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Abstract: Infrared small target detection (IRSTD) is crucial for applications in security surveillance,
unmanned aerial vehicle identification, military reconnaissance, and other fields. However, small
targets often suffer from resolution limitations, background complexity, etc., in infrared images, which
poses a great challenge to IRSTD, especially due to the noise interference and the presence of tiny, low-
luminance targets. In this paper, we propose a novel dual enhancement network (DENet) to suppress
background noise and enhance dim small targets. Specifically, to address the problem of complex
backgrounds in infrared images, we have designed the residual sparse enhancement (RSE) module,
which sparsely propagates a number of representative pixels between any adjacent feature pyramid
layers instead of a simple summation. To handle the problem of infrared targets being extremely dim
and small, we have developed a spatial attention enhancement (SAE) module to adaptively enhance
and highlight the features of dim small targets. In addition, we evaluated the effectiveness of the
modules in the DENet model through ablation experiments. Extensive experiments on three public
infrared datasets demonstrated that our approach can greatly enhance dim small targets, where
the average values of intersection over union (IoU), probability of detection (Pd), and false alarm
rate (Fa) reached up to 77.33%, 97.30%, and 9.299%, demonstrating a performance superior to the
state-of-the-art IRSTD method.

Keywords: infrared image; small target detection; sparse semantic propagation; spatial attention;
feature enhancement

1. Introduction

Infrared imaging technology provides excellent concealment, good portability, and re-
liable detection of blind areas compared to radar imaging [1–3]. Compared to visible
light imaging, infrared imaging technology offers numerous advantages. First of all, it
uses infrared sensors for its strong night vision, which detects heat radiated by the target
and considerably helps with night operations and search missions in dark areas. Second,
even under low light conditions, infrared imaging can clearly see through atmospheric
obstructions like smoke, fog, and clouds. However, infrared targets usually seem very
small, often as small as one pixel in size, due to factors like lengthy imaging distances, air
dispersion, and flash noise. Therefore, the detection of small targets in infrared images
has become an important research direction, i.e., infrared small target detection (IRSTD).
IRSTD has significant advantages in scientific research and military applications, including
military early warning [4], missile tracking systems [5], and maritime surveillance [6]. Lack
of information such as colour, shape, and texture makes IRSTD more complex, further
making it a highly sought after and challenging task.

For most semantic segmentation, IRSTD has its unique features. Firstly, unlike normal
small target detection, infrared images contain many complex backgrounds, and infrared
small targets usually contain two features: “small” and “weak”, where “weak” means
that the contrast between the target and the background is poor and that the target has
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a low signal-to-noise ratio, and “small”, which means that the target has fewer pixels
and sometimes even contains only one pixel. Obtaining particular information about the
target during detection is challenging. Therefore, it is necessary to reduce the interference of
background noise while focusing on small targets during the detection process. In addition,
due to the significant attenuation of infrared radiation energy with distance [7], infrared
targets gradually become very dim. As a result, infrared targets are easily submerged in
the background clutter, and their ambiguity makes segmentation difficult.

In this paper, we propose a dual enhancement network for background noise reduction
and dim small target feature enhancement. Specifically, to minimise the interference of
complex backgrounds, we propose the residual sparse enhancement (RSE) module, which
shifts and spreads a number of representative pixels between any adjacent feature pyramid
layers instead of simply summarising them. We achieve the suppression of ambiguous
background noise and the enhancement of small target features by propagating sparse key
pixels only on infrared small target features (as shown in Figure 1c), generating high-quality
features that facilitate subsequent prediction. Thus, the problem of complex backgrounds
and unusually small targets can be solved in this innovative way. Furthermore, considering
that infrared small targets usually appear very faint and tiny, we propose a spatial attention
enhancement (SAE) module to adaptively enhance dim small target features. Detection
accuracy can be greatly improved by these enhanced features. Note that this task-specific
module enhances the visibility of dim small targets while minimising background noise,
thus creating a more distinct and focused visual presentation.

Figure 1. Illustration of an infrared small target detection example and our proposed module. The first
two rows present the input image and ground truth with complex backgrounds and small targets.
The third row indicates three ways of semantic propagation, consisting of FPN-like structure, dense
semantic propagation, and our proposed sparse semantic propagation.

