objects in fisheye images.
Therefore, this paper proposes a PGDS-YOLOv8s model based on the Novel Pooling and
Ghost’s Downsampling module and the SE module. The proposed PGDS-YOLOv8s model
can effectively improve the detection performance of distorted and discontinuous objects
in fisheye images. In addition, compared to the convolution of the downsampling stage
of the original YOLOv8s, the two proposed Pooling and Ghost’s Downsampling modules
slightly reduce the parameters and computation of the model.

YOLOv8s, a state-of-the-art lightweight object detection network, is used as the base
model in this paper. However, for the specificity of objects in fisheye images, the YOLOv8s
model performs poorly in detection performance. In particular, the original YOLOv8s
model employs a (3 × 3 convolutional kernel with a step size of 2) CBS module in the
downsampling stage, which has difficulty in extracting features from distorted and dis-
continuous objects, thus losing a large amount of feature information. Therefore, two
downsampling modules are proposed to solve the problem of feature loss for distorted
and discontinuous objects. One of them is called the MPGD module, which is a down-
sampling module based on the Max Pooling and Ghost module, and the other is called
the APGD module, which is a downsampling module based on the Average Pooling and
Ghost module. The MPGD module efficiently extracts the key features of the distorted
and discontinuous objects. The APGD module can obtain the global field of view, which
reduces the feature loss of distorted and discontinuous objects. The two modules are used
in the PGDS-YOLOv8s model to effectively improve the network’s ability to recognize
distorted and discontinuous objects in fisheye images. At the same time, compared to the
CBS module of the original YOLOv8 model, the proposed MPGD and APGD modules
reduce the parameters and computation of the model. In Backbone, the MPGD and APGD
modules replace the (3 × 3 convolutional kernel with a step size of 2) CBS modules. The
MPGD and APGD modules alternate for the downsampling operation, using the MPGD
module first and then the APGD module. The APGD module improves the characteristic
of the MPGD module that only extracts the most significant features, and it also focuses
on the global features to maximize the retention of the information of the feature map.
Meanwhile, in Head, the MPGD module replaces the two (3 × 3 convolution kernel with
step size 2) CBS modules in the downsampling stage. Based on the features extracted
from the backbone, the effective features in the fisheye image are further extracted. The
MPGD and APGD modules have a large sensory field, which can effectively improve the
performance of detecting distorted and discontinuous objects in the fisheye image.

In addition, the C2f module in the original YOLOv8 model uses a gradient shunt
connection to obtain rich gradient flow information. To further enhance the model’s under-
standing of the contextual information of fisheye images, the C2fs module is proposed. The
C2fs module is the SE attention mechanism added to each Bottleneck of the C2f module.
The C2fs module further enhances the ability to acquire channel features by retaining
important feature information and suppressing unimportant feature information. Further-
more, the SPPFSE module is the addition of an SE layer after the Spatial Pyramid Pooling
Fast (SPPF) module. It can use global information to selectively emphasize informative
features, thereby improving the ability of the whole model to select and capture features.
The proposed PGDS-YOLOv8s model is a lightweight network structure for fisheye images,
which applies our proposed modules in the YOLOv8s model. Figure 5 shows the network
structure of PGDS-YOLOv8s.
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Figure 5. The network structure of PGDS-YOLOv8s.

3.2.1. Novel Downsampling Modules

Currently, the advanced lightweight YOLOv8s network is used to detect conventional
images. However, when the YOLOv8s network detects fisheye images, the distorted
and discontinuous features of objects in fisheye images make the results perform poorly.
Conventional convolutional kernels have difficulty recognizing distorted and discontinuous
objects, which severely loses the feature information of the objects. In particular, the original
YOLOv8s model only uses one (3 × 3 convolutional kernels with a step size of 2) CBS to
sample feature information in the downsampling stage. It is difficult to extract the features
of distorted and discontinuous objects, losing many feature information of fisheye image
objects. Therefore, two novel downsampling modules are proposed to solve the feature
loss problem of distorted and discontinuous objects. Among them, the MPGD module is
the Max Pooling and Ghost’s Downsampling module, which can effectively extract the key
features of distorted and discontinuous objects in fisheye images. The APGD module is
the Average Pooling and Ghost’s Downsampling module, which can effectively obtain the
global features and reduce the feature loss of distorted and discontinuous objects.

