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Abstract: Spatial population distribution data is the discretization of demographic data into spatial
grids, which has vital reference significance for disaster emergency response, disaster assessment,
emergency rescue resource allocation, and post-disaster reconstruction. The random forest (RF)
model, as a prominent method for modeling the spatial distribution of population, has been studied
by many scholars, both domestically and abroad. Specifically, research has focused on aspects such
as multi-source data fusion, feature selection, and data accuracy evaluation within the modeling
process. However, discussions about parameter optimization methods during the modeling process
and the impact of different optimization methods on modeling accuracy are relatively limited. In
light of the above circumstances, this paper employs the RF model to conduct research on population
spatialization with multi-source spatial information data. The study primarily explores the differences
in model parameter optimization achieved through random search algorithms, grid search algorithms,
genetic algorithms, simulated annealing algorithms, Bayesian optimization based on Gaussian
process algorithms, and Bayesian optimization based on gradient boosting regression tree algorithms.
Additionally, the study investigates the influence of different optimization algorithms on the accuracy
of population spatialization modeling. Subsequently, the model with the highest accuracy is selected
as the prediction model for population spatialization. Based on this model, a spatial population
distribution dataset of Sichuan Province at a 1 km resolution is generated. Finally, the population
dataset created in this paper is compared and validated with open datasets such as GPW, LandScan,
and WorldPop. Experimental results indicate that the spatial population distribution dataset produced
by the Bayesian optimization-based random forest model proposed in this paper exhibits a higher
fitting accuracy with real data. The Coefficient of Determination (R2) is 0.6628, the Mean Absolute
Error (MAE) is 12,459, and the Root Mean Squared Error (RMSE) is 25,037. Compared to publicly
available international datasets, the dataset generated in this paper more accurately represents the
spatial distribution of the population.

Keywords: population spatialization; random forest; model parameter optimization

1. Introduction

Population spatial distribution data serves as critical geographic information, ef-
fectively aiding governmental optimization of social resource allocation, environmental
management, and urban development [1–5]. Additionally, integrating population infor-
mation with other data offers a scientific basis for risk assessment, emergency disaster
response, and post-disaster reconstruction [6–12]. Traditional population data is primarily
obtained through comprehensive national surveys and sampling, typically using census
divisions as statistical units. However, these boundaries do not always reflect the natural
distribution of data. In practical applications, there are drawbacks such as low temporal
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and spatial resolution, lack of support for spatial operations and analysis, and poor intu-
itiveness. With the support of geographic information technology, geographers enhance
the study of the spatial distribution of socio-economic data by adding clear and detailed
geographic references and employing spatial grid methods for quantification. This method
of spatializing statistical data stores population data in a grid format, further enhancing
computational efficiency and storage capacity. It promotes the integration of population
statistics with other environmental data, making predictions and analyses of population-
related issues more accurate. At the same time, it effectively addresses the limitations of
traditional population data, improves the constraints of population census data in Earth
science applications, enhances the spatial resolution of population data, and provides
a more intuitive representation of spatial population distribution patterns. Traditional
population spatialization methods primarily fall into two categories: spatial interpolation
and statistical modeling. Spatial interpolation is a method of converting population data
from a large spatial range to a small area, such as point interpolation [13] and areal interpo-
lation [14]. These methods make the scale conversion of population data convenient but
often overlook scale and boundary effects [15], leading to suboptimal performance at the
boundaries of regions. Moreover, due to the presence of assumption conditions, it becomes
challenging to account for spatial heterogeneity issues [16], resulting in inaccurate estimates
in heterogeneous areas. The presence of outliers or extreme values can also significantly
impact interpolation results, leading to inaccurate estimations. Statistical modeling meth-
ods establish population spatialization models based on the weight relationships between
various auxiliary data and the spatial distribution of the population, allowing for estimates
of population quantity or density in small spatial units. Compared to spatial interpolation
methods, statistical models can consider the intricate relationships between various factors
and population density more comprehensively, but they need to face the challenge of
multi-source heterogeneous data fusion [17]. Representative methods include multiple
linear regression (MLR) [18], geographically weighted regression (GWR) [19,20], spatial
lag regression model [21], kriging regression model [22], etc. Moreover, many statistical
regression models are based on the assumption of linear relationships, but the distribution
of populations and related factors may exhibit non-linear associations. This can lead to
inaccurate modeling of the true relationships. Statistical regression models often fail to
capture the complexity of geographical spatial structures, such as variations between urban
centers and suburbs. This may result in models that are overly smooth in space, overlook-
ing local variations. With the development of machine learning techniques, scholars have
applied ensemble learning and neural networks to population spatialization exploration to
further explore the complex relationships between multi-source geographic information
and demographic statistical features. Ensemble learning combines multiple learners into
a unified entity through certain strategies to jointly complete tasks and enhance decision
accuracy through collective decision-making, primarily involving boosting and bagging
algorithms. The Boosting algorithm follows the principle of gradient boosting [23], and
updates the model by feeding back the information of each round of model training to
the next round, obtaining a better model based on the residual iterative training of the
previous round of models. On this basis, Extreme Gradient Boosting (XGBoost) employs
weighted fusion to average the results of each tree for final output, effectively enhancing
model accuracy [24]. Zhao Xin et al. [25] estimated the population distribution of Shenzhen
in 2019 based on five ensemble learning models, and the XGBoost model achieved the best
results. Bagging algorithms combine results from multiple learners through averaging or
voting to obtain predictive results [26]. As a typical bagging algorithm, random forest (RF)
is widely used in population spatialization, and it possesses several advantages compared
to other algorithms. It features a more flexible and stable framework. Random Forest
integrates predictions from multiple decision trees, with each tree learning from the data in
a different way, thereby reducing the risk of overfitting and improving the overall model’s
generalization ability. This leads to more accurate predictions, helps avoid overfitting,
and exhibits higher tolerance to outliers and noise [27]. Population spatialization studies
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often involve various types of data, encompassing a large number of features. Random
Forest’s flexible and stable framework allows it to effectively handle high dimensional
feature spaces, enabling the model to thoroughly consider the impact of different data.
Furthermore, since each decision tree is trained independently, Random Forest inherently
benefits from parallelization, which accelerates the model training process. This capability
is useful in efficiently handling the extensive geographical, social, and economic data
involved in the study. Stevens et al. [28] utilized the random forest model in regions such
as Vietnam, Cambodia, and Kenya to generate high-precision population grid data with
100 m resolution. Li et al. [29], based on 25 m nighttime light (NTL) data and point of
interest (POI) data captured by the International Space Station (ISS), proposed a population
spatialization approach for constructing high-resolution urban population distribution
data using the random forest method. Ye et al. [30] utilized the random forest model and
integrated POI data and multi-source remote sensing data to map China’s 2010 popula-
tion data to 100 m grids. Liu et al. [31] integrated POI data and other multi-source data,
and used the random forest algorithm to conduct refined mapping of the population of
Zhengzhou City at three scales: 50 m, 300 m, and 500 m, achieving excellent spatialization
results. Taking the spatialization of population in Beijing as an example, He et al. [32]
compared and analyzed different methods, such as RF, MLR, XGBoost, support vector
machine (SVM), back propagation neural network (BPNN), and least absolute shrinkage
and selection operator (LASSO), and the results show that RF is superior to other methods.
The neural network is a mathematical model that emulates the structure and function of
biological neural networks, often used to model complex relationships between inputs
and outputs. Although neural networks have made initial attempts and achieved certain
effects in population spatialization, their interpretability is limited, and the generalization
of the model requires further testing and evaluation [33,34]. Additionally, methods based
on neural networks needs end-to-end mapping training, and obtaining population data
at a fine grid scale is challenging; this paper does not delve into a detailed exploration of
such methods.