In summary, the contributions of this work are as follows:

• To address the problem of complex backgrounds in infrared images, we propose
the residual sparse enhancement (RSE) module, which sparsely selects a number
of representative pixels for semantic information propagation, thereby innovatively
suppressing background noise.

• To address the problem of unusually faint and small infrared targets, we propose a task-
specific module, the spatial attention enhancement (SAE) module, which adaptively
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enhances and highlights dim and small target features, thus effectively improving the
performance of dim and small target detection.

• Extensive experiments demonstrated that our method outperforms the state-of-the-art
(SOTA) method, and ablation studies fully validate the effectiveness of each compo-
nent of our proposed method.

2. Related Work

For infrared small target detection, both single-frame image-based detect before track
(DBT) and sequential-frame image-based track before detect (TBD) [8] techniques are very
important methods. The DTB technique can analyse single-frame infrared images and use
target detection algorithms to achieve the localisation and identification of small targets,
which is suitable for static or slow-moving scenarios, thus disregarding the information
of time [9]. The TBD technique, on the other hand, is more suitable for dealing with
motion changes in infrared small targets, and by analysing a continuous sequence of
infrared images, the motion trajectory and appearance changes of small targets can be better
captured. In practical applications, for scenarios that require high real-time requirements
and limited resources, single-frame image-based detection can complete the target detection
and tracking tasks more quickly and, at the same time, the progress of single-frame image
detection algorithms will also directly affect the performance of DBT techniques.

Methods for traditional IR small target detection are mainly classified as the following:
filter-based [10,11], local information-based [12,13], data structure-based [14,15], and deep
learning-based methods [8,16,17], but there are some limitations in coping with complex
backgrounds and small target detection. Firstly, unlike common small object detection,
infrared images contain many complex backgrounds, and infrared small targets are very
small and sparse, sometimes even containing only one pixel. Therefore, it is essential to
reduce the interference of background noise and pay attention to small targets simultane-
ously in the detection process. With the development of deep learning technology, deep
learning models are gradually replacing the traditional methods, and they can deal with
the infrared small target detection problem in complex scenes more effectively. For most
semantic segmentation, IRSTD has its unique characteristics, such as filter-based meth-
ods [18], low-rank-based methods [14,19], and data-driven methods [7,20–24], but few of
them consider the challenges of complex backgrounds and fuzzy targets in infrared images.
Wang et al. [7] proposed a deep adversarial learning framework called MDvsFA-cGAN that
includes two generators and a discriminator to balance false detections and false alarms.
Dai et al. [20] designed an asymmetric context modulation (ACM) module to better high-
light small objects. Shortly thereafter, Dai et al. [21] proposed the attentional local contrast
network (ALCNet) with a feature graph cyclic shifting scheme and bottom-up attentional
modulation. Zhang et al. [22] proposed ISNet to detect precise shape information and
effectively suppress complex background noise by aggregating different layers of edge
information. Wu et al. [23] advocated for the UIU-Net to learn multi-level and multi-scale
representations. Li et al. [24] offered a dense nested attention network (DNA-Net) to fully
merge and utilise contextual information from small targets. Hou et al. proposed the
RISTDnet network [25], which combines a hand-designed feature approach convolutional
neural network to create a multi-sized feature extraction framework, introducing a feature
mapping network, and the thresholding operation and segmentation techniques are able to
extract the target accurately from the complex background. Rawat et al. proposed that a
patch-based approach is more effective than other filter-based approaches [26].

This paper presents a new network, DENet, to address the IRSTD task. We believe that
the intricacies of infrared camera equipment and environmental conditions significantly
compound the difficulty of detecting small targets in infrared imagery, transcending the
realm of conventional image-processing techniques alone. As a result, we should identify
the global information and, specifically, improve the local information in accordance with
the relevant occasions. We propose a DENet model that introduces a residual structure that
suppresses the gradient vanishing problem in deep networks and improves the accuracy
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of infrared, and which also introduces sparse enhancement, which enhances only repre-
sentative features. In addition, this data-driven spatial attention improvement approach
aims to efficiently deal with dim small targets by progressively learning more advanced
and abstract feature representations using a multilevel convolutional process.

In order to adapt to more infrared small target detection scenarios, we designed
the DENet model to allow for problem-specific optimisation, which can be more flexi-
bly adapted to different detection tasks by adjusting the equilibrium parameters of the
individual modules and the loss function.