Conventional convolution in the advanced lightweight YOLOv8s model has difficulty
recognizing distorted and discontinuous objects in fisheye images. In particular, much
feature information of distorted and discontinuous objects is lost in the downsampling
stage. So, inspired by YOLOv7 [35] downsampling, pooling [40] is used to solve this
problem. Pooling suppresses noise and reduces information redundancy. Max Pooling
sparsifies the error, and Average Pooling equalizes the mistake. It effectively enhances
the network’s ability to extract distorted and discontinuous features in fisheye images. In
addition, the pooling operation does not care about the specific location of the features
and only abstracts the region’s features. Features at the edges of the fisheye image are
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less likely to be ignored, which is very beneficial for object detection in fisheye images.
Meanwhile, pooling is often used to perform downsampling operations on the feature map,
which can increase the network sensing field and improve the model’s ability to perceive
objects in fisheye images. In addition, the pooling layer has no parameters and does not
require learning.

In addition, to further enhance the pooling module’s understanding of contextual
information and feature representations in fisheye images, the Ghost module [41] is added
after the pooling module to extend the perceptual domain. This allows the model to
efficiently acquire important information about the features of distorted and discontinuous
objects. The Ghost module exploits the similarity of feature mappings and uses inexpensive
linear operations to generate redundant feature mappings with key information. Compared
to convolutional operations, the Ghost module effectively reduces the parameters and
computational cost of the model, resulting in a more lightweight network model. First, the
Ghost module generates half of the intrinsic feature maps using a 1 × 1 primary convolution.
Then, for the intrinsic feature maps, cheap linear operations are performed on each channel
to generate the other half of the ghost feature maps. The cheap linear operation uses
a 5 × 5 convolution kernel to expand the receptive field. Finally, the two parts of the
feature maps are concatenated to output the final feature maps. In addition, identity
mapping is used to preserve the intrinsic feature maps. As shown in Figure 6, the regular
convolutional layer and the Ghost module are illustrated to generate the same number of
feature maps, respectively.

Conv

Input Output

Identity

Φ1

Φ2

Φk
Input Output

Conv

(a) (b)

...

Figure 6. Illustration of the convolutional layer and Ghost module generating the same number of
feature maps separately. (a) Convolutional layer; (b) Ghost module.

The proposed MPGD module uses two branches for the downsampling operation to
effectively extract and retain the feature information of the feature map. Figure 7 illustrates
the structure of the MPGD module. First, on one branch, the Max Pooling operation is
used to extract the key feature information of the objects in the input feature map. Max
Pooling does not care about the specific location of the features but only abstracts the
critical features of the region, so it effectively preserves the key features of distorted and
edge-discontinuous objects. At the same time, it sparsifies the error, suppresses noise, and
reduces information redundancy. Subsequently, the Ghost module expands the receptive
field to extract the essential features further and generate redundant features. The Ghost
module generates intrinsic features using a (1 × 1 convolutional kernel with a step size of 1)
CBS module. Then, a (5 × 5 convolutional kernel with a step size of 1) CBS module is used
to expand the receptive field. Second, to further preserve the original feature information
of the fisheye image, another branch uses a (1 × 1 convolution kernel with a step size of 1)
CBS module to extract comprehensive feature information, and then, a (3 × 3 convolution
kernel with a step size of 2) CBS is used for the downsampling operation. Finally, the
branch information with local key features and global features is concatenated. The MPGD
module acquires rich essential feature information during the downsampling process, and
it maximizes the retention of critical features in the object in the fisheye image.
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Figure 7. The structure of the MPGD module.

In addition, the APGD module is proposed based on the MPGD module to obtain more
comprehensive fisheye image feature information. As shown in Figure 8, the APGD module
is to replace the Max Pooling of the MPGD module with Average Pooling, and the other
structures are the same. The Average Pooling can equalize the error in the downsampling
process so that the APGD module can obtain rich global features. The MPGD module
can effectively extract the key features in the fisheye image, and the APGD module can
obtain rich global features in the fisheye image. The MPGD and APGD modules are used
alternately in Backbone, which can effectively improve the overall feature extraction ability
of the improved model for fisheye images.

AvgPool

Input

CBS

(11,1)

CBS

(55,1)

CBS

(11,1)

CBS

(33,2)

CHW CHW

C(H/2)(W/2)

C(H/2)(W/2)

(C/2)(H/2)(W/2) (C/2)(H/2)(W/2)

Concat

C
C(H/2)(W/2)

Concat

C

2C(H/2)(W/2)

Output

Ghost module

Figure 8. The structure of the APGD module.