There are publicly available population grid datasets, such as the Gridded Population
of the World (GPW) [35], Global Rural Urban Mapping Project (GRUMP) [36], Land-
Scan [37], WorldPop [38], etc. These population datasets are mainly created using areal
weighting method, intelligent interpolation method, random forest algorithm, etc. Since
these datasets simulate population distribution on the global scope, the modeling condi-
tions vary significantly in different regions, making it difficult to ensure model accuracy
in areas with complex environments [39]. Gunasekera et al. [40] found that LandScan
performs well in modeling urban population distribution but has lower reliability in rural
areas. Sabesan et al. [41] compared the differences between LandScan and GPWv3 datasets
in many regions and found that LandScan has a better ability to represent the heterogeneity
of population spatialization. Bai et al. [42] compared and analyzed the errors of GPWv3,
GRUMPv1, WorldPop, and China Specific Population Grid (CnPop) at the township scale.
The results show that the WorldPop dataset has the highest accuracy, but it also has large
errors in hilly areas such as the Hengduan Mountains.

In summary, the random forest algorithm can integrate multi-source geographic in-
formation data, effectively modeling the complex relationships between population data
and spatial distribution indicators, and perform population grid predictions at various
resolutions. However, the work of domestic and international scholars primarily focuses
on aspects such as multi-source data fusion during the random forest modeling process,
remote sensing data processing, and the generation of population datasets with different
resolutions. There has been limited exploration into the impact of different parameter opti-
mization methods within the random forest modeling process on population spatialization.
Furthermore, the publicly available datasets still require further improvements in accuracy
in certain regions.

Therefore, this paper will further enrich data sources, improve data quality, and
conduct population spatialization modeling research by combining multi-source remote
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sensing geographic information data and utilizing the currently prevalent random forest
algorithm. The primary focus of the article lies in the meticulous exploration of method-
ologies for refining and adjusting the parameters of the random forest model. Special
attention is given to scrutinizing the impact of various parameter optimization techniques
on the model’s accuracy. Subsequently, by combining cross-validation methods, the optimal
model parameters will be selected to enhance the model’s structure and improve predictive
accuracy. Finally, the population spatialization model is constructed based on optimal
parameters, and a spatial population distribution dataset of Sichuan Province at the 1 km
resolution is generated. At the same time, the dataset developed in this study is compared
with public datasets such as GPW, LandScan, and WorldPop for verification.

2. Study Area and Data
2.1. Study Area

Sichuan Province is located in the southwest of China, situated in the upper reaches of
the Yangtze River. It spans between 26◦03′ to 34◦19′ north latitude and 97◦21′ to 108◦12′

east longitude, bordered by seven provinces including Chongqing, Guizhou, Yunnan,
Tibet, Qinghai, Gansu, and Shaanxi. Sichuan Province exhibits significant differences in
its eastern and western topography, with a complex and diverse terrain characterized
by a west-high-east-low topographical feature. It encompasses mountains, hills, plains,
basins, and plateaus, covering a total area of 486,000 square kilometers. The province is
administratively divided into 21 prefecture-level administrative regions, 183 county-level
divisions, and 3101 township-level divisions. According to the Seventh National Population
Census of China, the permanent population of Sichuan Province in 2020 was 83.67 million,
ranking fifth in the nation in terms of total population. In recent years, Sichuan has
experienced rapid socio-economic development, but it has also faced frequent geological
disasters. This poses a significant challenge for urban management and emergency disaster
preparedness in densely populated areas. Therefore, this study selected Sichuan Province
as the study area (Figure 1).
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2.2. Data Preparation

Scholars have made many attempts and explorations to enrich data sources and
optimize data processing on population spatialization. The data sources mainly include
land use and land cover data [18], terrain data [43], vegetation index data [44], nighttime
light data [45], social perception big data such as point of interest (POI) [46], as well as
building height data [47]. The data sources show a trend of diversification and refinement.
The population spatialization-related data collected for this study primarily include the
population census data of Sichuan Province in 2020, basic geographic information data,
natural environmental data, building height data, nighttime light (NTL) data, and the social
perception data. The details and sources of the data used in this study are presented in
Table 1.

Table 1. The details of data used in this study.

Category Name Time Spatial Scale Format Source

(a) Demographic
data Census data 2020 county-level and

township-level Table (csv)

http://www.
citypopulation.de/

(accessed on 21 February
2022)

(b) Basic
geographic

information data

Administrative
boundaries data 2020 1:100 w Vector (Polygon)

https:
//www.webmap.cn/

(accessed on 19 October
2022)

Road network 2021 Version 1:100 w Vector (Polyline)

https:
//www.webmap.cn/

(accessed on 19 October
2022)

River network 2021 Version 1:100 w Vector (Polyline)

https:
//www.webmap.cn/

(accessed on 19 October
2022)

(c) Natural
environmental

data

ASTER GDEM v3 2000 30 m Raster
https://www.gscloud.cn/
(accessed on 23 October

2022)

Globeland 30 2020 30 m Raster
http://www.

globallandcover.com/
(accessed on 7 April 2022)

NDVI (Landsat 8) 2020 100 m Raster
https://www.usgs.gov/
(accessed on 20 October

2022)

(d) Building height
data

CNBH-10m 2020 10 m Raster https://zenodo.org/
(accessed on 6 June 2023)

(e) Nighttime light
(NTL) data

NPP-VIIRS v2.1 2020 500 m Raster

https:
//eogdata.mines.edu/
(accessed on 23 October

2022)

LJ-01 2019 130 m Raster
http://datasearch.hbeos.
org.cn:3000/ (accessed on

25 October 2022)

(f) Social
perception data

Point of interest
(POI) —— —— Vector (Point)

https://ditu.amap.com/
(accessed on 9 March

2022)

The demographic data is the seventh national census data in 2020, which mainly in-
cludes the population data of 183 county-level administrative divisions and the population
data for a partial township-level administrative division in Sichuan Province, totaling

http://www.citypopulation.de/
http://www.citypopulation.de/
https://www.webmap.cn/
https://www.webmap.cn/
https://www.webmap.cn/
https://www.webmap.cn/
https://www.webmap.cn/
https://www.webmap.cn/
https://www.gscloud.cn/
http://www.globallandcover.com/
http://www.globallandcover.com/
https://www.usgs.gov/
https://zenodo.org/
https://eogdata.mines.edu/
https://eogdata.mines.edu/
http://datasearch.hbeos.org.cn:3000/
http://datasearch.hbeos.org.cn:3000/
https://ditu.amap.com/
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2122 units. This data is primarily obtained from the official announcements released by
local governments regarding the Seventh National Population Census. Census agencies en-
sure the representativeness of the data through sampling and statistical methods, ensuring
that the data accurately reflects the characteristics and distribution of the entire population.

