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Abstract: In recent years, software development models have undergone changes. In order to meet
user needs and functional changes, open-source software continuously improves its software quality
through successive releases. Due to the iterative development process of open-source software,
open-source software testing also requires continuous learning to understand the changes in the
software. Therefore, the fault detection process of open-source software involves a learning process.
Additionally, the complexity and uncertainty of the open-source software development process also
lead to stochastically introduced faults when troubleshooting in the open-source software debugging
process. Considering the phenomenon of learning factors and the random introduction of faults
during the testing process of open-source software, this paper proposes a reliability modeling method
for open-source software that considers learning factors and the random introduction of faults. Least
square estimation and maximal likelihood estimation are used to determine the model parameters.
Four fault data sets from Apache open-source software projects are used to compare the model
performances. Experimental results indicate that the proposed model is superior to other models. The
proposed model can accurately predict the number of remaining faults in the open-source software
and be used for actual open-source software reliability evaluation.

Keywords: open-source software; software reliability model; learning factors; stochastically
introduced faults; stochastic differential equation

1. Introduction

Over the past couple of decades, OSS has developed rapidly through the development
of Internet technology. The way that OSS is developed is completely different to traditional
CSS, which is hierarchical, closed, and centrally managed and developed. The development
and testing of CSS is the responsibility of dedicated staff and completed according to a plan
with clear tasks and responsibilities. Once CSS testing is completed and delivered, it is
difficult to presently implement the new feature and requirement changes in the software
in the software’s current version. If there is a failure in the subsequent delivery, there is a
need to spend a lot of manpower and capital to maintain and repair the failure. However,
the OSS development method is more flexible and changeable. Raymond [1] referred to
CSS and OSS development methodologies as the cathedral and bazaar, respectively.

Compared to traditional CSS development, OSS is developed and tested by volunteers
and users around the world through the network. OSS is developed in a dynamic, uncertain,
networked, and distributed environment. OSS development does not require centralized
management, there is no clear leader, and it is completely completed by contributors
including developers, volunteers, and users. In general, volunteers and users are paid
nothing to develop and test OSS. They develop and test the functionality of OSS and are
completely driven by interest and hobbies. Raymond [1] also pointed out that in the process
of OSS development, as long as enough effort is made, all bugs can be detected. However,
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due to the current development environment and conditions, bugs in OSS cannot be fully
detected, and there will be some remaining vulnerabilities in the new version of an OSS.

Modern well-known companies and businesses have OSS development projects. Ex-
amples include Google, Microsoft, and Alibaba. In particular, some big data and cloud
computing application systems are developed and tested in an open-source manner. Al-
though OSS development is widely used in the industry, its reliability remains a concern.

To improve the reliability of OSS, the industry generally adopts the method of frequent
release [1]. Although the frequent release of OSS can improve the reliability to some extent,
there are some problems with this simple method of frequent release. First, if the release of
OSS occurs too early, the software is not fully tested and there are too many vulnerabilities
left in the software. They will influence the user experience of volunteers and users and
force volunteers and users to not use the software but to find alternative software. Second,
if the software is not released on time, it will miss the opportunity. Volunteers and users
will get disinterested in the software, while other OSSs will be used and developed by
volunteers and users instead of the software in question.

In order to assess the reliability of OSS, there are some RMs in the literature [2–12]. For
example, Li et al. [2] proposed an RM of OSS with a first increasing and then decreasing
FDR. By studying OSS fault data sets, Wang and Mi [3] developed an OSS RM with a
decreasing trend of FDR. Zhou and Davis [4] concluded that CSS RMs can be used to assess
the reliability of OSS through some experiments. Yamada and Tamura established a few
RMs for OSS based on SDEs [8–11]. The above models are all perfect debugging software
RMs. Specifically, this means that the removal of an identified fault should not result in the
introduction of any NFs. The assumption of perfect debugging is not in line with the actual
situation of OSS development.

On the other hand, in order to satisfy user demands and gradually improve prod-
uct functions, OSS is generally multi-version release software. Through the continuous
modification of each version of the software, the developed OSS projects gradually meet
the needs of users. OSS will modify and improve some features and functionality of the
original version after each release of a new version. In the new version, some additional
functions are added, and useless functions are reduced. Therefore, OSS will add some
additional vulnerabilities in the new version. The elimination of these faults may result in
the introduction of NFs. This can be seen from the bug report in bug tracking systems. In
bug tracking systems, we can see that the fault types of OSSs have New Feature, Improve,
Bug, etc. Among them, New Feature and Improve are types of newly introduced faults. In
bug tracking systems, we can see that the status of an OSS includes OPEN, REOPENED, IN
PROGRESS, CLOSED, etc. When the status of the fault of an OSS is reopened, it means that
the fixed fault needs to be removed again due to incomplete removal or the introduction of
a new fault.

From the above analysis, it can be concluded that there are two ways to introduce
faults in an OSS. One is to bring in some faults when the functions of the new version
of the OSS change, and NFs appear when these faults are eliminated. Second, when the
remaining faults in the original version are removed, new introduced faults are added
into the new version. Due to the continuous changes in and modifications of OSS in the
development process, the imported fault behavior is uncertain. The introduction of the
fault is irregular and a kind of random change.

In addition, OSS is an iterative development approach that continuously modifies and
releases new versions of the software to meet user and actual functional needs. Community
contributors understand the improvement in software functionality and the addition of
new features through continuous use and learning. Therefore, software testers go through
a learning process for OSS, and they fully understand the changes in the software through
continuous learning. Usually, the cumulative number of faults detected will show an
S-shaped curve change with the testing time.

In this study, we propose an OSS RM considering learning factors and SIFs. Note
that the introduction of faults here includes three aspects. First, NFs can arise when faults
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caused by software changes are removed. For example, modifications are made to software
features, functionality, or modules subsequent to the release of the most recent OSS version.
Second, NFs are introduced when the remaining faults which are detected in the previous
software version are removed. Third, two introduced faults are cascading or correlated
(or more specifically, one fault introduced simultaneously by two types). For instance,
when a new function (e.g., storage) is introduced. Meanwhile, the new change corrects
some previous faults in the data structure. There is a chance that a fault appears due to
both factors. In other words, we classify Type V faults as faults that are related to version
changes, Type R faults as faults that are related to a previous fault removal, and Type S
faults as faults that are related to Type V and Type R faults. For the rest of the paper, these
three types (V, R, and S) can be used as references.

Therefore, we propose that the OSS RM, considering the random change in the fault
introduction, can be effectively applied in the actual evaluation of OSS reliability. In
addition, stochastic equations are used to simulate irregular changes in the introduction of
faults. The PM is established in the OSS development environment and is more consistent
with the actual legal changes of introduced faults. The PM can help developers and
managers evaluate the reliability of an OSS and guide the optimal release of an OSS.

The contributions of this paper are as follows:

(1) We propose that in the processes of OSS development, testing, and debugging, fault
introduction has the characteristics of stochastic changes.

(2) We use SDE to simulate the stochastic change of three types of fault introductions in
the processes of OSS development, testing, and debugging.

(3) We propose that in the processes of OSS development, testing, and debugging, fault
introduction is related to existing faults in the software.

Considering that fault removal during OSS debugging is influenced by the skills,
mindset, environment, resources, and tools of the debugging personnel, it is possible to
introduce faults when removing them, and the introduction of faults is randomly changing.
In other words, if the introduced faults are not randomly changing but are introduced in
a regular manner, then in the actual process of fault removal, fault introduction can be
completely avoided. The reality is that debugging personnel have no idea and cannot
predict in advance when, where, in which module or function, and how many faults will
be introduced. This means that fault introduction in OSSs occurs randomly.

The remainder of the paper is structured as follows:
Related work is introduced in Section 2. In Section 3, the development process of the

PM is presented in detail. Section 4 introduces fault data sets, model comparison criteria,
and the model parameter estimation method. The performance comparison experiments
of models are conducted in Section 4. The sensitivity analysis is discussed in Section 5.
Section 6 presents threats to the validity of the PM. Conclusions are summarized in the
final section.

2. Related Work

Generally speaking, OSS is dynamically developed multi-release software. It will
release new functional software as development requirements change. Considering the
characteristics of OSS’s dynamic development, we can establish two types of OSS RMs to
evaluate software reliability. One is to assume that the faults in a continuously released
OSS are irrelevant and establish a single-release OSS RM. The second is to assume that
there are correlations between faults in successive releases of OSS, so as to establish the
corresponding multi-release OSS RM.

The single-release OSS RM can evaluate the reliability of each version of an OSS
without considering the fault correlation in each version. For example, Lin and Lin [13]
proposed an OSS RM based on a rate queue theory. To solve the problem of delay in FD and
the elimination of OSS, considering that the FD process of OSS obeys a Pareto distribution,
Huang et al. [14] proposed an RM of OSS considering the bounded generalized Pareto
distribution. By studying the early FD process for OSS, Lee [15] proposed a method to
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predict the reliability of OSS. Through a systematic study of the OSS development process,
Yamada and Tamura [16] proposed a reliability measurement and evaluation methods
of OSS.

Through extensive research on OSS projects, Miko et al. [17] have pointed out that
traditional CSS RMs can be used for the reliability assessment of OSS projects. But no
software RM can be applied to all OSS development and testing environments. Considering
the remnant faults from the previous version and faults generated by changes in software
functions, features, and components in the newly released version of an OSS, Zhu and
Pham [18] established the RM of OSS. Wang [19,20] proposed two OSS RMs. One considered
that the introduction of faults followed a Pareto distribution, and the other considered that
FD and fault introduction changed nonlinearly over time. Huang et al. [21] proposed an
ID software RM that considers the decreasing fault fluctuation rate function. Considering
the factors of learning and tester fatigue during software testing, Yaghoobi and Leung [22]
proposed a software RM based on learning and fatigue factors. Considering the different
issue types in the issue tracking system, Singh et al. [23] proposed two different software
RMs to evaluate the reliability of OSS. Singhal et al. [24] proposed two software RMs that
consider stochastic debugging for OSS. Considering the importance of test coverage in
software testing, Singhal et al. [24] proposed two software reliability models: a perfect
debugging model based on fault removal efficiency, and an imperfect debugging model
based on operating environment uncertainty. Liu and Xie [25] proposed a new software
RM based on a gray system theory and validated the effectiveness of the PM through
experiments. Jagtap [26] proposed a hybrid nonparametric method to predict software
faults and evaluate software reliability.

In addition, Garg et al. [27] proposed a hybrid method to select the optimal software
RM, as no software RM can demonstrate optimal reliability evaluation performance in all
software testing environments. Singh et al. [28] presented a method to select the optimal
software RMs based on integrating CRITIC and CODAS. Considering the significant
correlation between software RMs and fault data sets, the optimal software RM should
be selected for the current software reliability evaluation. Yaghoobi [29] proposed two
methods to select the current optimal software RM.

On the other hand, a multi-release OSS RM can assess the reliability of each version
of an OSS considering the fault correlation in each version. For example, Yang et al. [30]
proposed RMs of OSS that consider delays between FD and fault removal. Saraf et al. [31]
proposed a general multi-release software framework with FD and correction considering
the ID and changing point. Khurshid et al. [32] also proposed a multi-release OSS RM
considering the changing point and ID. Considering the change in source code files of
OSS, Singh et al. [33] proposed an entropy-based multi-release RM of OSS. In addition,
considering fault dependence in multi-release open-source software, Chatterjee et al. [34]
proposed an RM with an ID and changing point. By studying fault introduction phenomena
of OSS, Gandhi et al. [35] established a corresponding RM. Diwakar and Aggarwal [36]
proposed an RM for OSS that considers ID. By studying changes in fault-decreasing factors
and testing coverage, Tandon et al. [37] built a multi-release RM for OSS. Saraf et al. [38]
proposed an integrated method to build a multi-release OSS RM based on a variety of
testing and debugging environments. Pradhan et al. [39] proposed two single-release
software RMs and one multi-release software RM while considering the fault reduction
factor with a generalized inflection S-shaped distribution.