3. The Proposed Dual Enhancement Network

For the infrared small target detection task, we propose a residual sparse enhancement
(RSE) module and a spatial attention enhancement (SAE) module to cope with the complex
background interference and adaptive enhancement of weak small targets. As shown
in Figure 2, we named our approach dual enhancement network (DENet), since these
two enhancement modules are placed on either side of the network. Specifically, the RSE
module processes multi-level features as input, sparsely propagates semantic information,
and outputs finely processed features, significantly reducing the effect of background
noise. The SAE module, on the other hand, focuses on solving the problem of enhancing
weak and small targets in infrared images and adaptively enhances the relevant features.
Notably, the SAE module focuses on the weak and small targets while reducing the focus
on the complex background, which greatly improves the overall segmentation performance.
This dual enhancement strategy effectively solves the key problem in infrared small target
detection and provides reliable technical support for improving the accuracy and robustness
of target detection.

Figure 2. Framework of our DENet, which consists of two distinct designs: (1) residual sparse
enhancement (RSE) module and (2) spatial attention enhancement (SAE) module. Above: Pipeline of
sparse semantic propagation (SSP) module.

3.1. Residual Sparse Enhancement Module

Inspired by [27], we considered propagating global context information in a sparse
manner, which only propagates selective key pixels between adjacent levels. To achieve
this, we designed a sparse semantic propagation (SSP) module, and we appended it to
the FPN [28] framework to capture multi-level feature advantages. In the SSP module, we
first selected the key pixels and then spread sparse semantic information between adjacent
levels. The following is the detailed process.



Appl. Sci. 2024, 14, 4132 5 of 12

As is shown in the upper part of Figure 2, the most salient part of the input features
and key pixel indexes can be extracted through the following two steps: (1) generate the
salient map; (2) generate sampled pixel indexes. Then, sparse semantics are propagated
between the adjacent levels shown in Equation (3). For the first step, we convert the channel
dimensions of two input feature maps to be consistent, downsample the high-resolution
feature Fl−1 to match the low-resolution feature Fl , and obtain a new resized feature denoted
as F̃l−1. Then, we concat the F̃l−1 and the converted Fl , and we exploit one 3 × 3 convolution
following with the sigmoid function to generate the saliency map Ml .

The saliency map Ml can be defined as

Ml = Sigmoid
(

convl

(
Concat

(
Fl , F̃l−1

)))
, (1)

For the second step, the pixel index generator takes Fl and Ml as inputs. To gain the
most salient pixels, we employ adaptive max pooling on the saliency map Ml . Then, as is
shown in Equation (2), we multiply the saliency map on Fl with the residual structure to
enhance the saliency of the foreground objects:

Fs
l = Maxpool(Ml)× Fl + Fl , (2)

We choose the salient indexes from Maxpool(Ml) and denote them as Is for short.
To sum up, the pixel index generator takes Fl and Ml as inputs and generates the salient
indexes Is and the salient map Fs

l for a sampler. The complete operation of the pixel index
generator is illustrated in Figure 2. With the salient indexes Is gained from the pixel index
generator, we sample pixels from the input feature map Fl−1 ∈ RC×H×W and salient map
Fs

l ∈ RC×H/2×W/2. For each selected pixel p̂, we extract the pixel-wise feature f on both
adjacent input features, and we then propagate those sampled pixels from the top to the
bottom. The specific propagation process is shown in Equation (3):

fl−1( p̂)r = A( fl−1( p̂), fl( p̂)) fl( p̂) + fl−1( p̂), (3)

We begin by flattening Fs
l into a two-dimensional vector. Subsequently, we utilise the

salient index Is, generated by the pixel index generator, to gather high-resolution salient
features from Fs

l . The resulting features are then reshaped to match the dimensions of
Is. Similarly, we flatten Fl−1 into a 2D vector. The corresponding salient index Is

low of
Fl−1 is determined based on the dimensional relationship between Is and the upper and
lower features. Utilizing this index, we gather the low-resolution salient features from Fl−1,
adjusting their shapes to align with Is

low. Finally, we transform both the high-resolution
and low-resolution salient features into fl( p̂) and fl−1( p̂) through size transformation,
where A represents the affinity function, fl denotes the sampled feature at level l for the
salient region, and f r

