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Abstract: With the development of communications technology, surface acoustic wave (SAW) and
bulk acoustic wave (BAW) devices have become hotspots of the competitive research in the frequency
band above GHz. It imposes higher requirements on the operating frequency, temperature coefficient
of frequency (TCF), and electromechanical coupling coefficient (k2) of SAW devices. In this work, we
reported on a novel ZnO/SiO2/diamond-layered resonator structure and systematically investigated
its propagation characteristics by using finite element methods. A comparative study and analysis
of k2 and acoustic velocity (vp) for both the excited Rayleigh mode and the Sezawa mode were
conducted. By selecting the appropriate ZnO piezoelectric film, SiO2, and electrode thickness, the
Sezawa mode was chosen as the main mode, effectively improving both k2 and vp. It was observed
that the k2 of the Sezawa mode is 7.5 times that of the excited Rayleigh mode and nearly 5 times
that of piezoelectric single-crystal ZnO; vp is 1.7 times that of the excited Rayleigh mode and nearly
1.5 times that of piezoelectric single-crystal ZnO. Furthermore, the proposed multilayer structure
achieves a TCF close to 0 while maintaining a substantial k2. In practical applications, increasing the
thickness of SiO2 can compensate for the device’s TCF reduction caused by the interdigital transducer
(IDT). Finally, this study explored the impact of increasing the aperture width and IDT pairs on
the performance of the single-port resonator, revealing the changing patterns of quality factor (Q)
values. The results reported here show that the structure has great promise for the fabrication of
high-frequency and low-TCF SAW devices.

Keywords: surface acoustic wave; ZnO piezoelectric film; finite element method; Sezawa wave;
Rayleigh wave

1. Introduction

With the wide application of SAW devices in the field of fifth-generation (5G) mobile
communications [1,2], the requirements for their performance are increasing. They are
gradually developing towards high frequenc, large electromechanical coupling coefficients,
and high-temperature stability [3–5]. There are three main approaches to the realization of
high-frequency devices: (1) By improving the photolithography precision. The SAW device
operating frequency is related to the electrode width of the IDT [6]. However, high-precision
lithography is expensive and the electrode is too fine for the device power tolerance to be
tested [7]. (2) By selecting waves with higher sound speeds, such as Rayleigh wave < SH
wave < Sezawa wave [8]. (3) With the development of piezoelectric thin-film technology,
by selecting the advantages of multilayer dielectrics composed of different materials. It is
possible to improve the phase velocity and electromechanical coupling coefficients of SAW
devices, as well as the temperature stability, which reduces the photolithographic accuracy
required for device production [9,10].

Devices of common piezoelectric materials, such as LiNbO3 and LiTaO3, are difficult
to integrate on chip with other circuits or microelectromechanical systems (MEMS) devices
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due to the limitation of the cut angle, and the range of applications is greatly restricted [11].
The SAW devices based on piezoelectric thin films using ZnO and AlN can be fabricated
on a variety of substrates, which makes them very suitable for integration with other parts
of the system, and they have high research value in the fabrication of high-frequency SAW
devices [12,13]. ZnO piezoelectric films have the advantages of favorable piezoelectricity,
easy preparation, low insertion loss, etc. Relevant studies have shown that ZnO piezoelec-
tric films have a high degree of orientation in any substrate deposition, which is because
ZnO crystals will always grow in the direction of the lowest free energy at the surface, and
thus, ZnO piezoelectric films have better consistency [14–16]. Among various substrates,
diamond substrates have extremely high sound velocity, which is conducive to the pro-
duction of high-frequency SAW devices [17]. In addition, the thermal conductivity of a
diamond is very high; thus, it can effectively transfer and disperse heat, thereby improving
the power tolerance of SAW devices.