Basic geographic information data originates from the National Catalogue service
For Geographic Information (http://www.webmap.cn/ (accessed on 19 October 2022)). It
includes vector data for administrative boundaries, road networks, railway networks, and
water systems within Sichuan Province. The overall temporal reference for this dataset is
2019, using the 2000 National Geodetic Coordinate System and the 1985 National Elevation
Datum, expressed in latitude and longitude coordinates.

Natural environmental data primarily include elevation, slope data, land cover data,
and normalized vegetation index data of Sichuan Province. The elevation data is sourced
from the ASTER GDEM V3 product of the Geospatial Data Cloud (https://www.gscloud.cn/
(accessed on 23 October 2022)), and the slope data is calculated from elevation data. The
land cover data comes from GlobeLand30, which is the first 30 m global land cover data
product on the world developed by the National Geomatics Center of China. It mainly has
10 land cover types, such as cropland, forest, grassland, shrubland, wetland, water bodies,
tundra, artificial surfaces, bare land, glaciers, and permanent snow and ice. Normalized
vegetation index data is calculated using Landsat 8 SR data through the Google Earth
Engine platform.

Building height data is sourced from the CNBH dataset produced and released by the
GC3S team of the School of Life Sciences at Fudan University. This dataset has demonstrated
strong correlation between simulated results and actual building observations [48], making
it a crucial element in studying urban environments and population distribution.

Nighttime light data consists of the annual data products NPP-VIIRS V2.1 from the
Earth Observation Group of the National Centers for Environmental Information in the
United States, as well as data from the Luojia-01 satellite released by the High-Resolution
Earth Observation System Hubei Data and Application Network (http://www.hbeos.org.cn
(accessed on 25 October 2022)).

Social perception data is acquired through batch extraction of Points of Interest (POI)
using the application programming interface (API) provided by Amap (Amap is a mapping,
navigation, and location-based service provider). More than 3,340,000 records are obtained.
POI data typically includes information such as name, address, longitude, latitude, and
category. After data cleaning and filtering, 11 categories of POI data are selected as study
objects. The details of POI data used in this study are listed in Table 2.

Table 2. The details of POI categories.

NO. Reclassified Label Examples Quantity

1 poi_administration Authority, federation, committee, fire station, etc. 103,208
2 poi_company Factories, farms, bases, warehouses, business units, etc. 168,788
3 poi_education Kindergartens, schools, art institutions, conference centers, training institutions, etc. 73,534
4 poi_hospital Hospitals, pharmacies, health stations, emergency centers, clinics, etc. 107,438
5 poi_hotel Inns, hotels, apartments, villas, homestays, clubs, etc. 53,831
6 poi_lifestyle services Maintenance site, logistics distribution, beauty salon, service center, etc. 371,364
7 poi_residence Community, dormitory, villa, residential area, etc. 54,992
8 poi_restaurant Restaurant, restaurant, noodle shop, bakery, tea house, etc. 406,194
9 poi_scenery Ethnic areas, scenic spots, ancient towns, temples, resorts, old sites, squares, etc. 12,716
10 poi_shopping Supermarkets, shopping malls, specialty stores, building materials markets, hardware markets, etc. 921,792
11 poi_sportleisure Swimming pools, gymnasiums, clubs, gyms, theaters, living halls, etc. 60,976

3. Methods

This study is primarily divided into four parts, including data collection, data pro-
cessing, modeling and optimization, and validation, as shown in Figure 2. Firstly, data
was collected from various aspects such as remote sensing, natural environment, urban
construction, and social perception. These geospatial data often originate from different

http://www.webmap.cn/
https://www.gscloud.cn/
http://www.hbeos.org.cn
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sources and have varying resolutions. In order to unify the geographic reference infor-
mation during the modeling process and facilitate the sampling of features from different
layers at the same locations, operations such as calibration, projection, and resampling were
performed on these data. Additionally, to ensure that data features can be directly used
for spatial modeling, vector data needed to be transformed into quantifiable raster layer
information. Furthermore, by combining various feature selection methods, features that
more effectively capture the spatial distribution of the population were chosen as input data
for the model. Random Forest (RF) was chosen as the modeling method. Simultaneously,
various optimization algorithms like random search, grid search, genetic algorithm, simu-
lated annealing, and Bayesian optimization were applied to optimize the model parameters,
aiming to build the best model. Finally, using the random forest model with optimized
parameters, we predicted and modeled the spatial distribution of the population in Sichuan
Province for the year 2020. We obtained the population spatialization dataset with 1 km
resolution. Subsequently, the obtained population grid dataset was compared with GPW,
LandScan, and WorldPop at the township scale for analysis and accuracy verification.
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3.1. Data Processing
3.1.1. Geographical Information Data Processing

Due to the differences in data sources, spatial resolutions, and projection coordinates,
preprocessing operations are applied to all data in order to mitigate the impact of different
image resolutions and coordinate references on modeling. These operations mainly include
following aspects. (1) Unified Coordinate System: To ensure consistent area preservation
during calculations, all data are transformed into the Asia North Albers Equal Area Conic
projection coordinate system. (2) Unified Spatial Resolution: For data with spatial reso-
lutions smaller than 1 km, bilinear interpolation is employed to up sample the data to a
1 km resolution.

In order to transform vector data into quantifiable and meaningful spatial features, we
perform density calculations on traffic network data and water system data. Through these
operations, we obtain the aggregation degree of traffic and water systems in the kilometer
grid [30] (in this article, represented as D_railway, D_Road, and D_Hydrological). The
specific calculations are as follows:

Di =
Li
Si

(1)

In Formula (1), Di is the network density of line vector data in region i, Li is the sum
of the length of line data in region i, and Si is the land area of region i.