l−1 denotes the refined affinity feature. For A, we use pixel-wise matrix
multiplication along with the softmax function for normalization. We adjust the high-
resolution salient features according to the affinity matrix. Following the same operation
as the previous work [29] mentioned, we employ the residual structure in Equation (3).
The low-resolution salient features are added to the adjusted high-resolution salient fea-
tures to obtain the final fl−1( p̂)r. We calculate the high-semantic sampled pixels through
pixel-wise affinity according to the semantic similarity on the low-semantic sampled pixels,
which can diminish the interference of redundant background information in the infrared
scene. Finally, we scatter f r

l−1 into Fl−1 according to the salient indexes Is and obtain the
refined feature Fr

l−1 . Since the substitution is based on the salient index, only useful salient
information is propagated from top to bottom. The sparse correlation modelling for the
high-resolution salient feature fl( p̂) and the low-resolution salient feature fl−1( p̂) also
results in less interference from background noise when adjusting fl( p̂) using the affinity
matrix . Compared with the original features generated from the encoder, these refined
features gain more salient information about small targets and less redundant informa-
tion about complex backgrounds. Considering the importance of capturing contextual
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information, we additionally insert the pyramid pooling module (PPM) [30] into the top
layer between the encoder and the RSE module. Finally, the enhanced feature with less
background noise, precise location information, and rich semantic information can be
obtained by combining these refined features in an additive way.

3.2. Spatial Attention Enhancement Module

Because detection in the IRSTD task has the characteristic of targets being specially
sparse and tiny, we put forward a spatial attention enhancement (SAE) module to enhance
and highlight the dim small targets in the infrared images. Figure 2 illustrates the structure
of SAE in detail. In brief, SAE takes the concated features as input and produces one spatial
weight map for each feature, and then the concated features are fused with the spatial
weight map by the Hadamard product operation. After that, we adopt the concatenation
operation to fuse the features. Finally, an MLP is employed to generate the final prediction.
With the feature enhancement in space, the problem of targets being dim and small is well
solved, and the detection performance is also highly improved.

The SAE module aims to enhance spatial attention in infrared small target detection
and works in detail as follows: firstly, it takes as input the feature maps extracted from the
convolutional layers in front of the CNN, capturing the hierarchical features learnt by the
network. Second, its core mechanism is the spatial attention mechanism, which consists of
multiple sets of convolutional layers and activation functions that generate an attention
map that emphasises important spatial regions in the feature map. Task-specific convolu-
tional operations are also applied to further improve the detection performance. Thirdly,
the attention map generated by the spatial attention mechanism is used to modulate the
original feature map. This modulation is achieved through element-level multiplication or
addition, where the attention maps are used as weights to amplify or suppress feature acti-
vations depending on their importance. Finally, the SAE module is seamlessly integrated
into the CNN architecture, often as a component or add-on module in the residual block,
enabling the network to learn spatially adaptive feature representations during training.

The SAE module we designed has several advantages in infrared small target segmen-
tation. Its spatial attention mechanism directs the network’s attention to relevant spatial
regions, enhancing the identification of relevant features of small infrared targets. By em-
phasising information specific to the target, better segmentation performance is formed.
Secondly, the adaptive feature enhancement of the SAE module helps the network to
better deal with background clutter and noise in infrared images by suppressing irrelevant
background features, thereby improving segmentation accuracy in complex scenes. Finally,
the SAE module dynamically adjusts the feature representations according to the spatial
attention map, which helps to achieve scaling and rotation invariance, and it is crucial for
accurate segmentation of small targets in different scenes.

3.3. Loss Function

We adopted the binary cross-entropy (BCE) loss ℓbce and the soft intersection over
union (Soft-loU) loss ℓiou to supervise the final prediction during the network training,
and the total loss function ℓall is expressed as follows:

ℓall = λℓbce + (λ − 1)ℓiou (4)

The combined use of the BCE loss function and the Soft-loU loss function offers signif-
icant advantages for infrared small target detection. The BCE loss function aids in learning
target boundaries and features effectively, while Soft-loU enhances stability and robustness
by considering pixel-level matching, crucial for tasks with blurry boundaries or uncer-
tainty. By integrating these two loss functions, the model can comprehensively address
both object detection and pixel-level segmentation requirements, leading to improved
segmentation accuracy and robustness. In summary, this combined approach represents a
rational and effective strategy, leveraging the strengths of both loss functions to enhance
model performance and generalisation ability in infrared small target detection tasks.
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By adjusting the equilibrium parameter λ in the loss function, DENet has the capability
to dynamically adjust the model’s emphasis on accuracy and false alarm rate in accordance
with diverse task requirements, thus optimising the overall performance, where λ= 0.8
denotes the balance parameter.