As shown in Figures 7 and 8, given the input data X ∈ RC×H×W , C denotes the number
of input channels, and H and W denote the height and width of the input data, respectively.
First, MaxPool and AvgPool are uniformly denoted as Pool. Figure 7 adopts (pooling
kernel size of 2 × 2) MaxPool, and Figure 8 adopts (pooling kernel size of 2 × 2) AvgPool.
Y ∈ RC×(H/2)×(W/2) denotes the feature map of the output of the pooling operation:

Y = Pool(X) (1)

Subsequently, the pooled output feature map Y is taken as input; m intrinsic feature
maps Y′ are generated by primary convolution [41]; and Y′ ∈ RH′×W ′×m, where ∗ is the
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convolution operation, f ∈ RC×k×k×m is the filters in the convolution layer, k × k indicates
the size of the filter f , and the bias terms are omitted. The equation is expressed as follows:

Y′ = Y ∗ f (2)

The s ghost feature maps Y′′ are obtained for each intrinsic feature in Y′ using cheap
linear operations, where y′i is the i-th intrinsic feature map in Y′, Φi,j is the cheap linear
operation, yij is the j-th ghost feature map generated by the i-th intrinsic feature map,
and Φi,s is the constant mapping used to preserve the intrinsic feature maps. The linear
operation Φ is performed for each channel, and its computational cost is much lower than
that of ordinary convolution. The equation is expressed as follows:

yij = Φi,j
(
y′i
)
, ∀i = 1, . . . , m, j = 1, . . . , s (3)

Then, the intrinsic feature maps Y′ and the ghost feature maps Y′′ are concatenated to
obtain the feature map Y1. The equation is expressed as follows:

Y1 = Concat(Y′, Y′′) (4)

In another branch, f ′ ∈ RC×k×k×n is the filters in the convolution layer, n denotes the
number of input feature maps, k × k indicates the size of the filter f ′, and the input feature
map X is first processed using a 1 × 1 filter f ′ to retain comprehensive feature information.
Then, a 3 × 3 filter f ′ performs a downsampling operation to obtain the feature map Y2.

Y2 = X ∗ f ′ ∗ f ′ (5)

Finally, our proposed downsampling module is to concatenate the feature maps Y1
and Y2 on the two branches to obtain the feature map Y3 with rich feature information.

Y3 = Concat(Y1, Y2) (6)

3.2.2. C2fs Module

The exaggerated relative size and distance of objects and complex background in-
formation in fisheye images lead to further degradation of object detection performance.
To further optimize object detection performance in fisheye images, the Squeeze-and-
Excitation (SE) block is introduced in this paper [42]. The SE block selectively emphasizes
the information features using the global information, which will pay more attention to
the information channel features and effectively improve the detection performance of the
objects in fisheye images.

As shown in Figure 9, the SE block contains Squeeze-and-Excitation operations. First,
the global average pooling in the squeeze operation processes the spatially informative
features of the feature map into channel informative features to obtain the global features
on the channels. This is followed by the excitation operation, which learns the nonlinear
relationships between channels and captures the interdependencies between channels to
recalibrate the channel features adaptively. Finally, the generated scalar is multiplied by
the original feature map for feature fusion to obtain the final features. The SE block uses
global information to emphasize informative features in the fisheye image selectively. It
improves sensitivity to features in the fisheye image and suppresses less useful features.

X U

H′ 

C′  

W′  

11C 11C

H

C
W

H

C
W

Figure 9. A Squeeze-and-Excitation block.
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The Ftr operation generates a feature map U from the input feature map X with a
convolution operation, where X ∈ RH′×W ′×C′

and U ∈ RH×W×C. Fsq denotes the squeeze
operation. The squeeze performs the global average pooling operation on the feature map
to generate the channel-wise statistics z [42], where z ∈ RC, which represents the global
perceptual field of each channel using a numerical value, where the equation for the c-th
element of z is expressed as follows:

zc = Fsq(uc) =
1

H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (7)

Fex denotes the excitation operation, and the excitation uses two fully connected layers
to parameterize the gating mechanism and to capture channel-wise dependencies. Finally,
the scalar s is obtained. δ denotes the ReLU function, and σ denotes the Sigmoid function.
W1 ∈ R C

r ×C, and W2 ∈ RC× C
r . r denotes the reduction ratio. The equation is expressed

as follows:
s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (8)