Normalized Vegetation Index (NDVI) data is calculated based on the Google Earth
Engine (GEE) platform. It involves computing the NDVI index for each time period using
all Landsat 8 Surface Reflectance (SR) data from the year 2020. The annual maximum
NDVI is derived using the Maximum Value Composite method [49], and this parameter is
employed to describe the vegetation coverage in Sichuan Province.

NDVImax = MAX(NDVI1, NDVI2, NDVI3, . . . , NDVIn), (2)

NDVImax is the maximum NDVI value of the pixel, and NDVIn indicates the NDVI
value at the same pixel on the nth NDVI image of the year 2020.

3.1.2. Nighttime Light Data Processing

Although obtaining nighttime light data is relatively convenient, accurate reflection
of human activity requires data correction and extraction. The following operations were
carried out in this study.

1. Radiometric Correction

Since the acquired NPP-VIIRS data is a pre-processed annual composite product
(Annual VNL V2.1), there is no need for additional radiometric correction. However, the
obtained Loujia-01 data is recorded as the gray value of the pixel, lacking a direct physical
interpretation. Therefore, it needs to be corrected using the radiance conversion formula to
address radiometric distortion errors.

L = DN
3
2 × 10−10, (3)

where L represents the radiance value after absolute radiometric correction, measured in
W/(m2·sr·µm).

2. Background Noise and Abnormal Value Correction

Nighttime light anomalies refer to pixels with abnormally high brightness values. In
this study, NPP-VIIRS data and Loujia-01 data were processed using threshold extraction
and median filtering. Threshold extraction is using nighttime light image pixel values
collected in the most economically developed region of the study area as the maximum
DN value; other bigger pixel values are anomalies caused by phenomena like fishing lights.
Additionally, zero is set as the minimum value in the study area, and the negative values
are removed. Since Chengdu city is the most economically developed city in Sichuan,
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we extract the maximum value of nighttime light data from Chengdu as the maximum
threshold. Median filtering is a common denoising technique in image processing. It
replaces the pixel value with the median value of the adjacent pixels. The method is
achieved through template traversal and is effective in removing isolated noise points
from images.

3. Stable Light Source Extraction

Due to the lack of filtering and removal of volcanic activity-related background noise
in NPP-VIIRS data, Loujia-01 data presents a more stable signal. Given that stable light
sources between neighboring years do not exhibit significant variations, the calibrated
2019 Loujia-01 nighttime light data was used as a reference standard to correct the unstable
light sources in the 2020 NPP-VIIRS data. Based on the assumption that both the 2019
Loujia-01 and 2020 NPP-VIIRS data share the same light generation areas, a mask is created
by extracting pixels with non-zero DN values from Loujia-01. The data outside this mask
in the NPP-VIIRS dataset is set to 0, effectively treating it as unstable nighttime light [50].

3.1.3. POI Data Processing

POI is discrete point data, which cannot be directly used in the population spatial-
ization model. It is necessary to transform discrete data into a continuous density image.
Kernel density analysis is a density analysis method based on the first law of geography,
which considers spatial variations and reflects the characteristic of feature center intensity
decay with distance. In this method, points closer to the center are assigned higher weights,
while those farther away receive lower weights. The estimated density for each point is
the weighted average density of all points in that region. In kernel density calculations,
the choice of kernel function and bandwidth significantly impacts the results of kernel
density analysis. We utilize the kernel density analysis tool in ArcGIS 10.7 to analyze
11 categories of POI data. The selected kernel function is the quartic kernel function, as
shown in Equation (4). This function is relatively smooth. The surface value is highest at the
location of the point and diminishes with increasing distance from the point, reaching zero
at the Search radius distance from the point. Compared to the Gaussian kernel function, it
has a faster convergence rate. Bandwidth calculation is determined through Equation (5),
which avoids the “ring around the points” phenomenon that often occurred with sparse
datasets. Ultimately, density maps for the 11 categories of POI data are generated with a
resolution of 1 km.

Density =
1

(Radius)2 ∑n
i=1

 3
π

pi

(
1 −

(
disti

Radius

)2
)2
 (4)

Radius = 0.9 ∗ min

(
SD,

√
1

ln 2
∗ Dm

)
∗ n−0.2, (5)

Here, i = 1, . . ., n is the number of input points. Only include points in the sum if
they are within the radius distance of the (x, y) location. Radius is the search radius. pi is
the population field value of point i, which is an optional parameter. disti is the distance
between point i and the (x, y) position. SD is the standard distance. Dm is the median
distance. n is the sum of the population field values.

3.2. Feature Selection

In this study, five types of auxiliary feature variables, including nighttime lights,
natural environment, basic geographic information, social perception information, and
building height data, were preprocessed to obtain 31 quantifiable grid statistical features.
These features were then subjected to partitioned statistics at the county level administrative
units. The density values of the auxiliary feature variables were obtained by combining the
area information of the county-level administrative units. Simultaneously, by organizing the
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data collected from the seventh population census, population information was aggregated
at the county level to derive total population and average population density. In this
context, the Pearson correlation coefficient method was employed to select one variable
with higher correlation with auxiliary information as the target variable.

After collecting and preprocessing, the feature data exhibited a diverse range, with
some remaining correlations and redundancies among the data. Bringing all features into a
spatial model would increase the model’s complexity and computational load. Feature se-
lection helps reduce irrelevant features and improve algorithm performance [51]. Therefore,
in this study, various feature selection techniques were explored from different perspectives,
including the well-known Pearson correlation coefficient method, variance threshold selec-
tion method, ReliefF feature selection method, and recursive feature elimination method.
These techniques were used to identify the most suitable features as modeling factors.

3.2.1. Pearson Correlation Coefficient Method

The Pearson correlation coefficient is a statistical method used to measure the strength
and direction of the linear relationship between two variables. In feature selection, the
Pearson correlation coefficient can be employed to assess the correlation between each
feature and the target variable. The goal of feature selection is to choose the most relevant
or important features from the original feature set to enhance model performance, reduce
dimensionality, and mitigate the risk of overfitting. Mao et al. [52] employed the Pearson
correlation coefficient (PCC) to select Points of Interest (POI) information, considering
values with an absolute correlation coefficient greater than 0.5 as indicators of social factors
influencing Residential Population (RPI). Lu et al. [53] utilized the Pearson correlation
coefficient (PCC) to assess the correlation between Numerical Weather Prediction (NWP)
variables and wind power. They selected NWP features with PCC values greater than 0.5 to
predict future wind power.

3.2.2. Variance Threshold Method

The variance threshold method involves feature selection through removing features
with low variance in the dataset. When constructing a model, if a feature has low variance,
it indicates limited variability, and its contribution to the model is minimal. This suggests
that the impact on model performance can be negligible. Therefore, low-variance filtering
methods can be used to eliminate such features. Wang et al. [47] applied the low-variance
filtering feature selection method to choose 30 features from a multidimensional feature
library as auxiliary data for spatializing population.