4. Experiment

We trained and tested our model on the NUAA-SIRST [20], NUDT-SIRST [24], and
IRSTD-1K [22] datasets, and we followed references [24,31] to set the same train–test ratio.
We used three semantic segmentations (i.e., IoU, Pd, Fa) as performance criteria. For IoU
and Pd, larger values indicate higher performance. For Fa, smaller values indicate higher
performance. To evaluate the segmentation performance, we compared our method with
nine state-of-the-art (SOTA) algorithms, including three traditional methods (Top-Hat [18],
IPI [14], PSTNN [19]) and six deep learning-based methods (MDvsFAcGAN [7], ACM [20],
ALCNet [21], ISNet [22], UIU-Net [23], and DNA-Net [24]). We implemented our method
with the PyTorch framework and used an NVIDIA GeForce RTX 3090 (24 GB) in our
experiment. Before training, all input images were first resized to a resolution of 512 × 512.
During the network training, the AdamW optimizer was adopted for optimization with the
CosineAnnealingLR scheduler, and the weight decay was adjusted to 1 ×10−4. The batch
size, learning rate, and total epoch number were set to be 6, 1 ×10−4, and 100, respectively.
Additionally, specific hyperparameters were configured as follows: the random seed
was set to 3407 to ensure reproducibility; the patch size was defined as 512 to facilitate
efficient processing of input data. Moreover, to prevent overfitting and to stabilize training,
the weight decay rate was set to 0.5, with weight decay applied every 15 epochs.

4.1. Datasets

Existing open-source datasets for infrared small target detection are scarce, and in
this paper three currently used mainstream infrared small target detection datasets were
selected for study, including NUAA-SIRST [20], NUDT-SIRST [24], and IRSTD-1K [22].

The NUAA-SIRST dataset is a publicly available single-frame dataset containing
427 infrared images covering a total of 480 targets. The dataset also includes infrared images
at 950 nm wavelength, and the target labelling approach consists of five forms applicable
to different detection models: image classification, instance segmentation, bounding box
regression, semantic segmentation, and instance point recognition tasks. The training set is
50%, the validation set is 20%, and the test set is 30%.

NUDT-SIRST is a synthetic dataset containing 1327 images with a resolution of 256 × 256.
Compared with the real dataset, NUDT-SIRST has the advantages of accurate labelling, a large
number of target categories, rich target sizes, and diverse cluttered backgrounds.

The IRSTD-1K dataset provides 1000 real images with a variety of target shapes,
different target sizes, and a rich clutter background with precise pixel-level annotations in
the background. The dataset is divided into two folders, where IRSTD1k_Img contains the
real images and IRSTD1k_Label contains the label mask.

4.2. Performance Comparisons

Table 1 indicates the detection accuracy of 10 infrared small target detection methods
on the NUAA-SIRST, NUDT-SIRST, and IRSTD-1K datasets in terms of three semantic
segmentation metrics. Figures 3–5 show a visual comparison of different IRSTD methods on
different datasets. Obviously, our method surpasses the compared methods and achieved
SOTA results on three public infrared datasets. There are two main reasons for this: (1) by
propagating selective pixels between adjacent feature pyramid levels, the residual sparse
enhancement (RSE) module can drastically suppress the interference of redundant back-
ground information; (2) by focusing on dim small targets through the spatial attention
enhancement (SAE) module, the corresponding features are adaptively enhanced, and the
segmentation performance is thus greatly improved. In addition, some visualization exam-
ples of different approaches have been shown in Figure 6. Specifically, our DENet achieves
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optimal visual results, particularly for infrared images with complex backgrounds (the
first row in Figure 6) and infrared targets with dim small characteristics (the second row
in Figure 6). Compared with the SOTA methods, the better detection performance of our
proposed method indicates its greater effectiveness in reducing background noise and en-
hancing infrared dim small targets. Moreover, to make an intuitive comparison, we plotted
the receiver operating characteristic (ROC) curves of different methods on the datasets in
Figure 7, further validating the superiority and effectiveness of our proposed method.