The Fscale operation multiplies the scalar sc with the corresponding channel of the
feature map uc to obtain the final feature map x̃, with uc ∈ RH×W . The equation is
expressed as follows:

x̃c = Fscale(uc, sc) = sc · uc (9)

The C2f module in the original YOLOv8 model uses a gradient-splitting connection to
obtain rich gradient flow information. To further enhance the model’s understanding of
the contextual information of fisheye images, the C2fs module is proposed. As shown in
Figure 10, the C2fs module replaces the Bottleneck of the C2f module with the SE-Bottleneck.
The SE-Bottleneck adds the SE attention mechanism to the Bottleneck. One branch first
extracts the effective features using two 3 × 3 convolutional layers and then adaptively
recalibrates the features using the SE module modeling the interdependence of the channels.
The other branch is the original features. Finally, the features from these two branches
are fused. The SE-Bottleneck can acquire channel features efficiently and learn deeper
features in fisheye images. The C2fs module employs an SE-Bottleneck, which allows the
C2fs module to efficiently fuse different levels of features and extract richer contextual
information from fisheye images. As shown in Figure 5, all the C2f modules are replaced
with C2fs modules in Backbone to further enhance the performance of the improved model
for object detection against fisheye images. Meanwhile, the SPPFSE module in Head is
an SE block added after the Spatial Pyramid Pooling Fast (SPPF) module. It uses global
information to selectively emphasize informative features based on the fusion of deep and
shallow information by SPPF, thus improving the ability of the whole model to select and
capture features.

3.3. Evaluation Metrics

In this study, Precision, Recall, mAP@0.5, mAP@0.5:0.95, GFLOPs, and FPS are used
to evaluate object detection performance for fisheye images in the VOC-360 and UAV-360
datasets. Among them, mAP@0.5 denotes the Mean Average Precision across all categories
at an IoU threshold of 0.5. mAP@0.5:0.95 indicates the Mean Average Precision for IoU
thresholds from 0.5 to 0.95 in steps of 0.05. FPS is the number of image frames processed
per second. In addition, AP, AP50, AP75, APS, APM, and APL are used to evaluate object
detection performance for regular images in the MS-COCO 2017 dataset. Performance is
evaluated using three IoU threshold types of AP, including AP (IoU threshold average),
AP50 (IoU threshold = 0.50), and AP75 (IoU threshold = 0.75). At the same time, three criteria
are used to evaluate the accuracy of small, medium, and large objects corresponding to
APS, APM, and APL [43].
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Figure 10. The structure of the C2fs module and the SE-Bottleneck module.

4. Results
4.1. Implementation Details

The RICOH THETA V Binocular Fisheye Camera has a 360° field of view and is
compact and portable. It can stabilize the image even in motion, retaining more detailed
information and presenting a more realistic visual effect. At the same time, the fisheye
camera is connected to the cell phone via wireless LAN to realize real-time, high-speed
image transmission. Fisheye images captured in real time are displayed on the cell phone.
Therefore, this paper selects the RICOH THETA V binocular fisheye camera to capture
fisheye images with a 360° view angle. In addition, the DJI MAVIC 3 drone is easy and
safe to operate. Meanwhile, it has a range of 46 min. Moreover, it can detect objects in all
directions during flight and dexterously bypass obstacles for advanced intelligent return.
So, the DJI MAVIC 3 drone with the RICOH THETA V fisheye camera is used to collect
data. The mounting method is used to fix the fisheye camera to the bottom of the drone
using brackets.

In addition, all experiments are performed in Pytorch 1.10.0 and cuda 11.3 environment.
A NVIDIA GeForce RTX 3080 Ti GPU device is used to train the VOC-360 and UAV-360
datasets, and the NVIDIA GeForce RTX 3090 GPU device is used to train the MS-COCO
2017 dataset.

The hyperparameters on the three datasets are set as follows. Firstly, all models in
the VOC-360 dataset are trained with 300 epochs, the batch size is set to 8, and the initial
learning rate is set to 0.005. Secondly, all models in the UAV-360 dataset are trained with
100 epochs, the batch size is set to 8, and the initial learning rate is set to 0.02. In addition,
all models are trained for 100 epochs on the MS-COCO 2017 dataset, the batch size is set to
32, and the initial learning rate is set to 0.01.