3.2.3. ReliefF Method

In 1994, Kononeill extended the Relief algorithm, resulting in the ReliefF algorithm
designed to address regression problems with target attributes as continuous values [54].
The ReliefF algorithm is a type of feature weighting algorithm that assigns higher weights
to features highly correlated with the target variable. Features with weights below a certain
threshold are removed.

3.2.4. Recursive Feature Elimination Method

Recursive Feature Elimination (RFE) is a method of feature selection that involves
recursively removing features with minimal contribution to the model. It is a classical wrap-
per method that considers interactions between features and assesses feature importance
by constructing models [55].

3.3. Random Forest Model Construction and Parameters Optimization
3.3.1. Model Construction

The random forest algorithm is a machine learning technique that involves training
and predicting with numerous decision trees collectively. It is primarily based on bagging
ensemble learning theory, where decision trees are constructed by randomly drawing
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an equivalent training sample with replacement from the sample set. The algorithm
employs a random subspace method to select a subset of features from the entire feature set
and chooses the optimal features to split the nodes of the decision tree. The final result is
determined collectively with multiple independent decision trees. This approach effectively
constructs complex nonlinear relationships between population data and geo graphical
factors. These random selection processes ensure better feature acquisition, improving
model robustness and preventing overfitting. Additionally, due to the independence
between decision trees, they can be generated in parallel during the tree-building process,
enhancing the efficiency of the algorithm.

We constructed the population spatialization prediction model based on random
forest algorithm using the Python language and the Scikit-learn open-source library. A
sample dataset comprising 183 county-level administrative units of Sichuan Province will
be used as the training sample. A total of 27 highly correlated features are selected as
independent variables, while population data of county-level administrative units are used
as the dependent variable. In total, 80% of the samples are used as training data, and the
remaining 20% constitute the validation samples. The dataset is divided with fixed random
numbers to ensure the randomness of dataset division and the replicability of experiments.

3.3.2. Model Parameter Optimization

The key parameters in random forest modeling are shown in Table 3. Different
parameter combinations have a significant impact on the performance of the random
forest model. Therefore, adjusting the parameters of the random forest algorithm is the
key step to optimizing model performance. In this paper, we compare and analyze the
methods of model parameter optimization, including random search, grid search, genetic
algorithm, simulated annealing, Bayesian optimization based on Gaussian process, and
Bayesian optimization based on gradient boosting regression trees. The R2_score is used to
assess the fitness of each decision tree, serving as a critical indicator of the overall model
fitting performance.

Table 3. Key parameters of the random forest model.

Parameter Function

n_estimators The number of decision trees in the forest. Increasing the value of this parameter can enhance the model’s
accuracy and robustness. However, it can also increase the computation time and memory usage.

max_depth
The maximum depth of each decision tree, which controls the complexity of the model and the risk of

overfitting. If the depth of the tree is too large, the model might overfit. If it’s too small, the model
might underfit.

max_features
The number of features randomly chosen at each node, which can make the model more randomized
and reduce the risk of overfitting when increased. However, it might also decrease the accuracy of the

model prediction.

min_samples_split The minimum number of samples required to continue splitting at each node, which can prevent
overfitting by increasing its value. But this might reduce the sensitivity of the model.

min_samples_leaf The minimum number of samples required in each leaf node, which can prevent overfitting. Increasing
this value can stabilize the model, but it might affect the sensitivity of the model.

In the process of random forest construction, it is common to utilize methods like
random search and grid search to select parameters such as the depth of decision trees, the
number of leaf nodes in each tree, and the number of nodes for splitting in each tree. The
random search is a method to randomly select parameter combinations in the parameter
space, allowing for exploration of a larger parameter space. While it efficiently explores
different combinations, it may require more iterations to find the optimal parameter combi-
nation. Grid search systematically traverses the parameter space by training and evaluating
the model for each possible parameter combination. It ensures comprehensive parameter
space exploration but might face computational resource challenges, particularly in large
parameter spaces.
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Genetic algorithm is an optimization algorithm inspired by natural selection and
genetic mechanisms. It simulates the genetic process in biological evolution, searching the
solution space of the problem through genetic operations. Genetic algorithm possesses
global search capabilities, allowing for extensive exploration within the solution space. By
employing crossover and mutation operations on multiple individuals within populations,
genetic algorithms can escape local optima and strive to find the global optimum. Simulated
annealing algorithm is derived from the physical process of annealing in solids. The idea
comes from the fact that in solid-state annealing, gradually lowering the temperature allows
atoms to move towards an equilibrium state, resulting in the optimal crystalline structure.
This method avoids falling into local optimal solutions by accepting suboptimal solutions
with a certain probability in the search space.

Bayesian optimization is a method of optimizing black-box functions by building
models, suitable for scenarios, where minimizing or maximizing an objective function
is challenging or unknown. We compare two Bayesian optimization algorithms; one is
based on Gaussian process (GP) modeling and the other is based on gradient boosting
regression trees (GBRT). Gaussian Process is a probabilistic model assuming that the
objective function is a continuous and smooth function, estimating the distribution of the
objective function across the entire parameter space based on available data points. GBRT
is an ensemble learning method that combines multiple decision trees to model the target
function. It iteratively fits the model and optimizes the loss function to improve predictive
performance. Both methods optimize iteratively, updating models based on feedback from
the objective function at each iteration, and find the optimal solution within a limited
number of iterations. However, their strategies for selecting the next sampling point differ
slightly. We compare these two strategies and ultimately choose the most suitable approach
for modeling. Compared to traditional grid search and random search methods, Bayesian
optimization is more efficient, especially in high-dimensional parameter spaces, allowing it
to find the optimal solution more quickly. Compared with genetic algorithm and simulated
annealing, Bayesian optimization can model and infer uncertainties using prior information
and posterior probabilities, and have better ability to handle noise and uncertainty cases.
Furthermore, this method can quickly find the global optimal solution without manually
setting parameters.

In the process of parameter optimization, this paper takes into account the complexity
of the research and the size of the sample set, and sets the parameters for the above-
mentioned parameter optimization methods based on empirical adjustment. Among them,
the range of hyperparameters for the random forest is constrained as shown in Table 4.

Table 4. The range of random forest hyperparameters.

Parameter Min Max

n_estimators 100 500
max_depth 3 27

max_features 1 27
min_samples_split 2 15
min_samples_leaf 1 10

Cross-validation is a method for evaluating model performance. It involves repeatedly
splitting the dataset into different training and testing sets, training and testing the model
multiple times, and obtaining scores for the model on different dataset splits. This approach
ensures that all data is thoroughly used for training and testing, helps understand how the
model handles different data subsets, effectively prevents overfitting [56], and improves
the accuracy and stability of the model.