In order to optimize the parameter estimation of OSS RMs, Yang et al. [40,41] used
the expectation maximization algorithm to compute the likelihood function of software
RMs. Additionally, Yang et al. [42] used the expectation least squares and expectation
maximization algorithms to estimate OSS RM parameters while considering the processes
of FD and correction. Xiao et al. [43] used an artificial neutral network to build a software
RM and predicted the number of the software’s remaining faults while considering FD,
correction, and testing efforts. Considering the problem of resource allocation in the process
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of software testing, a multi-objective optimization approach was put forth by Rani and
Mahapatra [44] to address the issue of allocating resources for software testing.

In the above-mentioned OSS RMs, although some models consider the random change
in FD, they do not consider the random change introduced by faults. Moreover, fault
introduction in OSSs includes not only the fault introduced during debugging, but also
the new fault introduced when faults from the changes in software functions, features,
and components are removed following the release of the new OSS version. Therefore,
the introduced faults show irregular changes. In other words, in the OSS testing and
debugging processes, the behavior of introducing faults is random. In this paper, we use
SDE to simulate the random change in fault introduction, which is more consistent with
the actual situation of fault introduction in the processes of OSS testing and debugging.

3. Modeling Fault Introduction Process

A fault introduction in an OSS includes three aspects (i.e., Types V, R, and S). Type V is
the introduced faults in the new version of software due to changes in the function, features,
and components of OSS. Type R is a fault introduced in the process of the troubleshooting of
the remaining faults from the previous version. Type S is a fault introduced simultaneously
by the previous two types. The three kinds of introduced faults show irregular changes
in OSS fault reports, and the behavior of the introduced faults is uncertain. Thus, fault
introduction is random during the development of an OSS. Considering that the number of
faults introduced in (t, t + ∆t) is related to the software fault itself, we give the following
differential equation:

dϕ(t)
dt

= µ(t)ϕ(t) (1)

where ϕ(t) represents the fault content function, which is a total number of fault counts
in the testing process of a single version of an OSS. µ(t) denotes the intensity function of
the software fault introduction. It represents the change in the fault introduction and is a
non-negative value. ϕ(0) = a. a represents the expected total number of initially detected
faults. The effort spent on debugging can speed up the number of faults that are detected,
but a is the constant, and the total number is certain.

In Equation (1), µ(t) is the intensity of software introduction faults. µ(t) is the not the
fault density. Herein, the intensity of software introduction faults refers to the number of
introduced faults and is increasing cumulatively, or at least not decreasing. The intensity
value of the software introduction faults can be greater than one.

Because the number of introduced faults is uncertain in the process of OSS testing
and debugging, fault introduction is random, and the fault introduction intensity function
shows irregular changes. Equation (1) can be extended to the following SDE [45,46].

dϕ(t)
dt

= {µ(t) + σγ(t)}ϕ(t) (2)

where γ(t) represents a standardized white noise of Gaussian. σ denotes a magnitude
of the irregular fluctuation and is a positive constant value. The reasons for γ(t) with
Gaussian distribution are presented below.

Considering the complexity of fault introduction in OSS, we establish differential
Equation (1). In order to improve Equation (1), we add irregular fluctuation (please see
Equation (2)) to the fault introduction intensity function due to the random variation
in introduced faults during the debugging process of OSS. Herein, “intensity” of fault
introduction (always positive or equal to 0) means that the number of introduced faults is
increasing cumulatively, or at least not decreasing. This is consistent with the cumulative
increase in the number of faults that are introduced in the debugging process of OSS.

When OSS is released, the effect of noise affecting the introduction of faults will grad-
ually increase due to the uncertainty of the software debugging environment, debugging
tools, debugging personnel, and skills. For a period of time after the release of an OSS, de-
buggers gradually become familiar with and understand the software through continuous
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learning, testing, and debugging. The effect of noise that affects the introduction of faults
will gradually decrease. Especially, due to the small number of faults detected at the later
stage of testing, the number of introduced faults is gradually reduced. The effect of noise
that affects the introduction of faults has weakened, so it is a normal distribution.

Solving the SDE of It
⌢
o type in Equation (2), we can derive as follows:

E[ϕ(t)] = a exp(1 − exp(−θtd) +
1
2

σ2t) (3)

where θ and d represent a rate parameter of the intensity of fault introduction and a shape
parameter, respectively.

In addition, we assume that the number of faults discovered instantaneously is related
to the number of remaining faults in the software [47], and FD obeys an NHPP. We also
consider learning phenomena during FD. Thus, the following differential equation can
be derived:

dψ(t)
dt

= b(t)(ϕ(t)− ψ(t)) (4)

Substituting Equation (3) into Equation (4),

ψ(t) =
a exp(1 − exp(−θtd) + 1

2 σ2t)
1 + β exp(−bt)

−
aσ2 exp(−bt)(exp((b + 1

2 σ2)t) + 2b+σ2

σ2 − 1)

(1 + β exp(−bt))(2b + σ2)
(5)

where ψ(t) is the mean value function representing the expected cumulative number of the
detected faults by time t. b(t) denotes an FDR function, and b(t) = b

1+β exp(−bt) . b represents
an FDR and β is an IF. b(t) shows an S-shaped curve change over time.

Note that we propose three types of introduced faults to illustrate the phenomenon of
fault introduction and the random changes in the debugging process of OSS. We assume
that the number of faults detected instantaneously is related to the remaining number
of faults in the software, where “instantaneous” refers to the number of faults that are
detected in (t, t + ∆t), which is related to the number of remaining faults in the software.

In this paper, we consider that there is a learning process for OSS during FD. In other
words, the learning phenomenon occurs during software testing, where software testers
go through a learning process. Herein, software testers refers to software developers,
volunteers in the community, or members in the team. This learning process presents an
S-shaped curve with the cumulative number of detected faults over the testing time.

Assuming that the intensity function of the fault introduction obeys the Weibull
distribution, the reason is that the shape parameter of the Weibull distribution is flexible.
By changing the shape parameter of the Weibull distribution, a variety of fault data changes
can be simulated. Therefore, the Weibull distribution can simulate the complex process of
fault introduction for OSS.

Equation (5) is an expression of the PM. It should be noted that in order to simplify the
modeling calculation, a Taylor formula expansion and truncation are used in the process of
model derivation. Please refer to Appendix A for a detailed model derivation process.

We consider that the newly generated faults in the current version are only related
to the new functional changes in the current version and have nothing to do with the
remaining faults in the previous version. Furthermore, the related research indicated that
faults in the current version are not related to the faults in the previous version in most
cases for OSS [48].

Note that the case of fault masking [49] is considered to detect faults rather than
introduce new ones in this study. In addition, the work of this paper focuses on the
establishment of the RM of OSS, which is used to evaluate the reliability of OSS. In order to
avoid ambiguity, we call the PM an OSS RM rather than an OSS fault model.
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In this paper, software reliability refers to the probability that software runs without
faults for a certain amount of time in a given environment. Assuming that the FD follows
an NHPP, software reliability can be expressed as follows:

R(x|t) = exp{−[ψ(t + x)−ψ(t)]} (6)

In Equation (6), within a time interval of [t, t + x], the process of software failure
follows the NHPP. This is the mathematical expression formula for software reliability.
Among them, ψ(t) represents the MVF; in other words, it denotes the expected cumulative
number of faults detected by time t. ψ(t) is also called software RM.

4. Numerical Examples
4.1. Fault Data Sets for OSS

The fault data sets used in this paper are collected from four projects of Apache OSS
products (https://issues.apache.org/jira/issues, accessed on 5 January 2023), KNOX, NIFI,
TEZ, and BIGTOP. Each project of OSS has three successive versions. The first fault data
set (DS1), collected from the KNOX project of Apache OSS products, has three subsets,
KNOX 0.3.0 (DS1-1), KNOX 0.4.0 (DS1-2), and KNOX 0.5.0 (DS1-3). The second fault
data set, collected from the NIFI project of Apache OSS products, has three subsets, NIFI
1.2.0 (DS2-1), NIFI 1.3.0 (DS2-2), and NIFI 1.4.0 (DS2-3). The third fault data set, collected
from the TEZ project of Apache OSS products, has three subsets, TEZ 0.2.0 (DS3-1), TEZ
0.3.0 (DS3-2), and TEZ 0.4.0 (DS3-3). The fourth fault data set (DS) was obtained from the
BIGTOP project of Apache OSS products. These fault data sets include three successive
software versions: BIGTOP 0.3.0 (DS4-1) from October 2011 to April 2012, BIGTOP 0.4.0
(DS4-2) from September 2011 to October 2012, and BIGTOP 0.5.0 (DS4-3) from September
2011 to December 2012.

Note that the attributes of the faults in bug tracking systems include Type, Status,
Resolution, etc. The type of fault data collected by us include all standard issue types
and all substandard issue types. The fault data status includes OPEN, INPROGRESS,
REOPENED, RESOLVED, AND CLOSED. The fault data resolution excludes Duplicate,
Invalid, Not A Problem, Cannot Reproduce, and Not A Bug. Table 1 lists the detailed
information on the fault data sets that are used in this paper. Table 2 shows all software RMs
for comparison. In Table 2, there are six CSS RMs, the G-O model, the Delayed S-shaped
model, the Inflection S-shaped model, the Yamada Imperfect-2 model, the P-N-Z model,
and the Weibull distribution model, and three OSS RMs, the Wang model, the Li model,
and the PM.

Table 1. The information on the fault data sets.

Fault Data Sets Total Number of
Detected Faults Total Time Time Period of Collected Fault Data Sets

DS1(KNOX)
KNOX 0.3.0 (DS1-1) 85 33 weeks From March 2013 to November 2013
KNOX 0.4.0 (DS1-2) 117 73 weeks From March 2013 to August 2014
KNOX 0.5.0 (DS1-3) 80 83 weeks From April 2013 to October 2014

DS2(NIFI)
NIFI 1.2.0 (DS2-1) 396 39 months From December 2014 to January 2018
NIFI 1.3.0 (DS2-2) 111 179 weeks From March 2015 to July 2018
NIFI 1.4.0 (DS2-3) 201 168 weeks From December 2014 to January 2018

DS3(TEZ)
TEZ 0.2.0 (DS3-1) 406 237 days From 19 April 2013 to 1 December 2013
TEZ 0.3.0 (DS3-2) 130 328 days From 19 April 2013 to 1 March 2014
TEZ 0.4.0 (DS3-3) 72 164 days From 8 October 2013 to 30 March 2014

DS4(BIGTOP)
BIGTOP 0.3.0 (DS5-1) 92 164 days From October 2011 to April 2012
BIGTOP 0.4.0 (DS5-2) 237 385 days From September 2011 to October 2012
BIGTOP 0.5.0 (DS5-3) 96 66 weeks From September 2011 to December 2012

https://issues.apache.org/jira/issues
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Table 2. Software reliability models.