4.2. Ablation Experiment

The experimental parameters and results of the improved models are compared
with the original models on the VOC-360 dataset. The experimental results in Table 1
demonstrate that the improved models significantly improve object detection performance
for fisheye images.
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Table 1. Comparison of improved model results on the VOC-360 dataset.

Methods Lr Params (M) GFLOPs Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%) FPS

YOLOv8s 0.01 11.14 28.7 73.0 52.6 59.4 35.3 286
YOLOv8s 0.005 11.14 28.7 75.2 58.0 63.8 (+4.4) 40.2 (+4.9) 286
YOLOv8s + MPGD + APGD 0.005 10.79 28.5 82.6 72.0 78.7 (+19.3) 62.4 (+27.1) 256
YOLOv8s + C2fs + SPPFSE 0.005 11.14 28.7 80.8 65.5 72.8 (+13.4) 51.4 (+16.1) 286
PGDS-YOLOv8s 0.005 10.79 28.5 85.1 71.3 79.2 (+19.8) 62.8 (+27.5) 250

4.2.1. Comparison of Improved Model Results on the VOC-360 Dataset

The VOC-360 dataset contains synthetic fisheye images created by sampling patches in
regular images and then using an algorithm to simulate the spherical viewing angle of the
original fisheye images. Therefore, most synthetic fisheye images have the characteristics of
the original fisheye image’s viewing angle, object distortion, objects near large and far small,
edges produce discontinuous objects, etc. The YOLOv8s model makes recognizing objects
in the regular image easy. For special characteristics of the fisheye image, the YOLOv8s
model does not easily recognize distorted and discontinuous objects in the fisheye image,
resulting in a lower overall object detection accuracy. At the same time, when the learning
rate is 0.01, the learning rate is large, leading to more misdetections and omissions.

When the YOLOv8s model is trained on the VOC-360 dataset, the default initial
learning rate significantly impacts detection accuracy. Larger learning rates converge
quickly at first but may fail to converge to the optimal value. Therefore, the initial learning
rate of all the improved models is set to 0.005. The appropriate initial learning rate allows
all the improved models to optimize the original model’s false and missed detection rates.

The MPGD and APGD modules can effectively extract distorted and discontinuous
features of the fisheye image in the downsampling stage. At the same time, compared to the
convolutional layers in the downsampling stage of the original YOLOv8s, the two proposed
downsampling modules slightly reduce the parameters and computation of the model.
YOLOv8s model introduces the MPGD and APGD modules, which improves the mAP@0.5
by 19.3% and mAP@0.5:0.95 by 27.1% compared with the original model. In addition,
the SE module models the interdependence of the channels and adaptively recalibrates
the features. This allows the C2fs module to acquire richer contextual information, and
the SPPFSE module improves the ability of the whole model to capture distorted and
discontinuous object features. The YOLOv8s model introduces the C2fs and SPPFSE
modules, which improves the mAP@0.5 by 13.4% and the mAP@0.5:0.95 by 16.1% compared
to the original model. The PGDS-YOLOv8s model combines the advantages of several
modules and obtains the best results in object detection in fisheye images. Compared
with the original model, the PGDS-YOLOv8s model improves mAP@0.5 by 19.8% and
mAP@0.5:0.95 by 27.5%.

4.2.2. Performance Comparison of Improved Models on the VOC-360 Dataset

Figure 11 shows the test results of some fisheye images in the VOC-360 test set. The
advantages of the MPGD and APGD modules are demonstrated in Figure 11b. The MPGD
module is good at extracting effective features in fisheye images, while the APGD module
better solves the problems of missed and wrong detection. Introducing the MPGD and
APGD modules into the YOLOv8s model significantly improves the detection accuracy
of distorted and discontinuous objects in fisheye images. At the same time, the leakage
detection is effectively improved, and the detection frame region is more accurate. In
addition, as shown in Figure 11c, the YOLOv8s model, with the introduction of the C2fs
and SPPFSE modules, which extracts informative channel features and focuses on regions of
interest, effectively improves the detection accuracy of objects in fisheye images. Finally, as
shown in Figure 11d, the PGDS-YOLOv8s module introduces the proposed modules, which
perform very well in the overall performance. Its detection frames are more accurate and
detailed, resulting in excellent recognition of objects of different scales in fisheye images.
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Figure 11. Comparison of test results of four models on the VOC-360 test set. (a) YOLOv8s
model; (b) YOLOv8s + MPGD + APGD model; (c) YOLOv8s + C2fs + SPPFSE model; (d) PGDS-
YOLOv8s model.