Reference [18] investigated the properties of acoustic surface waves propagating in
structures of ZnO/Si and ZnO/AlN/Si. The numerical analysis involved examining the
vp, k2, and TCF of the first two mode frequencies of the SAWs in the ZnO/Si structure.
Then, the results of the analysis were compared to the experimental data. Reference [19]
achieved a k2 of 6.6% for the Rayleigh mode by employing embedded electrodes based
on the ZnO/SiO2/Al2O3 structure, which is feasible for the fabrication of a broadband
acoustic surface wave device, but the selected Rayleigh wave is only available for a low
vp of 2960 m/s. The propagation characteristics of acoustic surface waves in ZnO film/R-
sapphire structures were investigated in reference [20]. The Rayleigh wave was found
to have a large k2 of 4.95% and a phase velocity of 5300 m/s in ZnO film/R-sapphire
substrates, but the TCF of their devices was not satisfactory.

In order to improve the operating frequency, bandwidth, and temperature stability
of piezoelectric single-crystal ZnO SAW devices, in this work, we introduced a novel
ZnO/SiO2/diamond-layered structure in the design of SAW devices. A 3D model was
established using the finite element method (FEM). The eigenfrequency solving and fre-
quency domain simulation were carried out to obtain the effects of ZnO piezoelectric thin
film, SiO2 temperature complementary layer, and electrode thickness on the performance
of Rayleigh and Sezawa waves. Then, a performance comparison between Rayleigh and
Sezawa waves was made. The simulation results show that the Sezawa wave as the main
mode in this structure has obvious advantages over the Rayleigh wave in terms of k2, vp,
etc. By simulating the admittance of the single-port resonator to obtain the Q-value change
rule, this paper provides a feasible solution in terms of the design and optimization of
high-frequency SAW devices.

2. Simulation Principle and Model Structure
2.1. Model Structure

In this study, COMSOL 6.1 software was used to model and simulate the designed
multilayer structures. Figure 1a shows a schematic of a 3D unit cycle of an IDT/ZnO/SiO2/
diamond structure. The terms h1, h2, and h3 denote the thicknesses of the ZnO piezoelectric
film, the temperature complementary layer, and the IDT electrodes whose material is Al.
The SAW device’s wavelength (λ) is 2 µm. Since the majority of the energy of the SAW
device is limited to one wavelength, the diamond substrate is set to a fixed value of 4 λ,
and the thickness of the perfectly matched layer (PML) at the bottom is 1 λ, which not only
reduces the model size but also avoids the boundary reflection at the bottom [21]. This
work applies a terminal rated at 1 V to one of the electrodes and grounds the other. The
distance between each electrode in the model is 0.25 λ, and the metallization rate (MR) is
designed to be 50%. In this work, the model has a period of 1 λ along the x direction and
the thickness is set to 0.2 λ along the y direction. For the design of the boundary conditions
of the model, it is assumed that the infinite-length plate is modeled with periodic boundary
conditions in both the x and y directions and that the bottom of the PML is fixed. Figure 1b
shows a schematic of meshing of the model in COMSOL with a mesh size of λ/8.
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Figure 1. Schematic diagram of the construction model: (a) IDT/ZnO/SiO2/diamond; (b) mesh
delineation.

2.2. Model’s Material Parameters

Table 1 lists the various material parameters utilized in the simulation model seen
in Figure 1, where the tangential direction of the ZnO piezoelectric film is set to (0, 0,
0) by the rotational coordinate system in COMSOL, and all the studies in this paper are
centered around this tangential ZnO piezoelectric film [22]. The model in this study utilizes
materials such as Al, ZnO, diamond, and SiO2. Table 1 presents the primary parameters of
these materials, which were obtained from the COMSOL software database [23–26].

Table 1. Material parameters used in calculations.