Model Name Mean Value Function (MVF) Model Description

1 G-O model [47] ψ(t) = a(1 − exp(−bt)) CSS RM

2 Delayed S-shaped model (DSS) [50] ψ(t) = a(1 − (1 + bt) exp(−bt)) CSS RM

3 Inflection S-shaped model (ISS) [51] ψ(t) = a(1−exp(−bt))
1+β exp(−bt)

CSS RM

4 Yamada Imperfect-2 model [52] ψ(t) = a(1 − exp(−bt))(1− α /b)+αat CSS RM

5 P-N-Z model [53] ψ(t) = (a/(1+ βexp(−bt)))((1 − exp(−bt))(1− α /b)+α t) CSS RM

6 Weibull distribution model (GGO) [54] ψ(t) = a(1 − exp(−btc)) CSS RM

7 Wang model [3] ψ(t) = ad(1 − exp(−bt))/(1 + β exp(1 − exp(−bt))) OSS RM

8 Li model [2] ψ(t) = a(1 − exp(−N( 1
1+ϕ exp(−bt) −

1
1+ϕ ))) OSS RM

9 Proposed model (PM) ψ(t) = a exp(1−exp(−θtd)+ 1
2 σ2t)

1+β exp(−bt) −
aσ2 exp(−bt)(exp((b+ 1

2 σ2)t)+ 2b+σ2

σ2 −1)

(1+β exp(−bt))(2b+σ2)
OSS RM

In this paper, we collected fault data sets using time (days or weeks) in the bug tracking
system (please see Table 1). We used the collected fault data sets to fit and estimate the
model parameters’ values. We can predict the number of faults in a software using the
model. Thus, graphs in the paper depict the evolution across time (days or weeks).

Although the fault data set used in this experiment is relatively old, using it to eval-
uate and validate the performance of the model still has practical reference value and
guiding significance for modern software testing. Although modern software development
methods, languages, and processes have undergone many changes, in the actual software
testing process, most modern OSSs also follow the same rules as previous open-source
software testing did. The model that we propose is entirely based on the study of the phe-
nomenon of random changes introduced by faults during software debugging. Therefore,
the RMs developed based on these data sets still have important practical reference value
and practical guidance significance for modern OSS testing.

4.2. Model Comparison Criteria

In this paper, the performance of models is evaluated using six model comparison criteria:

1. Mean Square Error (MSE) [55]. This metric is used to assess how well software RMs fit
and predict performance. It calculates the deviation between the estimated fault num-
ber of a software RM and the actual fault number detected during software testing.

MSE =
1
n

n

∑
k=1

(ψ(tk)− Λ(tk))
2 (7)

and

MSEpredict =
1
m

n

∑
k=n−m+1

(ψ(tk)− Λ(tk))
2 (8)

2. R-square (R2) [55]. This criterion is used to evaluate the fitting performance of soft-
ware RMs.

R2 = 1 −

n
∑

k=1
(ψ(tk)− Λ(tk))

2

n
∑

k=1
(Λ(tk)−

n
∑

k=1
Λ(tk)/n)

2 (9)
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3. Root Mean Square Error (RMSE) [55]. This measures the square root of the distance
between the estimated values and the actual observations. In general, it is used to
evaluate the fitting and predictive performance of software RMs.

RMSE =

√√√√√ n
∑

k=1
(ψ(tk)− Λ(tk))

2

n
(10)

and

RMSEpredict =

√√√√√ n
∑

k=n−m+1
(ψ(tk)− Λ(tk))

2

m
(11)

4. Kolmogorov–Smirnov test (K-S test) [56]. This metric is intended to assess how
well software RMs fit. At every point, it calculates the absolute deviation between
the expected distribution function from the model and the normalized cumulative
distributions of the actual observed rates.

Di = supy|Fi(y) − F(y)| (12)

Equation (12) is also called Kolmogorov distance (KD).
5. The Theil statistic (TS) [55]. This is the average distance percentage between the

estimated values from the model and the actual values.

TS =

√√√√√√√
n
∑

k=1
(ψ(tk)− Λ(tk))

2

n
∑

k=1
Λ(tk)

2
× 100% (13)

and

TSpredict =

√√√√√√√
n
∑

k=n−m+1
(ψ(tk)− Λ(tk))

2

n
∑

k=n−m+1
Λ(tk)

2
× 100% (14)

6. Bias [55]. This is the sum of the deviation between the observed values and the
estimated values from the model.

Bias =

n
∑

k=1
(ψ(tk)− Λ(tk))

n
(15)

and

Biaspredict =

n
∑

k=n−m+1
(ψ(tk)− Λ(tk))

m
(16)

In Equations (7)–(16), ψ(tk) denotes the estimated number of faults detected by time
tk. Λ(tk) represents the number of faults observed by time tk. n and m are the sample size
of the fault data. In Equations (8), (11), (14), and (16), the first (n-m) fault times are used to
estimate the model parameter values, and the remaining fault times are used to compute
the prediction values. Note that the smaller the MSE (MSEpredict), Dk, RMSE (RMSEpredict),
TS (TSpredict), and Bias (Biaspredict) values are, the better the predictive or fitting performance
of the model is. The larger the value of R2 is, the better the model’s fitting ability is.
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4.3. Estimating Model Parameters

LSE was used in this paper to estimate the model’s parameter values. In general, MLE
can be used to estimate the parameter values of a model in software reliability modeling.
The error utilizing LSE and MLE to estimate model parameter values is quite tiny, because
the fault data sets have a small sample size. Furthermore, the value of the maximum
likelihood function may not exist in some scenarios [57]. The LSE method can be presented
as follows:

ξ =
n

∑
i=1

(ψ(ti)− Λ(ti))
2 (17)

where ψ(ti) represents the estimated number of faults detected by time ti. Λ(ti) denotes
that the number of faults observed by time ti. Equation (17) takes partial differential
equations on both sides.

∂ξ

∂a
=

n

∑
i=1

(ψ(ti)− Λ(ti))

exp(1 − exp(−θtd
i ) +

1
2 σ2ti)

1 + β exp(−bti)
−

σ2 exp(−bti)(exp((b + 1
2 σ2)ti) +

2b+σ2

σ2 − 1)

(1 + β exp(−bti))(2b + σ2)

 = 0 (18)

∂ξ

∂b
=

∂

(
n
∑

i=1

[
(ψ(ti)− Λ(ti))

(
a exp(1−exp(−θtd

i )+
1
2 σ2ti)

1+β exp(−bti)
−

aσ2 exp(−bti)(exp((b+ 1
2 σ2)ti)+

2b+σ2

σ2 −1)

(1+β exp(−bti))(2b+σ2)

)])
∂b

= 0 (19)

∂ξ

∂β
=

∂

(
n
∑

i=1

[
(ψ(ti)− Λ(ti))

(
a exp(1−exp(−θtd

i )+
1
2 σ2ti)

1+β exp(−bti)
−

aσ2 exp(−bti)(exp((b+ 1
2 σ2)ti)+

2b+σ2

σ2 −1)

(1+β exp(−bti))(2b+σ2)

)])
∂β

= 0 (20)

∂ξ

∂θ
=

n

∑
i=1

[
(ψ(ti)− Λ(ti))

atd
i exp(1 − exp(−θtd

i ) +
1
2 σ2ti − θtd

i )

1 + β exp(−bti)

]
= 0 (21)

∂ξ

∂d
=

n

∑
i=1

[
(ψ(ti)− Λ(ti))

aθdtd−1
i exp(1 − exp(−θtd

i ) +
1
2 σ2ti − θtd

i )

1 + β exp(−bti)

]
= 0 (22)

∂ξ

∂σ
=

∂

(
n
∑

i=1

[
(ψ(ti)− Λ(ti))

(
a exp(1−exp(−θtd

i )+
1
2 σ2ti)

1+β exp(−bti)
−

aσ2 exp(−bti)(exp((b+ 1
2 σ2)ti)+

2b+σ2

σ2 −1)

(1+β exp(−bti))(2b+σ2)

)])
∂σ

(23)

Solving Equations (18)–(23), we can calculate the estimated values of the model parameters
(a, b, β, θ, d, and σ). Additionally, the MLE function of the PM can be denoted as follows:

ζ = Pr{N(t1) = κ1, N(t2) = κ2, . . . , N(tn) = κn} =
n

∏
j=1

[ψ(tj)− ψ(tj−1)]
(κj−κj−1) exp[−(ψ(tj)− ψ(tj−1))]

(κj − κj−1)!
(24)

Take the logarithm on both sides of Equation (24).

L = loge(ζ) =
n

∑
j=1

{(
κj − κj−1

)
loge

[
ψ(tj)− ψ(tj−1)

]}
− ψ(tn)−

n

∑
j=1

loge
(
κj − κj−1

)
! (25)

The partial differential equation for Equation (25) can be obtained as follows (Equation (26)):
We can obtain the estimated parameter values (a, b, β,θ, d, and σ) of the PM by solving

Equation (26). Notably, the values of the maximum likelihood function may not exist when
MLE is used to estimate the model parameter values [57].

∂L
∂a

=
∂L
∂b

=
∂L
∂β

=
∂L
∂θ

=
∂L
∂d

=
∂L
∂σ

= 0 (26)
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4.4. Analysis and Discussion of Model Performance Comparison Using LSE Estimation
Parameter Values

In terms of fitting, model parameter values are fitted and estimated using 100% of the
fault data, and the model fitting performances are compared. In terms of prediction, the
model parameter values are fitted and estimated using 85% of the fault data, and we use the
residual fault data (15% of the fault data) to compare the models’ predictive performance.

From Tables 3–5, we can see that using 100% of the data (DS1-1, DS1-2, and DS1-3),
the MSE, R2, RMSE, KD, TS, and Bias values of the PM are 35.85, 0.9456, 5.99, 0.1438, 12.68,
and 4.82; 39.4, 0.9809, 6.28, 0.1762, 9.22, and 4.99; and 16.02, 0.9554, 4.0, 0.1732, 13.25, and
3.67, respectively. In Table 3, the MSE, RMSE, TS, and Bias values of the ISS model which
ranked second are approximately 1.45, 1.21, 1.21, and 1.28 times as large as those of the
PM, respectively. In Table 4, we can see that the MSE, RMSE, TS, and Bias values of the
DSS model which ranked second are nearly 2.85, 1.78, 1.28, and 1.73 times as large as those
of the PM, respectively. Table 5 shows that the MSE, RMSE, and TS values of the DSS
model which ranked second are about 1.64, 1.28, and 1.28 times as large as those of the
PM, respectively. The PM outperforms the G-O model, DSS model, ISS model, Yamada
Imperfect-2 model, P-N-Z model, GGO model, Wang model, and Li model in terms of
fitting performance. Using 100% of the data (DS1-1, DS1-2, and DS1-3), the second best is
the ISS model run once and the DSS model run twice. The worst is the Li model, which is
three times worse in its ranking. These results can be seen in Figure 1a,c,e.

Table 3. Model performance comparison using 100% of the data (DS1-1).

Model Parameter Estimation Values MSE R2 RMSE KD TS Bias

G-O model a = 7294.4; b = 0.000327 84.69 0.8715 9.2 0.2494 19.49 7.66

Delayed S-shaped model
(DSS) a = 281.75; b = 0.034538 74.06 0.8876 8.61 0.1823 18.22 7.62

Inflection S-shaped model
(ISS) a = 968.32; b = 0.042453; β = 28.28 52.09 0.921 7.22 0.2192 15.28 6.16

Yamada Imperfect-2 model a = 920; b = 0.001384; α = 0.071173 55.15 0.9163 7.43 0.2011 15.73 6.29

P-N-Z model a = 126.29; b = 0.0316; β = 1.6331; α = 0.035292 56.16 0.9148 7.49 0.1854 15.87 6.05

Weibull distribution model
(GGO) a = 828.68; b = 0.002392; c = 1.0687 80.84 0.8773 8.99 0.2405 19.04 7.39

Wang model a = 133.01; b = 0.000023; β = 11.485; d = 2.8811 84.98 0.8711 9.22 0.2484, 19.52 7.7

Li model a = 132.92; b = 0.027505; ϕ = 0.10282; N = 12.143 178.49 0.7292 13.36 0.3972 28.29 11.25

PM a = 100.01; b = 0.047628; θ = 0.00013; d = 2.6091;
σ = 0.28442; β= 0.19922 35.85 0.9456 5.99 0.1438 12.68 4.82

Table 4. Model performance comparison using 100% of the data (DS1-2).