4.3. Comparison with Several Advanced Models on the VOC-360 Dataset

Simultaneously, object detection is performed with the YOLOv3-tiny, YOLOv5s,
YOLOX-s, YOLOX-m, YOLOv6-S, YOLOv6-M, YOLOv7-tiny, YOLOv7, and YOLOv8m
models on the VOC-360 dataset. The detection results are compared with those of the
YOLOv8s and PGDS-YOLOv8s models. The comparison results on the VOC-360 dataset
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are presented in Table 2. In particular, the YOLOv8s model is more challenging to adapt
to object detection of distorted images and shows lower detection accuracy on the VOC-
360 dataset. Compared with the YOLOv8s model, the proposed PGDS-YOLOv8s model
has a reduced number of parameters and computation and significantly improves object
detection accuracy for fisheye images. The PGDS-YOLOv8s model outperforms other
models such as YOLOv3-tiny, YOLOv5s, YOLOX-s, YOLOX-m, YOLOv6-S, YOLOv6-M,
YOLOv7-tiny, and YOLOv8m at mAP@0.5 and mAP@0.5:0.95. The PGDS-YOLOv8s model
for mAP@0.5 is lower than the YOLOv7 model. However, the PGDS-YOLOv8s model
for mAP@0.5:0.95 is better than the YOLOv7 model. Moreover, the YOLOv7-tiny model
performs best on FPS. The experimental results show that the PGDS-YOLOv8s model
outperforms most other models for object detection in fisheye images.

Table 2. Comparison with several advanced models on the VOC-360 dataset.

Methods Size Params (M) GFLOPs mAP@0.5 (%) mAP@0.5:0.95 (%) FPS

YOLOv8s 640 11.14 28.7 59.4 35.3 286
YOLOv3-tiny 640 8.71 13.1 57.7 27.2 476
YOLOv5s 640 7.07 16.1 63.9 34.3 357
YOLOX-s 640 8.95 26.8 73.2 52.4 193
YOLOX-m 640 25.29 73.79 78.0 60.2 91
YOLOv6-S 640 18.51 45.2 77.4 58.9 154
YOLOv6-M 640 34.82 85.67 78.9 61.1 107
YOLOv7-tiny 640 6.06 13.3 67.9 45.4 588
YOLOv7 640 37.29 105.4 80.6 61.9 182
YOLOv8m 640 25.87 79.1 66.6 42.3 145
PGDS-YOLOv8s 640 10.79 28.5 79.2 62.8 250

4.4. Comparison with Several Advanced Methods on the UAV-360 Dataset

Table 3 shows a comparison of the experimental results of the proposed method
with the state-of-the-art object detection methods for fisheye images. Among them,
Kim et al. [44] proposed three multi-scale feature connection models for detecting fish-
eye images, including Long-Skip Concatenation Model (LCat), Short-Skip Concatenation
Model (SCat), and Short–Long-Skip Concatenation Model (SLCat). In addition, the edge
continuity distortion-aware block (ECDAB) [45] and SphereConv [46] are introduced into
the YOLOv8s model for comparison experiments with the proposed model, respectively.
ECDAB mitigates object discontinuities and distortions in fisheye images by recombining
and segmenting features. In addition, SphereConv resolves the object edge discontinuities
and distortions in fisheye images by resampling. Our proposed method employs MPGD
and APGD modules in the downsampling stage to expand the receptive field, while the
C2fs module is utilized to acquire rich feature gradient flow information further. The
features of distorted and discontinuous objects in fisheye images are effectively preserved
to obtain good detection results. The experimental results demonstrate that all the object
detection methods for fisheye images on the UAV-360 dataset have good detection accu-
racy, and the detection performance of our proposed method outperforms all the others.
Among them, the FPS of the YOLOv8s model with the introduction of the MPGD and
APGD modules reaches 208. The PGDS-YOLOv8s model achieves 89.0% for mAP@0.5
and 59.9% for mAP@0.5:0.95. In particular, the YOLOv8s model introducing the C2fs and
SPPFSE modules achieves 60.5% for mAP@0.5:0.95. With the complex background in the
equirectangular projected image, the C2fs and SPPFSE modules allow the model to focus
more on the informative channel features, further enhancing the model’s understanding of
the contextual information in the equirectangular projected image. The method obtains the
best accuracy for object detection on the UAV-360 dataset.
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Table 3. Comparison with several advanced methods on the UAV-360 dataset.