Item Symbol Al ZnO SiO2 Diamond

Elastic constant (1011 N/m2)

C11 1.11 2.096 0.785 11.531
C12 0.59 1.205 0.161 0.864
C13 0.59 1.046 0.161 0.864
C33 1.11 2.106 0.785 11.531
C44 0.26 0.423 0.311 5.333

Temperature coefficients of elastic constants (10−4/◦C)

TC11 −5.9 −1.12 2.39 −0.14
TC13 −0.8 −1.61 5.84 −0.57
TC33 −5.9 −1.23 2.39 −0.14
TC44 −5.2 −0.70 1.51 −0.125

Piezoelectric constants (C/m2)
e15 - −0.48 - -
e31 - −0.573 - -
e33 - 1.321 - -

Relative dielectric constants
ε11/ ε0 1 8.55 3.32 5.67
ε33/ε0 1 10.2 3.32 5.67

Mass density (103 kg/m3) p 2.7 5.665 2.2 3.512
Temperature coefficients of mass density (10−6/◦C) TP −1.65 −10.1 −54 −3.6
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3. Simulation Performance Analysis
3.1. Modal Analysis

The theory governing the SAW resonator postulates that the SAW induced by the IDT
can be comprehended as a combination of multiple pairs of IDT excitation signals. Conse-
quently, the link between the inherent frequency of the SAW and λ may be ascertained [27]:

f0 =
vp

λ
(1)

where f 0 is the center frequency of the SAW device and vp is the propagation speed of the
sound wave. The propagation velocity vp of the SAW can be found by using the following
formula:

vp =
λ( fsc+ + fsc−)

2
(2)

where f sc+ and f sc− are the symmetric and antisymmetric mode frequencies of the SAW,
respectively [28].

The k2 value for the device’s electromechanical coupling can be computed by using
the following equation [29]:

k2 =
π2(

4
fsc+ − fsc−)

fsc+
(3)

The TCF can be computed by substituting the parameters T = 0 ◦C and T0 = 25 ◦C into
the given equation and calculating the resulting vp [30]:

TCF =
1

T − T0

v(T)− v(T0)

v(T0)
(4)

Due to the higher sound velocity of the diamond substrate compared to that of the
ZnO piezoelectric film, the Rayleigh and Sezawa modes coexist in a single multilayer
structure [17]. Firstly, a ZnO/SiO2/diamond model is developed to characterize the
propagation of acoustic waves in this layered structure. The effectiveness of SAW devices
featuring multilayer film designs depends on multiple factors, including the thickness of
the piezoelectric film and IDT, the construction of the transducer, and the characteristics of
the piezoelectric material. In a layered system in which the SAW is a dispersive wave, the
ratio of the acoustic wave’s wavelength to the thickness of the various films, including the
piezoelectric film, determines the acoustic parameters’ dispersive characterization. As a
result, optimizing the geometric parameters can significantly enhance the SAW device’s
performance. Following that, by using the method of controlling variables, specifically
when the thickness of the Al electrode can be considered negligible, this study investigates
the influence of the normalized thickness variations (h1/λ, h2/λ) of the ZnO film and SiO2
layer on the vp and k2 of the Rayleigh and Sezawa modes in this structure. Next, the effect
of IDT thickness on the acoustic performance of the Rayleigh and Sezawa modes when
h1/λ = 0.4 and h2/λ = 0.2 is investigated, and the modal analyses of the Rayleigh and
Sezawa modes are conducted after determining the parameters, as seen in Figure 2, which
shows the resonance modes of the Rayleigh and Sezawa waves.
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3.2. Piezoelectric and SiO2 Film Effects on the Properties of SAW Propagation

To investigate the effects of ZnO and SiO2 films on the properties of SAW propagation,
the k2 curves of the Rayleigh and Sezawa waves in the ZnO/SiO2/diamond structure
are shown in Figure 3. Here, the thickness of the Al electrode is negligible, where the
normalized film h1/λ = 0.1, 0.2, 0.3, 0.4, 0.5. From Figure 3a, it can be concluded that the k2

of the Rayleigh wave gradually increases with the growth of h1/λ, and the value of k2 is
approximately 1.2% when h1/λ = 0.5. When the thickness of the ZnO is determined, there
is a smaller increase in k2 than the growth of h2/λ. As can be seen in Figure 3b, the k2 of the
Sezawa wave increases monotonically and then decreases as h1/λ increases, and it reaches
a maximum value near 4% when h1/λ = 0.4. This phenomenon is due to the displacement
characteristics of the Sezawa wave. When the piezoelectric film is thin, the energy of the
Sezawa wave is more concentrated in the piezoelectric layer as h1/λ increases, and k2