Specifically, parameter selection is performed according to the following steps:

(a) Data Splitting: We partition the training dataset into 5 independent and equally sized
subsets, referred to as “folds,” and no replacement is made.
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(b) Model Training and Validation: In each training round, we perform 5 iterations, where
in each iteration, 4 of the folds are chosen, and we combine them with parameter
optimization methods to train the model. The remaining 1 fold is used as the valida-
tion set, and we calculate the R2_score to evaluate the model produced during this
training session. After 5 iterations, we obtain 5 performance evaluation metrics.

(c) Model Evaluation: We compute the average of the performance metrics from all
5 iterations and use it as the performance metric for that round of model training.

In the end, we select the optimal parameter set obtained through cross-validation
evaluation in each method’s training to construct the population spatialization model.

3.4. Population Spatialization

We collect the feature values of all variables of each grid and create a 1 km grid dataset
with multidimensional attribute features. Then, we utilize the parameter optimized random
forest model to predict population spatialization, generating the estimated population
weight value of each grid. Finally, Equation (6) is employed to calculate the population
within each grid.

Pop2020ij =
Preij

∑n
j=1 Preij

× countyi , (6)

In Formula (6), Pop2020ij represents the final predicted population in grid j of county i,
Preij is the predicted value obtained by random forest model for grid j in county i, Countyi
is the total resident population of the county i in the seventh population census, and n is
the total number of grids in the county i.

4. Results
4.1. Feature Selection Results

This study employs Pearson correlation coefficient to assess the linear correlation
between each feature and the target variable. Specifically, by calculating the Pearson
correlation coefficient between each feature and the target variable, the absolute value of
the coefficient is used as a measure of feature importance. A value close to 1 indicates a
strong correlation, while a value close to 0 suggests almost no correlation. This approach
is utilized to select features that are most correlated with the target variable. The study
ultimately presents the correlation between different population information and various
auxiliary feature variables, including Pearson correlation coefficients and significance levels,
in the form of a heatmap, as shown in Figure 3a.

Through the comprehensive analysis of the correlation between population informa-
tion and feature variables, population density exhibits higher correlation compared to total
population. Therefore, population density is selected as the target variable for modeling.
Additionally, Points of Interest (POI) data, terrain characteristics, nighttime lights data,
building height data, and transportation and water system data show strong correlations
with population density, with p-values less than 0.001, indicating statistical significance
and suitability for model construction.

According to the variance threshold selection method, Figure 3b is obtained by calcu-
lating the variance of each feature in the dataset. From the figure, it is evident that wetland
has low variability in the dataset, providing limited information to the model. Therefore, it
may be considered for removal during the modeling process.

Based on the ReliefF algorithm, Figure 3c is obtained by assessing the degree of
correlation between features and the importance of each feature to the target variable,
population density. The figure reveals that shrubland, waterbodies, bareland, grassland,
permanent snow and ice, and dem have the lowest weights and importance levels with
respect to the target variable. These features can be considered for removal.

Utilizing the recursive feature elimination method with a random forest regression
model as the feature selection estimator, Figure 3d shows the ranking of feature importance
obtained through iterative calculations. Among them, shrubland, wetland, bareland, and
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permanent snow and ice exhibit the lowest feature importance and may be considered for
removal during modeling.

Considering the results from various feature selection methods, the study decides to
remove the features shrubland, wetland, bareland, and permanent snow and ice from the
land cover data. The remaining 27 features are selected as auxiliary data for spatializing
population modeling.
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4.2. Parameter Optimization Results

This article combines the cross-validation method to improve the performance and
generalization ability of the model, and compares and analyzes the effects of the above
six different parameter adjustment methods on the parameter optimization of the random
forest regression model. The following figures illustrate the process of combining the six
parameter optimization methods with five-fold cross-validation to determine the optimal
parameters. The color aggregation of parameter values in the parallel coordinate plot
reflects the tendencies in constructing the score of the random forest model during modeling.
It can be observed that n_estimators, max_depth, max_features, and min_samples_split do
not exhibit obvious regulations or trends within their specified value ranges. The colors of
the connecting lines between these parameters are evenly distributed, indicating that these
four parameters do not display any specific patterns in the optimization of the random
forest regression model. As for min_samples_leaf, when the parameter is less than 3,
the color of the lines approaches yellow, indicating that the constructed random forest
regression model exhibits better fitting performance in this range of parameter values.

In the parallel coordinate plot, lines connecting model parameters that are closer to
yellow indicate higher R2_score values, suggesting better fitting performance of models
composed of those parameter combinations. Lines with colors closer to deep green indicate
lower fitting scores, indicating poorer model fitting. When the color approaches dark blue,
the fitting score of the model is negative, indicating that the model constructed with this
set of parameters has no practical significance. The overall color presentation of the figures
demonstrates the efficiency of the corresponding parameter optimization methods.

Specifically, for tuning methods based on random search, grid search, and simulated
annealing, as shown in Figures 4–6 the lines exhibit a predominantly green color, with
numerous and dispersed patterns. This indicates that the majority of models resulting
from these tuning methods have poor fitting performance and lower tuning efficiency.
Additionally, for tuning methods based on genetic algorithms and Bayesian optimization,
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as depicted in Figures 7–9, the lines have an overall yellowish color, indicating better
fitting performance and a higher efficiency in parameter optimization. This is conducive to
selecting parameter combinations that yield more effective modeling results.
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The optimal parameter results obtained by the six parameter tuning algorithms for
random forest models on the training set are summarized in Table 5.
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Table 5. Results of different parameter optimization methods on the training set.

n_Estimators Max_Features Max_Depth Min_Samples_Split Min_Samples_Leaf R2_Score

Random search 267 3 14 2 1 0.9690
Grid search 150 5 15 2 1 0.9707

Genetic algorithm 211 6 11 2 1 0.9444
Simulated annealing algorithm 153 3 21 4 1 0.9619
Bayesian optimization based on

Gaussian process 100 3 23 2 1 0.9699

Bayesian optimization based on
gradient boosting regression

trees
102 3 17 2 1 0.9701

4.3. Model Accuracy Validation

This paper utilizes the remaining 20% of the sample data as a validation set and
employs Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Coefficient
of Determination (R2) as evaluation metrics to assess the accuracy of the optimal models
constructed using different tuning methods. Specifically, RMSE is commonly used to
measure the proximity between the predicted values and the actual values. A smaller
RMSE value indicates more accurate predictions by the model. MAE is the average of
the absolute differences between predicted values and actual values, commonly used to
measure the average magnitude of errors in model predictions. R2 can be used to measure
how well a model explains the target variable. Its values range from 0 to 1. The closer it
is to 1, the better the explanation degree of the model. The formula of each indicator is
as follows:

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2, (7)

MAE =
1
n∑n

i=1|yi − ŷi|, (8)

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 , (9)

In Formulas (7)–(9), yi is the true value, ŷi is the predicted value, y is the average of
the true values, and n is the total number of samples.