Table 1. Quantitative comparison in terms of IoU (×102), Pd (×102), and Fa (×106) values. The best
results are shown in red. IoU , Pd, and Fa are expressed in percentages (%). The up arrow next to
the assessment indicator indicates that a larger value is better, and the down arrow indicates that a
smaller value is better.

Method
NUAA-SIRST [20] NUDT-SIRST [24] IRSTD-1K [22] Average

IoU ↑ Pd ↑ Fa ↓ IoU ↑ Pd ↑ Fa ↓ IoU ↑ Pd ↑ Fa ↓ IoU ↑ Pd ↑ Fa ↓

Top-Hat [18] 7.143 79.84 1012 20.72 78.41 166.7 10.06 75.11 1432 12.64 77.79 870.2
IPI [14] 25.67 85.55 11.47 17.76 74.49 41.23 27.92 81.37 16.18 23.78 80.47 22.96

PSTNN [19] 22.40 77.95 29.11 14.85 66.13 44.17 24.57 71.99 35.26 20.61 72.02 36.18

MDvsFA [7] 61.70 91.44 21.11 43.32 86.90 131.1 33.26 86.36 66.50 46.09 88.23 72.90
ACM [20] 62.50 90.49 20.82 57.69 91.43 43.58 56.74 90.57 33.57 58.98 90.83 32.66

ALCNet [21] 69.49 93.92 38.90 64.62 91.53 39.97 63.45 92.26 16.63 65.85 92.57 31.83
ISNet [22] 71.11 92.78 40.57 69.09 94.39 55.30 63.05 93.27 33.35 67.75 93.48 43.07

UIUNet [23] 69.73 95.18 51.44 76.16 97.61 17.63 61.19 92.86 27.53 69.03 95.22 32.20
DNA-Net [24] 76.05 96.58 21.96 86.54 98.84 8.040 63.12 89.12 13.06 75.23 94.85 14.35

DENet (ours) 77.55 98.10 13.50 89.66 99.26 2.987 64.78 93.94 11.41 77.33 97.30 9.299

Figure 3. Visual comparisons of different IRSTD methods on the NUAA-SIRST dataset. The correctly
detected targets, miss detection areas, and false alarm areas are highlighted by red rectangles, blue
rectangles, and blue circles, respectively.

Figure 4. Visual comparisons of different IRSTD methods on the NUDT-SIRST dataset. The correctly
detected targets, miss detection areas, and false alarm areas are highlighted by red rectangles, blue
rectangles, and blue circles, respectively.
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Figure 5. Visual comparisons of different IRSTD methods on the IRSTD-1K dataset. The correctly
detected targets, miss detection areas, and false alarm areas are highlighted by red rectangles, blue
rectangles, and blue circles, respectively.

Figure 6. Qualitative results achieved by different IRSTD methods. The correctly detected targets,
miss detection areas, and false alarm areas are highlighted by red rectangles, blue rectangles, and blue
circles, respectively.

Figure 7. ROC curve comparisons on the NUAA-SIRST, NUDT-SIRST, and IRSTD-1K datasets.

4.3. Ablation Study

(1) Effectiveness of each component: We conducted ablation studies to assess the effective-
ness of each component in our proposed DENet. The quantitative results are presented in
Table 2, and the qualitative results are showcased in Figure 8. R, S, and SSP represent the
RSE module, the SAE module, and the SSP module, respectively. In our method, SSP is in-
serted into R. We can observe that directly using baseline cannot obtain satisfactory results
because it does not take the special characteristics (complex backgrounds, exceptionally
dim and small targets) of the infrared images into account. The experiment results clearly
demonstrate the effectiveness of each module in our proposed approach. As expected,
the best results were obtained by simultaneously suppressing complex backgrounds and
enhancing dim small targets in the infrared images.

Additionally, to further validate the effectiveness of SAE, we also conducted a compar-
ison between “baseline + SAE” and “baseline + CA (Channel Attention) module [32]” on
NUAA. The results reveal that the former achieved a better IoU/Pd/Fa (75.63/96.95/17.77),
whereas the latter yielded a worse IoU/Pd/Fa (74.84/96.83/18.72), indicating the supe-
riority and pertinence of the SAE module in the IRSTD task. Compared with the regular
attention mechanism (CA), SAE places greater emphasis on dim small targets within in-
tricate backgrounds and is capable of suppressing the interference of background clutter
while highlighting the dim small targets.
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Table 2. Ablation study of each component on the NUAA-SIRST, NUDT-SIRST, and IRSTD-1K
datasets. R, S, and SSP represent the RSE module, the SAE module, and the SSP module, respectively.
The best results are in red. IoU , Pd, and Fa are expressed in percentages (%). The up arrow next to
the assessment indicator indicates that a larger value is better, and the down arrow indicates that a
smaller value is better. A cross (×) indicates that the corresponding module is not used, a tick (✓)
indicates that the corresponding module is used.