Model Parameter Estimation Values MSE R2 RMSE KD TS Bias

G-O model a = 14,739; b = 0.000104 373.29 0.819 19.32 0.2872 28.37 17

Delayed S-shaped model
(DSS) a = 1402.2; b = 0.007262 124.31 0.9397 11.15 0.3572 16.37 8.64

Inflection S-shaped model
(ISS) a = 1219.5; b = 0.01225; β= 12.621 265.25 0.8714 16.29 0.288 23.92 13.51

Yamada Imperfect-2 model a = 1069; b = 0.001073; c = 0.01393 257.66 0.8751 16.05 0.2793 23.57 13.57

P-N-Z model a = 414.45; b = 0.001462; β= 0.095315; α = 0.05415 247.04 0.8802 15.72 0.3398 23.08 11.36

Weibull distribution model
(GGO) a = 988.87; b = 0.000455; c = 1.323 224.85 0.891 15 0.2736 22.02 12.59

Wang model a = 120; b = 0.016791; β = 1.0771; d = 1.2024 987.14 0.5215 31.42 0.5562 46.14 26.89

Li model a = 120; b = 0.026661; ϕ = 0.38421; N = 3.7994 994.26 0.518 31.53 0.5497 46.3 26.66

PM a = 102.05; b = 0.12683; θ = 0.15916; d = 0.10146;
σ = 0.000265; β= 300.5 39.4 0.9809 6.28 0.1762 9.22 4.99
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Table 5. Model performance comparison using 100% of the data (DS1-3).

Model Parameter Estimation Values MSE R2 RMSE KD TS Bias

G-O model a = 8563.5; b = 0.00007 77.12 0.7854 8.78 0.4003 29.08 6.42

Delayed S-shaped model
(DSS) a = 24846; b = 0.000893 26.32 0.9268 5.13 0.2116 16.99 4.56

Inflection S-shaped model
(ISS) a = 93.807; b = 0.013585; β= 1.0814 87.57 0.7563 9.36 0.4316 30.99 6.78

Yamada Imperfect-2 model a = 227.72; b = 0.001534; c = 0.025675 42.34 0.8822 6.51 0.2952 21.55 4.56

P-N-Z model a = 165.16; b = 0.014861; β= 6.2516; α = 0.008429 35.01 0.9026 5.92 0.2649 19.59 4.18

Weibull distribution model
(GGO) a = 617.45; b = 0.000389; c = 1.2317 58.21 0.838 7.63 0.3515 25.26 5.35

Wang model a = 220; b = 0.00029; β = 13.574; d = 1.9148 79.7 0.7782 8.93 0.4072 29.56 6.49

Li model a = 219.57; b = 0.008231; ϕ = 0.042635; N = 10.761 113.92 0.683 10.67 0.4872 35.34 7.89

PM a = 150.02; b = 0.004319; θ = 0.000007; d = 2.4545;
σ = 0.098155; β= 0.12636 16.02 0.9554 4.0 0.1732 13.25 3.67

Tables 6–8 show that using 100% of the data (DS2-1, DS2-2, and DS2-3), the MSE,
R2, RMSE, KD, TS, and Bias values of the PM are 1040, 0.9619, 32.25, 0.2497, 14.95, and
22.76; 356.92, 0.8562, 18.89, 0.3842, 29.18, and 12.93; and 1142.3, 0.7558, 33.8, 0.392, 40.18,
and 27.67, respectively. According to Table 6, the MSE, RMSE, TS, and Bias values of the
second-placed GGO model are roughly 0.45, 0.53, 0.54, and 0.58 times higher than those of
the PM, respectively. In Table 7, we can see that the MSE, RMSE, TS, and Bias values of
the DSS model which ranked second are about 1.33, 1.16, 1.15, and 1.33 times as large as
those of the PM, respectively. The performance of fitting is the highest for the PM. Using
100% of the data (DS2-1, DS2-2, and DS2-3), the second best is the GGO model, and then,
the DSS model and the P-N-Z model, respectively, follow. The worst is the Li model, which
is three times worse in terms of its ranking. Figure 2a,c,e show the fitting comparison of
the models.

Table 6. Model performance comparison using 100% of the data (DS2-1).

Model Parameter Estimation Values MSE R2 RMSE KD TS Bias

G-O model a = 57,619; b = 0.000146 9378.4 0.6567 96.84 0.4692 44.9 87.82

Delayed S-shaped model
(DSS) a = 208,930; b = 0.001712 3622.7 0.8674 60.19 0.3548 27.91 48.38

Inflection S-shaped model
(ISS) a = 398.82; b = 0.069061; β= 3.5 9261.9 0.661 96.24 0.4943 44.62 86.63

Yamada Imperfect-2 model a = 50,948; b = 0.000013; α= 0.73841 4249.1 0.8445 65.19 0.35 30.22 52.4

P-N-Z model a = 114.8; b = 0.15004; β= 29.315; α = 0.10016 2659.7 0.9026 51.57 0.3059 23.91 39.05

Weibull distribution model
(GGO) a = 436.11; b = 1 × 10−5; c = 3.389 2450.7 0.9103 49.5 0.2516 22.95 35.99

Wang model a = 420; b = 0.016864; β = 1.6113; d = 1.2419 13,986 0.488 118.26 0.6285 54.83 108.21

Li model a = 419.98; b = 0.073397; ϕ = 1.2663; N = 1.2736 16,313 0.4028 127.72 0.6895 59.22 111.16

PM a = 401.99; b = 0.24812; θ = 0.008026; d = 0.78784;
σ = 0.000067; β= 850.84 1040 0.9619 32.25 0.2497 14.95 22.76
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Figure 1. The cumulative number of detected faults over time. (a,c,e) represent the cumulative number
of detected faults using 100% of the data for DS1-1, DS1-2, and DS1-3, respectively. (b,d,f) represent the
cumulative number of detected faults using 85% of the data for DS1-1, DS1-2, and DS1-3, respectively.
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Table 7. Model performance comparison using 100% of the data (DS2-2).

Model Parameter Estimation Values MSE R2 RMSE KD TS Bias

G-O model a = 13,720; b = 0.00004 910.49 0.6332 30.17 0.5051 46.6 27.33

Delayed S-shaped model
(DSS) a = 45,139; b = 0.000442 476.11 0.8082 21.82 0.5142 33.7 17.23

Inflection S-shaped model
(ISS) a = 7594.7; b = 0.000085; β= 0.033645 963.68 0.6118 31.04 0.506 47.94 26.33

Yamada Imperfect-2 model a = 2071; b = 0.000162; α= 0.010508 676.83 0.7273 26.02 0.4051 40.18 22.1

P-N-Z model a = 1498; b = 0.000545; β= 0.30981; α = 0.00005 960.58 0.613 30.99 0.5095 47.87 26.59

Weibull distribution model
(GGO) a = 1347.4; b = 0.003495; c = 0.51984 1486.4 0.4012 38.55 0.6762 59.54 36.9

Wang model a = 120; b = 0.005039; β = 2.2287; d = 1.3032 1497.6 0.3967 38.7 0.7125 59.77 35.45

Li model a = 120; b = 0.012707; ϕ = 0.26143; N = 3.2208 1658.9 0.3317 40.73 0.7479 62.9 36.45

PM a = 349.79; b = 0.002847; θ = 0.000001; d = 3.0276;
σ = 0.091502; β= 11.723 356.92 0.8562 18.89 0.3842 29.18 12.93

Table 8. Model performance comparison using 100% of the data (DS2-3).

Model Parameter Estimation Values MSE R2 RMSE KD TS Bias

G-O model a = 14,737; b = 0.00049 2219 0.5256 47.11 0.5746 56 40.5

Delayed S-shaped model
(DSS) a = 253.02; b = 0.00959 1813.7 0.6123 42.59 0.5387 50.63 33

Inflection S-shaped model
(ISS) a = 191.7; b = 0.004842; β= 0.13839 2581.5 0.4481 50.81 0.6305 60.4 42.14

Yamada Imperfect-2 model a = 2514.3; b = 0.000181; α= 0.009755 1713.1 0.6338 41.39 0.4954 49.21 34.78

P-N-Z model a = 226.63; b = 0.007945; β= 4.8938; α = 0.011718 1297.9 0.7225 36.03 0.4251 42.83 29.84

Weibull distribution model
(GGO) a = 2310.3; b = 0.000434; c = 0.92979 2359.6 0.4956 48.58 0.5925 57.75 41.74

Wang model a = 220; b = 0.008512; β = 0.26571; d = 0.92986 3256.6 0.3038 57.07 0.7148 67.84 43.71

Li model a = 219.98; b = 0.017717; ϕ = 0.31026; N = 1.4019 3660.9 0.2174 60.51 0.7617 71.93 42.6

PM a = 199.9; b = 0.014022; θ = 0.000009; d = 2.2099;
σ = 0.01604; β= 8.2863 1142.3 0.7558 33.8 0.392 40.18 27.67

Tables 9–11 show that using 100% of the data (DS3-1, DS3-2, and DS3-3), the MSE,
R2, RMSE, KD, TS, and Bias values of the PM are 122.31, 0.9907, 11.06, 0.0741, 4.54, and
8.47; 113.84, 0.9053, 0.67, 0.2245, 25.73, and 8.02; and 57.79, 0.804, 7.6, 0.3472, 38.08, and
5.42, respectively. From Table 9, we can see that the MSE, RMSE, TS, and Bias values of
the second-placed G-O model are almost 1.23, 0.5, 0.5, and 0.62 times more than those of
the PM, respectively. Table 10 shows that the MSE, RMSE, KD, TS, and Bias values of the
second-placed P-N-Z model are around 1.3, 0.52, 0.57, 0.52, and 0.6 times larger than those
of the PM, respectively. The PM has the best fitting performance of all the models. Using
100% of the data (DS3-1, DS3-2, and DS3-3), the next-best performing models are the G-O
model, the P-N-Z model, and the ISS model, respectively. The worst is the Li model when
run once and the Wang model when run twice. From Figure 3a,c,e, we can see the fitting
comparison of models.
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Figure 2. The cumulative number of detected faults over time. (a,c,e) represent the cumulative number
of detected faults using 100% of the data for DS2-1, DS2-2, and DS2-3, respectively. (b,d,f) represent the
cumulative number of detected faults using 85% of the data for DS2-1, DS2-2, and DS2-3, respectively.
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Table 9. Model performance comparison using 100% of the data (DS3-1).

Model Parameter Estimation Values MSE R2 RMSE KD TS Bias

G-O model a = 3860.1; b = 0.000477 272.52 0.9792 16.51 0.1825 6.79 13.71

Delayed S-shaped model
(DSS) a = 484.4; b = 0.012872 723.34 0.9449 26.9 0.2467 11.06 22.68

Inflection S-shaped model
(ISS) a = 2604.3; b = 0.000768; β= 0.065694 275.1 0.979 16.59 0.187 6.82 13.94

Yamada Imperfect-2 model a = 803.59; b = 0.000135; α= 0.16348 3684.6 0.7203 60.7 0.2895 24.92 55.12

P-N-Z model a = 619.52; b = 0.003312; β= 0.010742; α = 0.00165 279.26 0.9788 16.71 0.0816 6.86 14.23

Weibull distribution model
(GGO) a = 9379.7; b = 0.004168; c = 0.38209 3506 0.7339 59.21 0.3538 24.3 54.54

Wang model a = 220; b = 0.001238; β = 17.44; d = 1.9418 495.98 0.9624 22.27 0.1354 9.14 20.07

Li model a = 220.03; b = 0.008648; ϕ = 0.99405; N = 9.9537 7708 0.4149 87.8 0.4837 36.04 63.54

PM a = 1714.5; b = 0.005115; θ = 0.46738; d = 0.4337;
σ = 0.10089; β= 43.161 122.31 0.9907 11.06 0.0741 4.54 8.47

Table 10. Model performance comparison using 100% of the data (DS3-2).