The results are summarized in Table 6, revealing that the model obtained through
Bayesian optimization algorithm based on Gaussian processes exhibits the highest R2

and the lowest RMSE, with values of 0.936 and 116.034 million people per square kilo-
meter, respectively. Meanwhile, the Bayesian optimization algorithm based on gradient
boosting regression trees achieves the lowest MAE; its value is 76.403 million people per
square kilometer.

Table 6. Accuracy validation results of RF model based on different optimization methods.

Tuning Method R2 MAE RMSE

Random search 0.9209 84.6478 129.2998
Grid search 0.9151 85.6674 133.9270

Genetic algorithm 0.9027 93.4762 143.3880
simulated annealing

algorithm 0.9295 80.8391 122.0234

Bayesian optimization based on Gaussian process 0.9363 76.4410 116.0342
Bayesian optimization based on gradient boosting regression trees 0.9361 76.4304 116.1700

In order to analyze the accuracy of the models and the distribution of errors, we
performed fitting regression analysis and error statistics on the model prediction results
and the real values. The outcomes are depicted as scatter plots of predicted vs. actual
values and histograms of errors distribution, as shown in Figures 10–15. In the scatter plots,
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blue points represent the errors between predicted and actual values, with darker colors
indicating smaller errors. The blue solid line is the regression line fitted through points
composed of predicted and actual values, and the red dashed line is the ideal regression
line when predicted and actual values are equal. The deviation between the blue and red
lines signifies the discrepancy between the predictive model and actual values.
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From Figures 10–15, it can be observed that, in the low-density region, the predictions
of population density by all six methods are relatively close to the true values compared
to the high-density region, with smaller absolute errors. Overall, the scatter points in the
graphs are evenly distributed on both sides of the line, indicating the reliability of the
model’s accuracy. From the regression fitted line, it can be observed that the blue solid line
and the red dashed line obtained from Bayesian optimization methods (Figures 14 and 15)
are closer to the other methods. This indicates that these two Bayesian optimization meth-
ods have smaller deviations from the true values, suggesting better predictive capabilities.

In the error distribution histograms, the horizontal axis displays the range of model
errors, where a larger numerical range indicates a greater deviation in model prediction.
The vertical axis represents the number of the prediction error. The majority of the errors of
the model predicted based on the six mentioned optimization methods are concentrated
around zero. It indicates that random forest models have good prediction accuracy and
stable prediction ability. From Figures 10–12, it can be seen that the models optimized with
random search, grid search, and genetic algorithms have a wider prediction error range. The
model optimized with these methods have relatively unstable prediction capabilities, and
there may be large prediction errors in individual counties. From Figures 13–15, it can be
observed that the models optimized with simulated annealing, Bayesian optimization based
on Gaussian process, and Bayesian optimization based on gradient boosting regression
trees have narrower horizontal ranges, implying smaller prediction error ranges and more
stable prediction capabilities.

In conclusion, models constructed using parameters from the Bayesian optimiza-
tion method exhibit higher coefficients of determination and smaller average errors, in-
dicating better fitting performance and accuracy. This indicates that the Bayesian opti-
mization algorithm is superior to commonly used methods for selecting random forest
modeling parameters.

4.4. Population Spatialization Result Validation and Error Analysis

In this study, we use the random forest regression model obtained with the Bayesian
optimization based on gradient boosting regression to spatialize the population of Sichuan
Province in 2020, and obtain a 1 km grid population distribution map of Sichuan Province
(Figure 16). From the map, it is evident that the population in Sichuan Province is primarily
concentrated in the eastern Chengdu Plain and various urban centers. There is a noticeable
trend of population density decreasing gradually from the urban centers towards the
surrounding areas. In the western Qinghai-Tibet Plateau region, the population is sparse,
with only a few areas having small populations. This distribution aligns closely with the
actual population distribution in Sichuan Province. This indicates that the population
spatialization model proposed in this article is effective.

This study’s population spatialization model was trained using county-level adminis-
trative population census data. In order to validate the accuracy of population distribution
at smaller spatial scales after gridification, we selected the seventh national population
census data at the township level, which is smaller than the county-level administrative
division, as the validation dataset. We also conducted an analysis of areas with significant
errors to provide insights for future research. Due to limited access to township-level
census data, we collected population data for 2122 townships and streets. In areas where
population census data was missing, we used gridded population data as a base map.
Then, we count the populations of the 2122 townships based on the RF-BOA Population
Map, and compare them with the data collected from the seventh national population
census. The evaluation of the results was conducted using the Relative Error (RE), which
was calculated using Formulas (10) and (11) below. The error distribution chart was also
created, as depicted in Figure 17.

E = Poppred − Poptrue, (10)
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RE =
E

Poptrue
(11)

In Formulas (10) and (11), Poppred is the predicted population of townships obtained
in this study, Poptrue corresponds to the actual population of townships obtained from
the population census, and E is the difference between the predicted population and the
actual population.
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Figure 17 illustrates the spatial distribution of relative errors in the population dataset
for Sichuan Province created in this study. As depicted in the figure, the relative errors in the
population distribution of around 70% of townships and streets are relatively small, while
approximately 3% of townships and streets exhibit larger errors. These larger errors are
scattered across the region and do not exhibit a specific spatial pattern. This phenomenon
suggests that the gridding model proposed in this paper has a strong spatialization capa-
bility at the township level, accurately capturing population distribution. The model is
effective in fine-grained population distribution.
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To further investigate the causes of prediction errors in the model, the article selected
two townships (Shenguozhuang Township and Renli Town) with the highest relative errors
as validation areas. The relative error of population distribution in townships and streets
in the verification area was analyzed combined with land cover data, satellite images
of Google Maps in 2020, and POI data. Figure 17a,b show that both townships have a
predominant land cover of shrubland, forests, and cultivated land, with a high vegetation
cover. The satellite imagery reveals minimal human activities, such as building structures,
road networks, transportation, and public facilities. Only Renli Town has a few POI data
points. In summary, in the areas with larger prediction discrepancies, there is a high
level of vegetation cover, sparse identifiable housing from Google imagery, and a lack of
information on transportation networks and Points of Interest. Additionally, the nightlight
data may have limited indicative value for rural areas. Therefore, predicting population in
rural areas is more challenging compared to regions with more distinct and comprehensive
features. In future research, supplementary data from various sources should be explored
to obtain finer-scale population indicators for rural areas, allowing for a multi-dimensional
and multi-scale characterization of rural populations.