Methods Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%) FPS

YOLOv8s 86.6 79.9 87.1 57.7 189
LCat 83.2 78.6 84.6 48.9 127
SCat 84.9 82.1 87.0 55.2 119
SLCat 82.4 78.8 84.9 48.7 123
YOLOv8s + ECDAB 85.0 83.0 87.8 58.1 185
YOLOv8s + SphereConv 84.9 82.2 87.6 57.9 175
YOLOv8s + MPGD+APGD 87.4 81.1 88.7 60.2 208
YOLOv8s + C2fs + SPPFSE 85.5 83.7 89.0 60.5 169
PGDS-YOLOv8s 86.4 82.9 89.0 59.9 179

Figure 12 shows the test results for some equirectangular projection images in the
UAV-360 test set. Images captured by the fisheye camera show that objects closer to
the lens are larger and significantly distorted, while objects farther away from the lens
are smaller. In the equirectangular projection images, objects at the poles of the image
are particularly distorted, and objects located at the left and right edges of the image
are discontinuous. The original YOLOv8 model does not perform well in dealing with
these problems. For example, in the first scene of the first row, the detection accuracy of
discontinuous buildings on the left and right sides of the equirectangular projection image
is low. In the first scene of the first row, the flagpole platform is incorrectly detected as a
car, and some of the vehicles cannot be recognized. In the first scene of the fourth row, a
person is incorrectly detected as a motorbike. Compared with the original YOLOv8s model,
the PGDS-YOLOv8s model can accurately recognize more objects and has higher object
detection accuracy. The MPGD module can efficiently extract the key feature information of
the distorted and discontinuous objects in the fisheye image. The APGD module can obtain
the global field of view and reduce the feature loss of distorted and discontinuous objects.
The two downsampling modules prevent the features at the edges of the fisheye image
from being easily ignored, which is very favorable for object detection in fisheye images.
The C2fs module effectively fuses different levels of features and extracts richer contextual
information in fisheye images. It can focus on the region of interest and effectively improve
object detection accuracy. The proposed PGDS-YOLOv8s model performs well in object
detection in fisheye images.

4.5. Improved Models’ Comparison on the MS-COCO 2017 Dataset

Our proposed method demonstrates excellent performance in object detection for
fisheye images. To further validate the broad applicability of the proposed method, the MS-
COCO 2017 dataset is used for experiments. Compared with the original YOLOv8s model,
the improved models exhibit more excellent object detection performance. Among them,
the YOLOv8s model introducing MPGD and APGD modules reduces the feature loss in the
downsampling stage and performs better in detecting smaller objects. The YOLOv8s model
introducing the C2fs and SPPFSE modules pays more attention to the informative channel
features and performs better on larger objects. The PGDS-YOLOv8s model combines the
advantages of the proposed modules to show the best detection performance. Table 4
shows that several evaluation performance metrics of the PGDS-YOLOv8s model on the
MS-COCO 2017 dataset perform very well. Among them, AP improved by 1.4%, AP50
improved by 1.7%, AP75 improved by 1.2%, APS improved by 2.5%, APM improved by
1.1%, and APL improved by 1.7%. The experiments demonstrate that the proposed model
still enhances object detection for images on the MS-COCO 2017 dataset.
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(a) (b)

Figure 12. Comparison of the test results of the two models on the UAV-360 test set. (a) YOLOv8s
model; (b) PGDS-YOLOv8s model.

Table 4. Improved models comparison on the MS-COCO 2017 dataset.

Methods Params (M) GFLOPs AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%) FPS

YOLOv8s 11.16 28.7 42.1 58.4 45.9 22.9 46.7 58.0 303
YOLOv8s + MPGD + APGD 10.81 28.5 43.1 59.4 47.0 24.3 47.7 58.5 286
YOLOv8s + C2fs + SPPFSE 11.17 28.7 42.4 58.9 46.3 23.2 47.2 58.5 303
PGDS-YOLOv8s 10.81 28.5 43.5 60.1 47.1 25.4 47.8 59.7 294