increases. However, when h1/λ exceeds a suitable range, the advantage of the multilayer
structure decreases, and the excitation strength of the Sezawa wave is weakened. When
h1/λ is 0.1 and 0.2, k2 increases monotonically with the increase in h2/λ, and k2 increases
and then decreases with the increase in h2/λ when h1/λ is 0.3, 0.4, and 0.5.
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Significantly, in the ZnO/SiO2/diamond structure, the k2 of the Rayleigh wave is
always lower than the k2 of the Sezawa wave, especially when h1/λ = 0.4. The k2 of the
Sezawa wave is 3.4 times larger than the k2 of the Rayleigh wave, and the vp of the Sezawa
wave is 1.5 times larger than the vp of the Rayleigh wave.

The findings presented in Figure 4 demonstrate that, although five distinct ZnO thick-
nesses are chosen for comparison, the vp of the Rayleigh wave and that of the Sezawa wave
both diminish as h2/λ increases because the acoustic energy becomes more constrained
within the SiO2 layer. Nonetheless, it is evident that when h2/λ increases, the resonance
frequency of the Rayleigh mode is more impacted, but the Sezawa mode’s resonance fre-
quency is less impacted. As h1/λ increases, the resonance frequencies for both wave modes
fall. Still, the Sezawa mode easily maintains high frequencies in excess of GHz at relatively
large λ.
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In order to suppress the shift of the operating frequency of the SAW device with tem-
perature changes, this paper investigates the temperature effects on the ZnO piezoelectric
film and the SiO2 temperature complementary layer in the Sezawa mode. Lower TCF is
also an extremely important performance index for high-frequency SAW devices. ZnO
piezoelectric film is known to have a TCF of approximately −28 ppm/◦C. The TCF of the
device can be significantly improved by adding SiO2 with a positive TCF between the
piezoelectric film and the diamond substrate.

Figure 5 shows the TCF in ZnO/SiO2/diamond structures producing the Sezawa
mode at different normalized thicknesses of ZnO and SiO2. When h2/λ = 0.1, 0.2, 0.3, and
0.4, it is observed that the Sezawa mode shows positive TCF values with increasing SiO2
thickness; thus, a zero TCF can be obtained. The effect of SiO2 on the TCF of the Sezawa
mode decreases gradually for larger values of h2/λ because most of the acoustic energy
is confined within the ZnO piezoelectric film. The present simulation results show that
the Sezawa wave excited by this structure in the absence of electrode loading not only has
obvious advantages over the Rayleigh wave in terms of k2 and vp but also has favorable
temperature stability.
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3.3. Impact of Electrode Thickness on SAW Propagation Properties

When the piezoelectric film’s surface is covered with a metallic IDT, the mass loading
effect of the metallic electrode becomes non-negligible [31]. This section aims to investigate
the impact of the IDT electrode on the propagation characteristics of SAW when h1 and h2
are set to 0.4 λ and 0.2 λ, respectively. The vp and k2 of the Rayleigh and Sezawa modes are
compared and analyzed for various electrode normalized thicknesses (h3/λ).

For the Rayleigh and Sezawa modes excited by this structure, as h3/λ increases from
0 to 0.2, Figure 6 illustrates how various electrode thicknesses affect both admittance
characteristics. The admittance value of the Sezawa mode first increases and then decreases
with the electrode thickness. The cause of this phenomenon is a decrease in electrode
resistance and an increase in conductance when h3/λ is increased from 0.04 to 0.08; the
reason for the decrease in conductance in the range of h3/λ from 0.16 to 0.20 could be an
increase in acoustic impedance. Moreover, the Sezawa mode has significant advantages
over the Rayleigh mode. As shown in Figure 7a, the vp of the Rayleigh mode changes from
2838 m/s to 2615 m/s, and as depicted in Figure 7b, the vp of the Sezawa mode changes
from 5064 m/s to 4623 m/s. In addition, the k2 of the Rayleigh wave decreases gradually
with increasing electrode thickness, from approximately 1.2% to approximately 0.4%. The
k2 of the Sezawa wave increases gradually, from approximately 4.2% to approximately
5.4%. In order to obtain a higher k2 value while keeping vp at a higher value, h3 = 0.08 λ is
chosen in this paper, i.e., k2 is 4.9% and vp is 4892 m/s.
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In summary, in this paper, under consideration of electrode loading, the Sezawa mode
still exhibits a larger k2 and vp compared to the Rayleigh mode, which makes it possible to
use the Sezawa mode in the fabrication of SAW devices with high frequencies and low TCFs.