Method
Abalation Module MUAA-SIRST [20] NUDT-SIRST [24] IRSTD-1K [22]

R S SSP IoU ↑ Pd ↑ Fa ↓ IoU ↑ Pd ↑ Fa ↓ IoU ↑ Pd ↑ Fa ↓

baseline × × × 74.33 95.06 19.67 85.48 98.62 7.882 61.13 90.59 18.37
w/o R × ✓ × 75.63 96.90 17.77 86.91 98.91 4.667 62.58 91.93 17.30

w/o SSP ✓ ✓ × 75.72 96.95 15.67 88.24 99.2 3.543 63.42 92.31 15.32
w/o S ✓ × ✓ 75.95 96.96 15.13 88.60 99.05 3.125 63.81 92.94 11.41

DENet (Ours) ✓ ✓ ✓ 77.55 98.10 13.50 89.66 99.26 2.987 64.78 93.94 10.65

Figure 8. Ablation visual comparisons on the NUAA-SIRST dataset. For better visualization, the cor-
rect detected targets are enlarged in the right-bottom corner. The correctly detected targets and false
alarm areas are highlighted by red rectangles and blue circles, respectively.

(2) Impact of RSE: Comparing the other modules, we found that RSE with SSP inserted
has the largest contribution to the whole model, which can effectively suppress the back-
ground noise, and at the same time has a good segmentation effect and performs optimally
in the NUDT-SIRST dataset. If only the SAE module is used to adaptively enhance the
features of dim small targets, the targets are easily submerged in the noise. Therefore,
the combination of the two is optimal.

(3) Impact of SAE: Although SAE can reduce noise and improve model performance to
some extent, there are still some limitations to its optimisation capabilities. This is because
its enhancement of a wide range of dim small targets requires careful parameter tuning for
optimal results in complex visual tasks, and difficulties in parameter tuning may result in
less than optimal model performance.

(4) Impact of lambda: The sensitive study of balance parameter λ is presented in Table 3.
We investigated the effect of varying the value of λ from 0.1 to 0.9 on the NUAA-SIRST
dataset, and set the default lambda as 0.8 with the best performance.

Table 3. Sensitive study of balance parameter λ. The up arrow next to the assessment indicator
indicates that a larger value is better, and the down arrow indicates that a smaller value is better. The
best values are marked in red.

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IoU(%) ↑ 76.23 77.13 75.62 76.83 75.46 77.28 76.56 77.55 71.63
Pd(%) ↓ 97.33 98.09 97.33 96.95 97.33 97.71 98.09 98.10 94.29
Fa(%) ↑ 20.36 17.73 24.62 21.36 22.17 18.44 21.77 13.50 21.91

5. Conclusions

In this paper, a dual enhancement network (DENet) is proposed to solve the problem
of complex backgrounds and dim targets in infrared images. The DENet consists of two
key modules: the residual sparse enhancement (RSE) module and the spatial attention
enhancement (SAE) module. The RSE module effectively mitigates the impact of complex
backgrounds by filtering out redundant information, thereby highlighting the salience
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of the target region. Consequently, DENet successfully suppresses interference from
complex backgrounds and improves target detection accuracy. Meanwhile, the SAE module
automatically enhances the features of dim and small targets in infrared images to make
them easier to detect and recognise. Using our DENet, the redundant information of
complex backgrounds can be effectively filtered, and the contextual information of dim
small targets can be well integrated and fully utilised to enhance the features. Our proposed
DENet method demonstrated outstanding performance on three publicly available infrared
datasets. It not only surpassed the state-of-the-art IRSTD method in terms of segmentation
speed but also achieved superior detection results in visual analysis. In our future research,
we will prioritize the exploration of novel approaches that integrate deep learning and
image-processing techniques to further enhance the accuracy and efficiency of target
detection in infrared images.
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