Model Parameter Estimation Values MSE R2 RMSE KD TS Bias

G-O model a = 12,170; b = 0.000015 604.47 0.497 24.59 0.6019 59.28 18.57

Delayed S-shaped model
(DSS) a = 204,190; b = 0.000088 291.13 0.7578 17.06 0.3903 41.14 12.78

Inflection S-shaped model
(ISS) a = 247.57; b = 0.006256; β= 14.285 407.72 0.6607 20.19 0.4619 48.69 16.11

Yamada Imperfect-2 model a = 2948.2; b = 0.000018; α= 0.021904 359.18 0.7011 18.95 0.4337 45.7 14.84

P-N-Z model a = 140.39; b = 0.006483; β= 15.751; α = 0.005078 262.13 0.7819 16.19 0.3515 39.04 12.77

Weibull distribution model
(GGO) a = 1114.2; b = 0.000129; c = 1.03 600.94 0.5 24.51 0.5991 59.11 18.23

Wang model a = 220; b = 0.004571; β = 1.6162; d = 0.92305 1004.4 0.1642 31.69 0.8387 76.42 21.3

Li model a = 220; b = 0.011034; ϕ = 0.74084; N = 0.30068 983.72 0.1814 31.36 0.8284 75.63 20.59

PM a = 148.72; b = 0.013007; θ = 0.05343; d = 0.19862;
σ = 0.067077; β= 104.31 113.84 0.9053 10.67 0.2245 25.73 8.02

Table 11. Model performance comparison using 100% of the data (DS3-3).

Model Parameter Estimation Values MSE R2 RMSE KD TS Bias

G-O model a = 6735.5; b = 0.000023 174.27 0.4091 13.2 0.6948 66.13 9.88

Delayed S-shaped model
(DSS) a = 137,680; b = 0.000144 103.14 0.6502 10.16 0.5092 50.88 7.01

Inflection S-shaped model
(ISS) a = 113.1; b = 0.027176; β= 123.06 65.37 0.7783 8.08 0.3873 40.5 5.54

Yamada Imperfect-2 model a = 474.57; b = 0.000142; α= 0.023482 129.1 0.5622 11.36 0.5723 56.92 8.1

P-N-Z model a = 215.56; b = 0.008277; β= 37.586; α = 0.018169 92.29 0.687 9.61 0.4593 48.13 6.98

Weibull distribution model
(GGO) a = 301.19; b = 4 × 10−6; c = 2.0165 109.29 0.6294 10.45 0.5187 52.37 6.88

Wang model a = 220; b = 0.007303; β = 1.1507; d = 0.77038 240.35 0.185 15.5 0.8572 77.66 10.26

Li model a = 220; b = 0.012906; ϕ = 0.50539; N = 0.27747 219.45 0.2559 14.81 0.8185 74.21 10.17

PM a = 150.01; b = 0.018062; θ = 0.001959; d = 1.0871;
σ = 0.086334; β= 101.07 57.79 0.804 7.6 0.3472 38.08 5.42
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From Tables 12–14, we can see that using 85% of the data (DS1-1, DS1-2, and DS1-3),
the MSEprdict, RMSEprdict, TSprdict, and Biasprdict values of the PM are 45.63, 6.76, 8.02, and
0.84; 211.38, 14.54, 12.52, and 2.05; and 113.91, 10.67, 17.21, and 1.22, respectively. In Table 12,
the MSEprdict, RMSEprdict, and Biasprdict values of the ISS model which ranked second are
approximately 1.09, 1.04, and 1.02 times as large as those of the PM, respectively. Table 13
shows that the MSEprdict, RMSEprdict, and Biasprdict values of the G-O model, which came in
second place, are 0.82, 0.35, and 0.4 times higher than those of the PM, respectively. Table 14
reveals that the MSEprdict, RMSEprdict, and Biasprdict values of the second-placed DSS model
are approximately 1.92, 0.71, and 0.91 times greater than those of the PM, respectively. The
PM outperforms the G-O model, DSS model, ISS model, Yamada Imperfect-2 model, P-N-Z
model, GGO model, Wang model, and Li model in terms of prediction performance. The
second best is the ISS model and the worst is the Li model. The PM outperforms the G-O
model, DSS model, ISS model, Yamada Imperfect-2 model, P-N-Z model, GGO model,
Wang model, and Li model in terms of fitting performance, as shown in Figure 1b.

Table 12. Model performance comparison using 85% of the data (DS1-1).

Model Parameter Estimation Values MSEpredict RMSEpredict TSpredict Biaspredict

G-O model a = 4340; b = 0.000502 302.96 17.41 20.67 2.6

Delayed S-shaped model
(DSS) a = 159.89; b = 0.050676 108.09 10.4 12.35 1.48

Inflection S-shaped model
(ISS) a = 529.13; b = 0.043241; β= 14.957 49.52 7.04 8.36 0.86

Yamada Imperfect-2 model a = 1821.4; b = 0.0008092; α= 0.045222 74.46 8.63 10.25 1.1

P-N-Z model a = 137.86; b = 0.033775; β= 2.3587; α = 0.033423 54.95 7.41 8.8 0.91

Weibull distribution model
(GGO) a = 559.16; b = 0.006495; c = 0.83948 530.95 23.04 27.37 3.48

Wang model a = 133.01; b = 0.000027; β = 14.432; d = 2.865 343.62 18.54 22.02 2.78

Li model a = 132.98; b = 0.026009; ϕ = 0.13769; N = 8.4145 868.29 29.47 35 4.46

PM a = 180; b = 0.024217; θ = 0.000196; d = 2.0528;
σ = 0.17652; β= 1.0527 45.63 6.76 8.02 0.84

Table 13. Model performance comparison using 85% of the data (DS1-2).

Model Parameter Estimation Values MSEpredict RMSEpredict TSpredict Biaspredict

G-O model a = 15,384; b = 0.000093 384.31 19.6 16.89 2.88

Delayed S-shaped model
(DSS) a = 69,278; b = 0.000963 860.68 29.34 25.27 3.98

Inflection S-shaped model
(ISS) a = 169.49; b = 0.09902; β= 156.02 721.22 26.86 23.13 3.91

Yamada Imperfect-2 model a = 550.62; b = 0.00016; α= 0.6667 809.63 28.45 24.51 3.84

P-N-Z model a = 116.44; b = 0.095367; β= 103.89; α = 0.007597 832.66 28.86 24.86 4.16

Weibull distribution model
(GGO) a = 774.76; b = 0.002447; c = 0.93203 644.44 25.39 21.87 3.79

Wang model a = 220; b = 0.000497; β = 14.432; d = 2.0004 473.97 21.77 18.75 3.22

Li model a = 126.26; b = 0.019206; ϕ = 13.13; N = 8.0543 795.44 28.2 24.29 4.22

PM a = 188; b = 0.006066; θ = 0.000013; d = 0.96689;
σ = 0.11012; β= 0.47012 211.38 14.54 12.52 2.05

The G-O model comes in second, while the DSS model comes in last, using 85% of
the data (DS1-2). Figure 1d shows that the Yamada Imperfect 2 model has superior fitting
performance compared with the other models, but the suggested model performs worse
than it. However, compared to the Yamada Imperfect 2 model, the PM performs predictions
more accurately. The DSS model comes in second with 85% of the data (DS1-3), and the Li
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model comes in last. The PM has the greatest fitting and predictive performance among
them, as shown in Figure 1f.

Table 14. Model performance comparison using 85% of the data (DS1-3).

Model Parameter Estimation Values MSEpredict RMSEpredict TSpredict Biaspredict

G-O model a = 4124.8; b = 0.000117 657.47 25.64 41.34 3.44

Delayed S-shaped model
(DSS) a = 162.24; b = 0.013341 332.53 18.24 29.4 2.33

Inflection S-shaped model
(ISS) a = 93.789; b = 0.031273; β= 10.262 336.23 18.34 29.56 2.35

Yamada Imperfect-2 model a = 89.907; b = 0.003484; α= 0.024927 406.58 20.16 32.51 2.63

P-N-Z model a = 163.03; b = 0.008491; β= 2.697; α = 0.006232 454.22 21.31 34.36 2.8

Weibull distribution model
(GGO) a = 500.27; b = 0.000441; c = 1.2008 555.69 23.57 38 3.13

Wang model a = 220; b = 0.000431; β = 10.457; d = 1.758 694.05 26.34 42.47 3.54

Li model a = 117.61; b = 0.009977; ϕ = 0.038583; N = 15.754 991.27 31.48 50.76 4.29

PM a = 149.9; b = 0.019652; θ = 0.00013; d = 2.5565;
σ = 0.17767; β= 6.1224 113.91 10.67 17.21 1.22

From Tables 15–17, we can see that using 85% of the data (DS2-1, DS2-2, and DS2-3),
the MSEprdict, RMSEprdict, TSprdict, and Biasprdict values of the PM are 1789.1, 42.3, 10.72, and
5.48; 92.41, 9.61, 8.74, and 1.19; and 1484.8, 38.53, 19.6, and 5.1, respectively. Comparing the
PM to other models, it performs predictions more accurately. The second best is the P-N-Z
model, and the worst is the Li model. According to Table 15, the MSEprdict, RMSEprdict,
and Biasprdict values of the second-ranked Yamada Imperfect-2 model are around 1.16, 0.47,
and 0.6 times larger than those of the PM, respectively. Table 16 shows that the MSEprdict,
RMSEprdict, and Biasprdict values of the Yamada Imperfect-2 model, which came in second
place, are 1.05, 0.43, and 0.42 times larger than those of the PM, respectively. Table 17
reveals that the MSEprdict, RMSEprdict, and Biasprdict values of the second-placed ISS model
are approximately 3.14, 1.03, and 0.76 times greater than those of the PM, respectively.
Figure 2b demonstrates the generality of the PM’s fitting performance. However, the PM
performs prediction better than the other models.

Table 15. Model performance comparison using 85% of the data (DS2-1).

Model Parameter Estimation Values MSEpredict RMSEpredict TSpredict Biaspredict

G-O model a = 57,779; b = 0.000119 20,925 144.66 36.65 22.19

Delayed S-shaped model
(DSS) a = 1150.4; b = 0.025851 13,432 115.9 29.37 17.62

Inflection S-shaped model
(ISS) a = 578.36; b = 0.27254; β= 2737.9 13,260 115.15 29.18 17.2

Yamada Imperfect-2 model a = 301.53; b = 0.008722; α= 0.1615 3863.1 62.15 15.75 8.75

P-N-Z model a = 460.31; b = 0.065729; β= 17.129; α = 0.071921 6923 83.2 21.08 10.43

Weibull distribution model
(GGO) a = 2836.8; b = 1 × 10−6; c = 3.4407 50,403 224.51 56.88 32

Wang model a = 420; b = 0.003043; β = 15.064; d = 1.7471 28,218 167.98 42.56 25.81

Li model a = 420.01; b = 0.03163; ϕ = 0.29135; N = 3.6529 50,748 225.27 57.08 34.65

PM a = 399.97; b = 0.074046; θ = 0.003679; d = 1.5573;
σ = 0.064524; β= 13.032 1789.1 42.3 10.72 5.48
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Table 16. Model performance comparison using 85% of the data (DS2-2).