3.4. Modal Analysis of Rayleigh and Sezawa Modes

Finding the vibration mode of the acoustic waves on the IDT/ZnO/SiO2/diamond
structure designed in this paper is crucial, as there are multiple modes, including Rayleigh,
Sezawa, and high-order Sezawa modes, which coexist in the same layered structure. The
propagation velocity of acoustic waves in the ZnO piezoelectric film is lower than that of
acoustic waves in the diamond substrate.

Figure 8 shows the Rayleigh and Sezawa mode displacement field distributions in the z
direction versus normalized depth when h1, h2, and h3 are 0.4 λ, 0.2 λ, and 0.08 λ, respectively.
Figure 8a shows a typical simulated Y11 response of the SAW resonator with this structure. It
can be clearly seen that the device exhibits two different resonance frequencies. The acoustic
field of the Rayleigh mode is primarily dispersed on the ZnO surface, whereas the acoustic
field of the Sezawa mode is primarily spread throughout the ZnO piezoelectric layer and the
SiO2 layer, as seen in Figure 8b. Figure 9 shows the proposed device’s displacement against
substrate depth in both Rayleigh and Sezawa modes.
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Figure 8. (a) The admittance of the IDT/ZnO/SiO2/diamond structure, and the corresponding
resonant mode, where h3/λ = 0.08, h2 = 0.2 λ, and h1/λ = 0.4. (b) z-direction displacement field
distributions of Rayleigh and Sezawa waves as a function of depth.
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3.5. Resonator Design and Simulation

As both SAW-related sensors and filters are fundamentally constructed based on res-
onators, the analysis of resonator performance impacts becomes crucial. Figure 10 illustrates
a schematic diagram of a single-port resonator structure. Single-port resonators typically
consist of the IDT and reflecting grating (RG). The IDT refers to metal electrodes arranged
in a crossed pattern on a piezoelectric substrate, divided into an input port and a ground
port. The portion of the interdigital electrode’s crossed arrangement length is referred to as
the acoustic aperture. This section concludes with the design of a SAW resonator with the
coexistence of Rayleigh and Sezawa modes using this laminated structure.
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Figure 10. Schematic structure of single-port SAW resonator.

The Q, as an important indicator of resonators, is primarily determined by the pairs of
the RG, IDT, and the aperture width (W). In this section, we will investigate the influence
of the number of the IDT pairs (Nt) and the W on the Q value of the resonator. This study
fixes the number of the RG at 25 pairs and then explores the impact of different Nt and W
values on the electrical performance of the IDT/ZnO/SiO2/diamond multilayer resonator
structure. The thickness of each layer in the resonator is determined based on the results
from the previous section.