5. Discussion

Most existing object detectors often detect regular images with small viewing angles.
To further explore the object detection of wide-view angle images, this paper uses images
with wide-view angles captured by a fisheye camera mounted on a UAV. However, the
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unique viewing angle of the fisheye camera leads to problems such as object distortion and
discontinuity of objects at the edges in fisheye images. This poses a significant challenge
to advanced object detectors. Therefore, to solve these problems, this paper proposes a
PSG-YOLOv8s model for object detection in fisheye images. The MPGD module effectively
extracts key feature information of distorted and discontinuous objects. The APGD module
acquires rich global features and reduces feature loss of distorted and discontinuous
objects. In addition, the C2fs module models the interdependence of the channels to
acquire richer gradient flow information of the features. Subsequently, the SPPFSE module
further improves the model’s ability to capture features of distorted and discontinuous
objects. The experimental results in this paper demonstrate that the proposed method can
extract distorted and discontinuous features effectively, thus obtaining excellent detection
performance. The proposed model is compared with some current state-of-the-art object
detectors on the VOC-360 dataset. For fisheye images with a spherical viewing angle, the
accuracy of the PGDS-YOLOv8s model is better than YOLOv3-tiny, YOLOv5s, YOLOX-
s, YOLOX-m, YOLOv6-S, YOLOv6-M, YOLOv7-tiny, YOLOv8s, and YOLOv8m, except
YOLOv7, which outperforms the PGDS-YOLOv8s model on mAP@0.5. In addition, the
UAV-360 dataset is an equirectangular projected image converted from a fisheye image
captured by a fisheye camera mounted on the UAV. On the UAV-360 dataset, the proposed
method performs better in the object detection of fisheye images than advanced methods
for processing fisheye images, such as LCat, SCat, SLCat, ECDAB, and SphereConv. Among
them, the C2fs and SPPFSE modules make the model pay more attention to the information
channel features and obtain the best detection accuracy. Meanwhile, to further validate
the broad applicability of the proposed method, it is experimented on the MS-COCO
2017 dataset. Compared with the original YOLOv8s model, the PGDS-YOLOv8s model
improves detection accuracy.

Limitations. The MPGD and APGD modules effectively extract distorted and incom-
plete features of fisheye images during the downsampling stage. However, compared with
the original YOLOv8s model, the proposed model, with the introduction of the MPGD
and APGD modules, takes up slightly more memory during training, which affects the
detection speed.

6. Conclusions

In this paper, the proposed PGDS-YOLOv8s model effectively improves the perfor-
mance of distorted and discontinuous object detection for fisheye images. Firstly, two
novel downsampling modules are proposed to demonstrate the superiority of detecting
distorted and discontinuous objects. Among them, the MPGD module effectively extracts
essential feature information about the distorted and discontinuous objects, and the APGD
module can acquire the global field of view and reduce the feature loss of distorted and
discontinuous objects. The two downsampling modules expand the sensing field to acquire
more feature information and to construct a more lightweight network. Furthermore, the
proposed C2fs module acquires richer gradient flow information about features through the
interdependence of SE block modeling channels. Meanwhile, the SPPFSE module is an SE
module added after the SPPF module. The SPPFSE module can perceive the rich semantic
information more efficiently to improve the whole model’s ability to detect distorted and
discontinuous objects in fisheye images.

On the VOC-360 dataset, the proposed PGDS-YOLOv8s model obtains the best detec-
tion compared with YOLOv3-tiny, YOLOv5s, YOLOX-s, YOLOX-m, YOLOv6-S, YOLOv6-
M, YOLOv7-tiny, and YOLOv8m. In addition, the improved model on the UAV-360 dataset
achieves 89.0% for mAP@ 0.5 and 60.5% for mAP@ 0.5:0.95. Meanwhile, the detection
results of our proposed method on the UAV-360 dataset all outperform other object detec-
tion methods for fisheye images. Furthermore, the PGDS-YOLOv8s model is used on the
MS-COCO 2017 dataset for detection, and the AP is improved by 1.4%, AP50 by 1.7%, AP75
by 1.2%, APS by 2.5%, APM by 1.1%, and APL by 1.7%. The proposed model also works
well for conventional image detection, which proves its broad capability. In the future of
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computer vision, the increasing need for wide-angle imaging means that fisheye cameras
will be widely studied and used. Therefore, the next part of this paper is dedicated to
further investigating how to improve the lightweight characteristics of the model and the
performance of the fisheye camera for object detection in real application scenarios.
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