Model Parameter Estimation Values MSEpredict RMSEpredict TSpredict Biaspredict

G-O model a = 12,240; b = 0.000039 972.08 31.18 28.35 4.67

Delayed S-shaped model
(DSS) a = 189,750; b = 0.00022 317.25 17.81 16.2 2.18

Inflection S-shaped model
(ISS) a = 146.14; b = 0.063423; β= 2379.3 720.84 26.85 24.42 4

Yamada Imperfect-2 model a = 1191.2; b = 0.000045; α= 0.14894 189.53 13.77 12.52 1.69

P-N-Z model a = 170.5; b = 0.008725; β= 11.167; α = 0.02813 1152.1 33.94 30.87 4.57

Weibull distribution model
(GGO) a = 984.25; b = 0.000719; c = 0.91933 1247.1 35.31 32.11 5.31

Wang model a = 120; b = 0.008146; β = 0.66208; d = 1.0133 4943.9 70.31 63.94 10.61

Li model a = 120; b = 0.012852; ϕ = 0.20877; N = 3.0644 4369.6 66.1 60.11 9.97

PM a = 199.99; b = 0.001332; θ = 0.000941; d = 1.3562;
σ = 0.076828; β= 1.0428 92.41 9.61 8.74 1.19

Table 17. Model performance comparison using 85% of the data (DS2-3).

Model Parameter Estimation Values MSEpredict RMSEpredict TSpredict Biaspredict

G-O model a = 13,587; b = 0.000028 18,870 137.37 69.88 20.41

Delayed S-shaped model
(DSS) a = 199,080; b = 0.000195 11,278 106.2 54.02 15.77

Inflection S-shaped model
(ISS) a = 1121.3; b = 0.050711; β= 10275 6141.7 78.37 39.86 9.02

Yamada Imperfect-2 model a = 1405; b = 0.000009; α= 0.58784 10,835 104.09 52.95 15.45

P-N-Z model a = 64.107; b = 0.009432; β= 3.6832; α = 0.022014 12,738 112.86 57.41 16.76

Weibull distribution model
(GGO) a = 932.41; b = 0.000008; c = 1.8644 11,953 109.33 55.61 16.24

Wang model a = 220; b = 0.008994; β = 0.34156; d = 0.81963 25,696 160.3 81.54 23.82

Li model a = 219.94; b = 0.27305; ϕ = 0.021584; N = 5.5202 29,722 172.4 87.7 25.62

PM a = 202.02; b = 0.031377; θ = 0.003222; d = 1.1128;
σ = 0.11074; β= 400.97 1484.8 38.53 19.6 5.1

The DSS model comes in second, and the Wang model comes in last, using 85% of the
data (DS2-2). We can see from Figure 2d that the suggested model’s performance in terms
of fitting is better than the G-O model, GGO model, Wang model, and Li model, but worse
than the DSS model, ISS model, Yamada Imperfect-2 model, and P-N-Z model. Yet, the
PM performs predictions more accurately than the other models. Using 85% of the data
(DS2-3), the second best is the ISS model, and the worst is the Li model. Figure 2f shows
that the PM’s fitting performance is better than the other models, except for the ISS model,
which achieves a better performance. The PM also has the highest prediction accuracy of
any of them.

Tables 18–20 show that using 85% of the data (DS3-1, DS3-2, and DS3-3), the MSEprdict,
RMSEprdict, TSprdict, and Biasprdict values of the PM are 28.75, 5.36, 1.38, and 0.61; 1469.1,
38.33, 38.71, and 5.28; and 9.13, 3.02, 6.2, and 0.39, respectively. The PM has better predictive
performance than the other models. The second best is the ISS model, and the worst is the
Wang model. Table 20 shows that the MSEprdict, RMSEprdict, and Biasprdict values of the ISS
model which ranked second are about 60.69, 6.86, and 7.26 times larger than those of the
PM, respectively. From Figure 3b, we can see that the fitting and predictive performance of
the PM is better than the other models’ performances. Using 85% of the data (DS3-2), the
second best is the GGO model, and the worst is the Wang model. From Figure 3d, we can
see that the fitting and predictive performance of the PM is better than those of the other
models. Using 85% of the data (DS3-3), the second best is the ISS model, and the worst is
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the Wang model. Figure 3f shows that the PM outperforms other models in terms of fitting
performance. Moreover, the PM has the best predictive performance among them.

Table 18. Model performance comparison using 85% of the data (DS3-1).

Model Parameter Estimation Values MSEpredict RMSEpredict TSpredict Biaspredict

G-O model a = 3600; b = 0.000513 29.79 5.46 1.41 0.73

Delayed S-shaped model
(DSS) a = 408.41; b = 0.015366 1659.2 40.73 10.52 6.11

Inflection S-shaped model
(ISS) a = 2159.8; b = 0.001081; β= 0.25076 51.27 7.16 1.85 0.99

Yamada Imperfect-2 model a = 156.87; b = 0.012401; α= 0.010266 83.56 9.14 2.36 1.27

P-N-Z model a = 1013.5; b = 0.00246; β= 0.33974; α = 0.00095 58.24 7.63 1.97 0.97

Weibull distribution model
(GGO) a = 13,594; b = 0.00048; c = 0.73826 1788.6 42.29 10.92 6.41

Wang model a = 220; b = 0.00395; β = 2.6086; d = 1.4774 8394.4 91.62 23.66 13.84

Li model a = 520; b = 0.022143; ϕ = 0.62431; N = 1.3252 33,109 181.96 46.99 27.56

PM a = 400.01; b = 0.003037; θ = 0.013051; d = 0.72174;
σ = 0.053276; β= 0.56155 28.75 5.36 1.38 0.61

Table 19. Model performance comparison using 85% of the data (DS3-2).

Model Parameter Estimation Values MSEpredict RMSEpredict TSpredict Biaspredict

G-O model a = 4364.7; b = 0.00002 5368.5 73.27 74 10.38

Delayed S-shaped model
(DSS) a = 31,017; b = 0.000173 3392.1 58.24 58.82 8.14

Inflection S-shaped model
(ISS) a = 9387.6; b = 0.00004; β= 1.0483 2094.6 45.77 46.22 6.01

Yamada Imperfect-2 model a = 197.18; b = 0.000238; α= 0.009554 4317.1 65.71 66.36 9.25

P-N-Z model a = 401.93; b = 0.005908; β= 62.885; α = 0.002514 3091.9 55.61 56.16 7.77

Weibull distribution model
(GGO) a = 316.51; b = 0.000003; c = 1.9495 1719.6 41.47 41.88 5.46

Wang model a = 520; b = 0.004203; β = 1.9866; d = 0.71584 7561.4 86.96 87.82 12.47

Li model a = 520; b = 0.006785; ϕ = 0.69129; N = 0.10747 6656.2 81.59 82.4 11.65

PM a = 150.04; b = 0.010432; θ = 0.001219; d = 1.0354;
σ = 0.065022; β= 101.06 1469.1 38.33 38.71 5.28

Table 20. Model performance comparison using 85% of the data (DS3-3).

Model Parameter Estimation Values MSEpredict RMSEpredict TSpredict Biaspredict

G-O model a = 4246.8; b = 0.000014 1605.8 40.07 82.26 5.68

Delayed S-shaped model
(DSS) a = 57,610; b = 0.000147 1221.5 34.95 71.75 4.9

Inflection S-shaped model
(ISS) a = 62.975; b = 0.040457; β= 705.52 563.23 23.73 48.72 3.22

Yamada Imperfect-2 model a = 61.613; b = 0.00053; α= 0.019075 1394.8 37.35 76.67 5.26

P-N-Z model a = 208.37; b = 0.014731; β= 121.27; α = 0.002079 1073.1 32.76 67.25 4.57

Weibull distribution model
(GGO) a = 67.157; b = 0.000034; c = 1.7283 1364.8 36.94 75.84 5.2

Wang model a = 220; b = 0.006693; β = 1.6576; d = 0.65349 1913.5 43.74 89.8 6.26

Li model a = 220; b = 0.007648; ϕ = 0.070065; N = 0.73774 1766.1 42.02 86.27 5.99

PM a = 102; b = 0.047586; θ = 0.32252; d = 0.15255;
σ = 0.11182; β= 10001 9.13 3.02 6.2 0.39
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In general, compared with other models, the PM has better predictive performance
and better fitting performance except for when using 85% of the data (DS1-2, DS2-1, DS2-2,
and DS2-3). When CSS RMs, such as DSS, ISS, P-N-Z, and GGO, are used in OSS reliability
assessment, their fitting and prediction performance is better. But no CSS RMs can adapt
to all OSS development environments. This is because the OSS development process is
complex, dynamic, and uncertain. Compared with other models, the fitting and prediction
performances of the Wang model and Li model are at a standard level. Because the two
RMs of OSS are based on perfect debugging without considering the introduction of faults
in the development process of OSS, their fitting and prediction performance is of a standard
level. Considering the complexity of fault introduction, i.e., stochastic changes in fault
introduction, the PM shows a better fitting and prediction performance than other models.
As a result, the PM can be used to assess the real reliability of OSS and can better adjust to
the OSS development environment.

In addition, from Tables 3–20, we can see that when 100% and 85% of the fault data
are fitted, respectively, the PM parameters are very different. In general, the more fault
data sets that are fitted, the better the fitting performance of the model is. However, the
prediction performance of the model may not be good. This can also be seen from the above
experiments. For instance, the PM has the best prediction performance when using 85% of
the data (DS1-2, DS2-1, DS2-2, and DS2-3), but it does not have the best fitting performance.
On the other hand, this illustrates the complexity of OSS RM, and the quality of OSS fault
data collection is also an important factor affecting the performance of software RMs.

On the other hand, we have conducted experiments on 95% confidence intervals of
the fault data for the PM using the MLE method. From Figure 4f, we can see that one point
falls out of the 95% confidence intervals, but it will not have much impact on the estimation
of model parameters. We argue that this phenomenon may be caused by the complexity
and uncertainty of OSS development and the testing environment. Therefore, it is very
difficult to establish an OSS RM. In summary, from Figure 4, we can clearly see that most of
the fault data points that are estimated by the PM fall well within 95% confidence intervals.
These results show that the PM simulates the FD and fault introduction processes in OSS
development and testing processes well, and its parameter value estimation is guaranteed.

Overall, using LSE and MLE to estimate the parameter values of the PM can effectively
fit the fault data of OSS and can accurately estimate the number of remaining faults in
the software. Thus, compared with other models, the PM has a better goodness-or-fit and
predictive performance. Meanwhile, the PM has good stability, adaptability, and robustness
when evaluating the reliability of OSS.

Appl. Sci. 2024, 14, x FOR PEER REVIEW  26  of  34 
 

 
(a)  (b) 

 
(c)  (d) 

(e)  (f) 

Figure 4. The 95% confidence intervals for fault data. (a,c,e) represent 95% confidence intervals using 

100% of the data for DS-1, DS4-2, and DS4-3, respectively. (b,d,f) represent 95% confidence intervals 

using 80% of the data for DS4-1, DS4-2, and DS4-3, respectively. 

5. Sensitivity Analysis 

Figure 4. Cont.



Appl. Sci. 2024, 14, 708 26 of 34

Appl. Sci. 2024, 14, x FOR PEER REVIEW  26  of  34 
 

 
(a)  (b) 

 
(c)  (d) 

(e)  (f) 

Figure 4. The 95% confidence intervals for fault data. (a,c,e) represent 95% confidence intervals using 

100% of the data for DS-1, DS4-2, and DS4-3, respectively. (b,d,f) represent 95% confidence intervals 

using 80% of the data for DS4-1, DS4-2, and DS4-3, respectively. 

5. Sensitivity Analysis 

Figure 4. The 95% confidence intervals for fault data. (a,c,e) represent 95% confidence intervals using
100% of the data for DS-1, DS4-2, and DS4-3, respectively. (b,d,f) represent 95% confidence intervals
using 80% of the data for DS4-1, DS4-2, and DS4-3, respectively.

5. Sensitivity Analysis

The purpose of a sensitivity analysis is to investigate which parameters have an
important influence on the model. In general, sensitivity analysis refers to changing one
parameter in a model while keeping the other parameters unchanged. In other words, we
analyze a parameter’s variation in the model to see how it affects the model’s performance.
For software developers, when estimating model parameters, they can focus on the changes
in the sensitivity parameters of the model, reduce the impact of the model parameters on
the performance of the software RM, and improve the accuracy of evaluating software
reliability.