When studying the impact of Nt, we utilized the array functionality of COMSOL,
gradually increasing Nt from 70 pairs to 150 pairs while keeping W fixed at 20 λ to simulate
the effects of different Nt values on the resonator. The simulation results are presented
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in terms of the Y11 parameter. As seen in Figure 11a, with the increase in Nt, the peaks
at the resonance and anti-resonance frequencies of the Sezawa wave show a significant
rise, indicating an increase in admittance values. This phenomenon is attributed to the
better confinement of energy within the resonator as Nt increases. Simultaneously, there
is minimal change in the resonance and anti-resonance frequencies, i.e., k2 shows no
significant variation. To assess the changes in Q values, this study employs the −3 dB
bandwidth method [32]. Figure 11b illustrates the magnitudes and trends of Qs and Qp
values obtained for different Nt values. As Nt increases from 70 pairs to 150 pairs, the
corresponding Q values at the resonance (Qs) and anti-resonance (Qp) points both show
improvement, with Qs changing from 835.2 to 987.1, and Qp changing from 1486.7 to 1627.5.
Clearly, the change in Qp is more pronounced.
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To achieve a higher Qs and Qp while avoiding excessively large device sizes, this
study maintains the IDT pairs at a constant value of 130 and proceeds to investigate the
impact of W on the resonator. Utilizing the finite element method for parameterized
simulations, W is varied in increments of 20 λ, ranging from 20 λ to 100 λ. Figure 12a
depicts a schematic of Y11 under different W values, showing an increase in the peaks
of Sezawa wave resonance and anti-resonance frequencies, representing an increase in
admittance values. Furthermore, k2 remains relatively unchanged. Figure 12b illustrates
the magnitudes and trends of Qp and Qs values for different W values. The results indicate
a slight increase in Qp, rising from 1591.3 to 1645.8. Conversely, Qs decreases from 964.8 to
408.6, which is attributed to the increased electrode resistance resulting from the larger W.
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In summary, choosing appropriate values for Nt and W can enhance the performance
of the resonator, but an increase in both parameters leads to a larger device size. Therefore,
the selection of Nt and W should be based on the desired performance of the SAW device,
the required dimensions, and the complexity of the manufacturing process.

The final structural design parameters of this paper are shown in Table 2.

Table 2. Design parameters used in this paper.

Item Symbol Value

Wavelength (um) λ 2
ZnO thickness (um) h1 0.4 λ

SiO2 thickness (um) h2 0.2 λ

Al electrode thickness h3 0.08 λ

Metallization rate MR 50%
IDT pairs Nt 130

Aperture width (um) W 40 λ

Reflecting grating pairs Ng 25

4. Discussion

This work revealed that the optimization of the proposed structure avoids spurious
resonances arising from the coupling of multiple modes since the Rayleigh and Sezawa
modes are distant in the frequency domain and do not interfere with each other. For the
field of SAW filters, the larger k2 and high vp achieved by this multilayer structure help
to construct high-frequency broadband filters, and the zero TCF helps to improve the
operating frequency stability of the filters, which is especially promising for applications
in the communications field, where the band spacing is much narrower. Future work will
proceed to fabricate and characterize SAW devices based on simulations. Comparative
analyses of the simulation and experimental results will be carried out to verify the scientific
validity of this study.

5. Conclusions

In this paper, a ZnO/SiO2/diamond multilayer structure was proposed, and the effect
of each structural parameter on the acoustic properties of the Rayleigh and Sezawa waves
excited by this structure was analyzed using the COMSOL finite element method. When the
ZnO piezoelectric film is h1 = 0.4 λ, the SiO2 temperature complementary layer is h2 = 0.2 λ

and the electrode thickness is h3 = 0.08 λ, while the characteristic frequency of the Sezawa
wave is 2446 MHz, k2 is 4.9%, and vp is 4892 m/s. Because the characteristic frequency of
the Rayleigh wave is 1388 MHz, k2 is 0.65%, and vp is 2776 m/s, the k2 and vp of the Sezawa
wave are improved by 753% and 176% compared those of to the Rayleigh wave. Moreover,
k2 and vp are increased by approximately 5 times and 1.5 times, respectively, compared to
single-crystal ZnO devices. Eventually, the influence of aperture width and the number of
IDTs on the admittance characteristics and the changing patterns of the Q values in a single-
port resonator will be investigated. In conclusion, parameters can be judiciously selected
based on specific requirements during the device fabrication process. This work provides
an alternative approach for achieving high frequencies, favorable temperature stability, and
miniaturization in ZnO devices, opening up possibilities for future applications in SAW
sensors and filters.
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