5. Discussion
5.1. Feature Importance Analysis

Feature importance analysis can be used to explain the predictions of machine learning
models and provides a deeper understanding, helping to comprehend the importance of
features in the model, enhancing its interpretability and trustworthiness. SHAP (SHapley
Additive exPlanations) is a method for explaining machine learning model predictions
based on the concept of cooperative game theory [57]. It is used to analyze the impact of
each feature on the model’s predictions. The main idea behind SHAP feature importance
analysis is to explain the model’s output based on the contributions of each feature, and the
allocation of contributions is influenced by the interactions between features. The SHAP
values take into account the impact of a feature on the model output when combined
with other features, providing a fair way to allocate the contribution of each feature to the
model predictions. For each sample and each feature, SHAP values can explain how much
influence that feature has on the prediction output for that sample [58]. A positive value
indicates an increase in the predicted value, while a negative value indicates a decrease.
The SHAP feature importance estimates for a random forest regression model obtained
through Bayesian optimization with gradient boosting trees are shown in Figure 18.

From Figure 18, it can be observed that the SHAP importance of data related to POI,
such as shopping centers, hospitals, schools, companies, government institutions, as well
as data on life services, building heights, median nighttime lighting, and artificial land
surface in land cover, all rank in the top ten for the random forest regression model’s
feature importance. This indicates that these mentioned features play an important role in
revealing spatial population distribution. Among these, POI data holds a particularly high
percentage, and these points of interest are closely related to people’s daily lives. As urban
development progresses, people’s daily life needs are increasing, and the development of
services, daily activities, and residential areas is closely tied to the spatial distribution of the
population. Therefore, the distribution of geographic points of interest largely determines
the spatial distribution of the population. Regarding building height data, with each grid
having the same area size, the pixel values representing building heights determine the
volume capacity of buildings, reflecting their ability to accommodate people per unit area.
Places where the building capacity is larger tend to have larger populations, so building
height is a good indicator of population distribution. Nighttime light data reflects human
economic activity during the night. Economically developed areas usually host larger
populations, which also proves the ability of nighttime light data to indicate population
distribution. Human-made surface of land cover represents surfaces formed through
human activities, including various human settlements, industrial areas, transportation
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facilities, etc. These are closely tied to human activities and tend to better reflect human
population than other types of land cover.
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As urban development progresses, the need for daily life amenities increases, and the
construction of life services is closely related to the spatial distribution of population. In
Sichuan Province, the administrative units consistently influence the distribution of urban
centers. Therefore, the shopping centers and administrative institutions in geographic POI
to some extent determine the spatial distribution of the population. However, features like
water bodies, grassland and forest of land cover, elevation and slope features of terrain,
and railway density and road density features of geographic basic information exhibit the
lowest importance in modeling. This shows that these factors have weak ability to indicate
population information in Sichuan Province. Although Sichuan Province has complex
topography, its natural geographical variations are quite distinct. The majority of the region
experiences a warm and humid climate, with relatively minor differences in infrastructure
development. This may result in features such as water bodies, farmland, terrain elements,
and transportation networks having a limited impact on population distribution. Therefore,
during the modeling process, these factors did not exhibit strong indicative roles.

In conclusion, features related to Points of Interest, nighttime light, and socioeconomic
factors such as building height have a more significant impact on the spatial distribution of
population compared to environmental features like terrain. These features more accurately
reflect human activities and presence.

5.2. Comparison with Other Datasets

The WorldPop dataset, LandScan dataset, and Gridded Population of the World (GPW)
dataset are widely used global population datasets. The WorldPop dataset is developed
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by the University of Florida, based on population census data, nighttime light data, and
land use data, and employs the random forest model for population spatialization. The
LandScan dataset is developed by Oak Ridge National Laboratory and primarily based
on population census data, remote sensing imagery, and geographic information data.
This dataset mainly employs the Dasymetric method to estimate population distribution.
The GPW dataset is developed by the Center for International Earth Science Information
Network (CIESIN) at Columbia University. It spatializes global population statistical data
using areal weighting methods. We assess the dataset generated in this study, comparing it
with WorldPop dataset, LandScan dataset and GPW dataset at an equivalent resolution.
We compared the 2020 Sichuan Province population data generated in this article with the
above-mentioned data sets under the same resolution conditions.

The accuracy evaluation results are presented in Table 7. It can be observed that the
RF-BOA model achieves the highest coefficient of determination (R2) fitted with the true
values, reaching a value of 0.6628. It surpasses the R2 of the other datasets. Additionally,
the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are smaller for
RF-BOA compared to LandScan, GPW, and WorldPop, with MAE and RMSE values of
12,459 people per township and 25,037 people per township, respectively.

Table 7. Accuracy assessment.

R2 MAE RMSE

LandScan 0.3915 17,805.7163 33,634.8154
GPW 0.5384 13,401.9731 29,293.9095

WorldPop 0.6094 12,707.6707 26,947.1740
RF-BOA 0.6628 12,459.3926 25,037.1139

6. Conclusions

Population data, as a fundamental dataset capable of reflecting the socio-economic
conditions of a region, can provide important information for regional resource allocation,
disaster prevention, and emergency management. With the proliferation of grid-based
research and applications, traditional methods are no longer sufficient to meet the spatial
data accuracy requirements in this field. Therefore, it is necessary to spatially grid pop-
ulation statistics at the county, city, and national levels to obtain population distribution
information at the kilometer grid level or even higher spatial resolutions.

In this article, we explored and conducted research on population spatialization from
two aspects: data enhancement and model parameter optimization. In terms of data,
we incorporated innovative social perception data, such as Points of Interest (POI), and
high-precision building height data as auxiliary data. Additionally, we further processed
and corrected data, such as nighttime light data, to enhance the quality of auxiliary data.
Meanwhile, the feature importance analysis results indicated that high-precision socio-
economic data plays a crucial role in the population spatialization.

In terms of model construction, numerous researchers have explored various meth-
ods, but there has been relatively little research on model parameter tuning. Hence, this
article placed a special focus on the optimization of model parameters. To ensure model
interpretability, we chose the popular Random Forest algorithm as the base model and
investigated the impact of six different parameter optimization methods on model per-
formance. The results demonstrated that Bayesian optimization algorithms significantly
improved model parameter optimization, effectively enhancing model accuracy.

In the end, this article takes Sichuan Province as an example and constructs a spatial
population distribution dataset at 1 km resolution based on the best parameters. It has been
validated against township-level population census data and is found to closely match
real-world conditions, demonstrating the effectiveness of the model. When compared to
other international open-source datasets, the dataset created in this article better aligns
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with the actual population distribution at the township level, exhibiting higher accuracy
and showcasing the advantages of the modeling approach.

In conclusion, the population spatialization model constructed using the method
proposed in this paper effectively predicts population distribution. It can provide detailed
population spatialization information for urban planning and natural disaster prevention
and control, enabling more rational resource allocation and efficient disaster response.
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