We conducted sensitivity analysis experiments using a fault data set (DS1-3) and
estimated the parameter values of the PM using LSE. As can be seen from Figure 5a, we
changed the parameter a of the PM while ensuring that the other parameters of the PM do
not change. When parameter a = 150.02 becomes a = 300, a = 100, or a = 10, the cumulative
number of faults estimated by the PM is subject to significant changes. Thus, we believe
that parameter a is has significant impact on the PM, that is, it is a sensitivity parameter.
Similarly, we conducted sensitivity analysis experiments on other parameters of the PM
and found that parameters b, β, θ, d, and σ of the PM have a major impact. We analyze the
reasons as follows:
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(1) The total number of original faults (a) in an OSS has an important impact in the
process of the OSS development. Because the number of faults in the OSS directly
affects and determines the quality and reliability of the OSS, it is a necessary factor to
be considered when establishing the RM of OSS.

(2) The FD rate (b) is also an important factor during OSS development and testing. It
determines the probability that faults in an OSS will be detected. Its change directly
affects the number of faults detected in the OSS. It also determines the number of
remaining faults in the OSS. Therefore, it is necessary to consider the influence of the
FD rate when establishing the RM of OSS.

(3) The inflection factor (β) affects the curve shape change in an OSS model. Its changes
are related to learning phenomena in the OSS FD. Due to the complexity of OSS FD,
community contributors need to continuously learn software in order to continue the
development and testing of OSS. So, it has an important impact on OSS reliability
modeling.

(4) Fault introduction (θ) also affects the reliability modeling of an OSS. Its changes are
related to changes in OSS functions and features. At the same time, its changes also
reflect the efficiency of the OSS to completely remove faults.

(5) Parameter d of the PM is also an important parameter. Its changes reflect complicated
changes in the introduced faults of an OSS. Its complex changes show the complexity,
uncertainty, and randomness of fault introduction for OSS. For example, the PM fits
well with the shape of the actual cumulative number of detected faults.

(6) The irregular fluctuation factor σ is also an important parameter. In the process of OSS
development, testing, and debugging, fault introduction presents random changes.
The fault introduction intensity function changes irregularly over time. Its changes
also reflect the complexity, uncertainty, and randomness of fault introduction.

In summary, all of the PM’s parameters are significant. The PM can well adapt to com-
plicated and uncertain changes in the process of OSS development. The sensitivity analysis
of parameters also shows that many factors need to be considered in the establishment of
the OSS RM, especially factors that affect random changes in fault introduction during the
development of OSS.
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Figure 5. Sensitivity analysis of the PM parameters using 100% of DS1-3. (a) represents changes in
parameter a of the PM. (b) represents changes in parameter b of the PM. (c) represents changes in
parameter θ of the PM. (d) represents changes in parameter d of the PM. (e) represents changes in
parameter σ of the PM. (f) represents changes in parameter β of the PM.

6. Threats to Validity

The weakness of the PM arises mainly from three aspects. First, the quality of the PM
is affected by external factors. Second, the performance of the PM is affected by internal
factors. Third, the performance of the PM is affected by the quality of the fault data sets
and the construct threats.

External factors: First, in order to effectively compare and verify the performance of
the PM, more types and quantities of OSS fault data sets should be used for the correspond-
ing model comparison experiments. Second, the source of all the data sets is the same. The
validity of the PM may be impacted by the possibility that Apache has a specific environ-
ment or culture that sets it apart from other OSS projects. Third, more OSS and CSS RMs are
used for the model comparison experiments. We have used four OSS projects from Apache
products, and each project among them has three successive OSS releases. Hence, in order
to verify the performance of the model, we employed twelve sets of OSS fault data sets.
These fault data sets of the OSS meet the basic requirements of verifying the performance
of the model. We also use eight classic software RMs for model comparison experiments
(including CSS and OSS RMs, which are perfect debugging models and ID models). These
classic software RMs basically meet the quantity needs of model comparison.
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Internal factors: Considering the complexity of OSS modeling, in order to derive the
analytical solution of the OSS RM, we simplify the process of model derivation and expand
and simplify some expressions with the Taylor formula. Although this may have a certain
impact on the performance of the PM, the simplified method is beneficial to the PM for
practical OSS reliability evaluation. Moreover, the impact of the simplified method on the
PM is slight, which can be ignored in general.

Quality of fault data sets: Because the faults in an OSS are primarily detected by
volunteers and users around the world, there are a few duplicate faults and other noises
in the detected faults. When these faults are used to evaluate the reliability of an OSS, the
performance of the PM may be affected, and in some cases, the performance of the PM may
be lower than that of other models. This issue also needs further study in the future.

Construct validity: Because the faults of an OSS exist in bug tracking systems, they
are called issues. Each issue includes multiple types of faults. Each fault includes multiple
attributes. The statuses of some fault attributes are difficult to determine in terms of
whether they are current faults. Therefore, there will be some ambiguity when selecting
fault data sets. In addition, it will also have a certain impact on the quality of OSS fault
data sets. Although it has little impact on the reliability assessment of an OSS as a whole, it
may have a certain impact on the accuracy of the reliability assessment of the OSS.

7. Conclusions

In this paper, we propose an RM of OSS based on random changes in fault intro-
duction. In order to estimate model parameters, we use LSE and MLE. We undertake
model performance comparison experiments using four fault data sets from Apache OSS
projects, six model comparison standards, and eight classic software RMs. According to
our experimental findings, the PM performs better in terms of fitting and prediction than
other traditional OSS and CSS RMs. A parameter sensitivity study of the PM reveals that
each parameter has a significant impact. These show that the PM cannot only adapt to
changes of the OSS development environment, but also assist developers or managers to
effectively evaluate the reliability of OSS.

Research shows that learning factors and fault introduction are important aspects in
the process of OSS development. The development of OSS is significantly impacted by
changes in fault introduction and learning factors. In particular, stochastic changes in fault
introduction have an important impact on OSS reliability modeling. Only when learning
factors and the random change in fault introduction are fully considered, can OSS RMs
with strong adaptability and robustness be effectively developed.

Considering the complex changes in FD and their introduction in the development
process of OSS, as well as the delay between FD and introduction, future research is being
prepared to integrate the stochastic changes of FD and introduction and the delay between
FD and introduction to establish the corresponding OSS RM.
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Abbreviations

Acronyms
NHPP Nonhomogeneous Poisson Process
LSE Least Squared Estimation
MLE Maximum Likelihood Estimation
MVF Mean Value Function
OSS Open-Source Software
SIF Stochastically Introduced Fault
PM Proposed Model
CSS Closed-Source Software
RM Reliability Model
FDR Fault Detection Rate
IF Inflection Factor
NF New Fault
FD Fault Detection
ID Imperfect Debugging
Notations
ψ(t) Expected cumulative number of the detected faults by time t
ϕ(t) Fault content function
b(t) Fault detection rate function
µ(t) Intensity function of software fault introduction
γ(t) Standardized white noise of Gaussian
η(t) One-dimensional Wiener process with a Gaussian distribution
Λ(t) Number of faults observed by time t
σ Magnitude of the irregular fluctuation
a Expected total number of initially detected faults
b Fault detection rate
d Shape parameter
β Inflection factor
θ Rate parameter of the intensity of fault introduction

Appendix A 
dψ(t)

dt = b(t)(ϕ(t)− ψ(t)) (A1)
dϕ(t)

dt = µ(t)ϕ(t) (A2)
b(t) = b

1+β exp(−bt) (A3)

Equation (A2) can be expanded as follows [45,46]:

dϕ(t)
dt

= {µ(t) + σγ(t)}ϕ(t) (A4)

We expand Equation (A4) with It
⌢
o ’s formula [45,46]:

dϕ(t) =
{

µ(t) +
1
2

σ2
}

ϕ(t)dt + σϕ(t)dη(t) (A5)

where η(t) is a one-dimensional Wiener process which is a Gaussian distribution. The
properties of the Wiener process are as follows:

Pr[η(0) = 0] = 1
E[η(t)] = 0
E[η(t)η(t′)] = Min[t, t′]
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When t = 0, ϕ(t) = a. We can derive the following solution of Equation (A5) by using
It
⌢
o type formula.

ϕ(t) = a exp(
∫ t

0
µ(x)dx + ση(t)) (A6)

We assumed that the intensity function of the fault introduction obeys the
Weibull distribution. ∫ t

0
µ(x)dx = (1 − exp(−θtd)) (A7)

Substituting Equation (A7) into Equation (A6), the density function of η(t) is defined
as follows:

f (η(t)) =
1√
2πt

exp{−η(t)2/2t} (A8)

We can derive the following expected value from Equation (A6):

E[ϕ(t)] = a exp(1 − exp(−θtd) +
1
2

σ2t) (A9)

Given D(t) =
∫ t

0 b(t)dt, then exp(D(t)) = β+exp(bt)
1+β . Equation (A1) is multiplied by

exp(D(t)) on both sides:

exp(D(t))dψ(t) + b(t) exp(D(t))ψ(t)dt = b(t) exp(D(t))ϕ(t)dt (A10)

The two sides of Equation (A10) are integrated:∫
exp(D(t))dψ(t) + b(t) exp(D(t))ψ(t)dt =

∫
b(t) exp(D(t))ϕ(t)dt (A11)

exp(D(t))ψ(t) =
∫

b(t) exp(D(t))ϕ(t)dt
ψ(t) = exp(−D(t))

∫
ϕ(t)d(exp(D(t)))

= exp(−D(t))(ϕ(t) exp(D(t))−
∫

exp(D(t))d(ϕ(t))
= ϕ(t)− exp(−D(t))

∫
exp(D(t))d(ϕ(t))

= ϕ(t)
1+β exp(−bt) −

∫
exp(bt)d(ϕ(t))
β+exp(bt)

(A12)

To simplify the calculation, we expand the following formula with Taylor formula:

exp(−θtd) ≈ 1 (A13)

td−1 ≈ 0 (A14)

Substituting Equations (A13) and (A14) into Equation (A9),

dϕ(t) = a exp(
1
2

σ2t)
1
2

σ2dt (A15)

Substituting Equation (A15) into Equation (A12),

ψ(t) = ϕ(t)
1+β exp(−bt) −

aσ2(exp((b+ 1
2 σ2)t)+C)

(β+exp(bt))(2b+σ2)

=
a exp(1−exp(−θtd)+ 1

2 σ2t)
1+β exp(−bt) − aσ2(exp((b+ 1

2 σ2)t)+C)
(β+exp(bt))(2b+σ2)

(A16)

when t = 0, ψ(t) = 0 and ϕ(t) = a, then

C =
2b + σ2

σ2 − 1 (A17)

Substituting Equation (A17) into Equation (A16),
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ψ(t) =
a exp(1 − exp(−θtd) + 1

2 σ2t)
1 + β exp(−bt)

−
aσ2 exp(−bt)(exp((b + 1

2 σ2)t) + 2b+σ2

σ2 − 1)

(1 + β exp(−bt))(2b + σ2)
(A18)
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17. Mičko, R.; Chren, S.; Rossi, B. Applicability of Software Reliability Growth Models to Open Source Software. In Proceedings of

the 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Gran Canaria, Spain, 31 August–2
September 2022; IEEE: New York, NY, USA, 2002; pp. 255–262.

18. Zhu, M.; Pham, H. A multi-release software reliability modeling for open source software incorporating dependent fault detection
process. Ann. Oper. Res. 2017, 269, 773–790. [CrossRef]

19. Wang, J. Model of Open Source Software Reliability with Fault Introduction Obeying the Generalized Pareto Distribution. Arab. J.
Sci. Eng. 2021, 46, 3981–4000. [CrossRef]

20. Wang, J. Open source software reliability model with nonlinear fault detection and fault introduction. J. Softw. Evol. Process. 2021,
33, e2385. [CrossRef]

21. Huang, Y.S.; Chiu, K.C.; Chen, W.M. A software reliability growth model for imperfect debugging. J. Syst. Softw. 2022, 188, 111267.
[CrossRef]

22. Yaghoobi, T.; Leung, M.-F. Modeling Software Reliability with Learning and Fatigue. Mathematics 2023, 11, 3491. [CrossRef]
23. Singh, S.; Mehrotra, M.; Bharti, T.S. Modeling Reliability Growth among Different Issue Types for Multi-Version Open Source

Software. In Proceedings of the 6th International Conference on Information Systems and Computer Networks (ISCON),
Mathura, India, 3–4 March 2023; IEEE: New York, NY, USA, 2023; pp. 1–5.

24. Singhal, S.; Kapur, P.K.; Kumar, V.; Panwar, S. Stochastic debugging based reliability growth models for Open Source Software
project. Ann. Oper. Res. 2023, 1–39. [CrossRef]

https://doi.org/10.1016/j.infsof.2011.04.005
https://doi.org/10.1093/comjnl/bxy111
https://doi.org/10.1145/1083258.1083273
https://doi.org/10.1109/IEEM.2012.6837840
https://doi.org/10.1177/1748006X12475110
https://doi.org/10.1109/ICPADS.2005.111
https://doi.org/10.1109/SSIRI.2008.14
https://doi.org/10.1080/00207720802556245
https://doi.org/10.1109/ICMECH.2007.4279994
https://doi.org/10.1109/ICSMC.2007.4413582
https://doi.org/10.1080/08982112.2017.1310229
https://doi.org/10.1109/TSE.2014.2354032
https://doi.org/10.1109/TR.2013.2285056
https://doi.org/10.1109/COMPSAC.2011.55
https://doi.org/10.1007/s10479-017-2556-6
https://doi.org/10.1007/s13369-021-05382-4
https://doi.org/10.1002/smr.2385
https://doi.org/10.1016/j.jss.2022.111267
https://doi.org/10.3390/math11163491
https://doi.org/10.1007/s10479-023-05240-6


Appl. Sci. 2024, 14, 708 33 of 34

25. Liu, X.; Xie, N. Grey-based approach for estimating software reliability under nonhomogeneous Poisson process. J. Syst. Eng.
Electron. 2022, 33, 360–369. [CrossRef]

26. Jagtap, M.; Katragadda, P.; Satelkar, P. Software Reliability: Development of Software Defect Prediction Models Using Ad-
vanced Techniques. In Proceedings of the Annual Reliability and Maintainability Symposium (RAMS), Tucson, AZ, USA,
24–27 January 2022; IEEE: New York, NY, USA, 2022; pp. 1–7.

27. Garg, R.; Raheja, S.; Garg, R.K. Decision support system for optimal selection of software reliability growth models using a hybrid
approach. IEEE Trans. Reliab. 2021, 71, 149–161. [CrossRef]

28. Singh, V.; Kumar, V.; Singh, V.B. Optimal Selection of Software Reliability Growth Models: A CRITIC-CODAS Technique. In
Proceedings of the 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future
Directions) (ICRITO), Noida, India, 13–14 October 2022; IEEE: New York, NY, USA, 2022; pp. 1–6.

29. Yaghoobi, T. Selection of optimal software reliability growth model using a diversity index. Soft Comput. 2021, 25, 5339–5353.
[CrossRef]

30. Yang, J.; Liu, Y.; Xie, M.; Zhao, M. Modeling and analysis of reliability of multi-release open source software incorporating both
fault detection and correction processes. J. Syst. Softw. 2016, 115, 102–110. [CrossRef]

31. Saraf, I.; Shrivastava, A.; Iqbal, J. Generalised fault detection and correction modelling framework for multi-release of software.
Int. J. Ind. Syst. Eng. 2020, 34, 464–493. [CrossRef]

32. Khurshid, S.; Shrivastava, A.; Iqbal, J. Generalized Multi-Release Framework for Fault Prediction in Open Source Software. Int. J.
Softw. Innov. 2019, 7, 86–107. [CrossRef]

33. Singh, V.; Sharma, M.; Pham, H. Entropy Based Software Reliability Analysis of Multi-Version Open Source Software. IEEE Trans.
Softw. Eng. 2017, 44, 1207–1223. [CrossRef]

34. Chatterjee, S.; Saha, D.; Sharma, A. Multi-upgradation software reliability growth model with dependency of faults under change
point and imperfect debugging. J. Softw. Evol. Process. 2021, 33, e2344. [CrossRef]

35. Gandhi, N.; Sharma, H.; Aggarwal, A.G.; Tandon, A. Reliability Growth Modeling for Oss: A Method Combining the Bass Model
and Imperfect Debugging. In Smart Innovations in Communication and Computational Sciences; Springer: Singapore, 2019; pp. 23–34.
[CrossRef]

36. Diwakar; Aggarwal, A.G. Multi Release Reliability Growth Modeling for OSS under Imperfect Debugging. In System Performance
and Management Analytics; Springer: Singapore, 2019; pp. 77–86. [CrossRef]

37. Tandon, A.; Neha; Aggarwal, A.G. Testing coverage based reliability modeling for multi-release open-source software incorporat-
ing fault reduction factor. Life Cycle Reliab. Saf. Eng. 2020, 9, 425–435. [CrossRef]

38. Saraf, I.; Iqbal, J.; Shrivastava, A.K.; Khurshid, S. Modelling reliability growth for multi-version open source software considering
varied testing and debugging factors. Qual. Reliab. Eng. Int. 2021, 38, 1814–1825. [CrossRef]

39. Pradhan, V.; Kumar, A.; Dhar, J. Modelling software reliability growth through generalized inflection S-shaped fault reduction
factor and optimal release time. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2021, 236, 18–36. [CrossRef]

40. Yang, J.; Wang, X.; Huo, Y.; Cai, J. Change point reliability modelling for open source software with masked data using expectation
maximization algorithm. In Proceedings of the 2020 Global Reliability and Prognostics and Health Management (PHM-Shanghai),
Yantai, China, 13–16 October 2022; pp. 16–18. [CrossRef]

41. Yang, J.; Chen, J.; Wang, X. EM Algorithm for Estimating Reliability of Multi-Release Open Source Software Based on General
Masked Data. IEEE Access 2021, 9, 18890–18903. [CrossRef]

42. Yang, J.; Zhao, M.; Chen, J. ELS algorithm for estimating open source software reliability with masked data considering both fault
detection and correction processes. Commun. Stat.—Theory Methods 2021, 51, 6792–6817. [CrossRef]

43. Xiao, H.; Cao, M.; Peng, R. Artificial neural network based software fault detection and correction prediction models considering
testing effort. Appl. Soft Comput. 2020, 94, 106491. [CrossRef]

44. Rani, P.; Mahapatra, G.S. Entropy based enhanced particle swarm optimization on multi-objective software reliability modelling
for optimal testing resources allocation. Softw. Test. Verif. Reliab. 2021, 31, e1765. [CrossRef]

45. Arnold, L. Stochastic Differential Equations-Theory and Applications; John Wiley & Sons: New York, NY, USA, 1974.
46. Wong, E. Stochastic Processes in Information and Systems; McGrawHill: New York, NY, USA, 1971.
47. Goel, A.L.; Okumoto, K. Time-Dependent Error-Detection Rate Model for Software Reliability and Other Performance Measures.

IEEE Trans. Reliab. 1979, R-28, 206–211. [CrossRef]
48. Illes-Seifert, T.; Paech, B. Exploring the relationship of a file’s history and its fault-proneness: An empirical method and its

application to open source programs. Inf. Softw. Technol. 2010, 52, 539–558. [CrossRef]
49. Bishop, P.G.; Pullen, F.D. Error Masking: A Source of Failure Dependency in Multi-Version Programs. In Dependable Computing

and Fault-Tolerant Systems; Springer: Vienna, Austria, 1991. [CrossRef]
50. Yamada, S.; Ohba, M.; Osaki, S. S-Shaped Reliability Growth Modeling for Software Error Detection. IEEE Trans. Reliab. 1983,

R-32, 475–484. [CrossRef]
51. Ohba, M. Inflection S-Shaped Software Reliability Growth Model. In Stochastic Models in Reliability Theory; Springer:

Berlin/Heidelberg, Germany, 1984; pp. 144–162. [CrossRef]
52. Yamada, S.; Tokuno, K.; Osaki, S. Imperfect debugging models with fault introduction rate for software reliability assessment. Int.

J. Syst. Sci. 1992, 23, 2241–2252. [CrossRef]

https://doi.org/10.23919/JSEE.2022.000038
https://doi.org/10.1109/TR.2021.3104232
https://doi.org/10.1007/s00500-020-05532-0
https://doi.org/10.1016/j.jss.2016.01.025
https://doi.org/10.1504/IJISE.2020.106085
https://doi.org/10.4018/IJSI.2019100105
https://doi.org/10.1109/TSE.2017.2766070
https://doi.org/10.1002/smr.2344
https://doi.org/10.1007/978-981-10-8968-8_3
https://doi.org/10.1007/978-981-10-7323-6_7
https://doi.org/10.1007/s41872-020-00148-7
https://doi.org/10.1002/qre.3048
https://doi.org/10.1177/1748006X211033713
https://doi.org/10.1109/PHM-Shanghai49105.2020.9280964
https://doi.org/10.1109/ACCESS.2021.3054760
https://doi.org/10.1080/03610926.2020.1866610
https://doi.org/10.1016/j.asoc.2020.106491
https://doi.org/10.1002/stvr.1765
https://doi.org/10.1109/TR.1979.5220566
https://doi.org/10.1016/j.infsof.2009.11.010
https://doi.org/10.1007/978-3-7091-9123-1_3
https://doi.org/10.1109/TR.1983.5221735
https://doi.org/10.1007/978-3-642-45587-2_10
https://doi.org/10.1080/00207729208949452


Appl. Sci. 2024, 14, 708 34 of 34

53. Pham, H.; Nordmann, L.; Zhang, Z. A general imperfect-software-debugging model with S-shaped fault-detection rate. IEEE
Trans. Reliab. 1999, 48, 169–175. [CrossRef]

54. Goel, A. Software Reliability Models: Assumptions, Limitations, and Applicability. IEEE Trans. Softw. Eng. 1985, SE-11, 1411–1423.
[CrossRef]

55. Sharma, K.; Garg, R.; Nagpal, C.K. Selection of Optimal Software Reliability Growth Models Using a Distance Based Approach.
IEEE Trans. Reliab. 2010, 59, 266–276. [CrossRef]

56. Huang, C.-Y.; Lyu, M.R. Estimation and Analysis of Some Generalized Multiple Change-Point Software Reliability Models. IEEE
Trans. Reliab. 2011, 60, 498–514. [CrossRef]

57. Erto, P.; Giorgio, M.; Lepore, A. The Generalized Inflection S-Shaped Software Reliability Growth Model. IEEE Trans. Reliab. 2018,
69, 228–244. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/24.784276
https://doi.org/10.1109/TSE.1985.232177
https://doi.org/10.1109/TR.2010.2048657
https://doi.org/10.1109/TR.2011.2134350
https://doi.org/10.1109/TR.2018.2869466

	Introduction 
	Related Work 
	Modeling Fault Introduction Process 
	Numerical Examples 
	Fault Data Sets for OSS 
	Model Comparison Criteria 
	Estimating Model Parameters 
	Analysis and Discussion of Model Performance Comparison Using LSE Estimation Parameter Values 

	Sensitivity Analysis 
	Threats to Validity 
	Conclusions 
	Appendix A
	References

